

ASME® 2020 DSCC Dynamic Systems and Control Conference

Program

CONFERENCE Oct 5-7, 2020

Virtual, Online

https://event.asme.org/DSCC

The American Society of Mechanical Engineers • ASME *

Dear Friends:

Welcome to the 2020 Annual ASME Dynamic Systems and Control Conference (DSCC) held through virtual conferencing platform, on October 5 - 7, 2020.

DSCC is the showcase technical forum of the ASME Dynamic Systems and Control Division. It provides a focused and intimate setting for disseminating and discussing the state of the art research in dynamic systems and control, with a mechanical engineering focus. This year, the DSCC Technical Program consists of sessions in all areas of interest to the Division, including automotive and transportation systems, bio-systems and health care, energy systems, mechatronics, modeling, identification, intelligent systems, robotics, vibrations, and smart structures. The conference features contributed sessions, invited sessions, workshops and special sessions, plenary talks, student programs of best student paper competition and networking, as well as committee meetings and social functions.

We want to thank all the authors who have contributed their quality work, without which the conference would not be possible. We are grateful for the participation of many volunteers who ensured the high technical standards of the conference and engaging program. All DSCD technical Committees have organized invited sessions. The Conference Editorial Board chaired by Qian Wang, with assistance from a very large number of anonymous reviewers, conducted meticulous paper reviews. Also we would like to recognize members of DSCC Organizing Committee who provided tireless effort to facilitate the conference matters: Junmin Wang, Publications Chair; Manish Kumar, Workshops & Tutorials Chair; Chinedum Okwudire, Publicity Chair; Xu Chen and Beibei Ren, Students & Young Members Chairs; Kenn Oldham and Yunjun Xu, Invited/Special Sessions Chair; Xiayun Zhao, Local Arrangement Chair. We acknowledge the assistance from the ASME staff: Andrew Koleba, Conference Manager, who coordinated logistic details; Stacey Cooper, Webtool Manager, who led the IT support for the conference.

Finally, we want to especially thank the past and current members of the ASME DSCD Executive Committee, who have provided great leadership and guidance to the Division and to DSCC.

This has been an eventful year and many of us have experienced difficult times. We sincerely wish you a joyful experience in DSCC-2020!

Jiong Tang, General Chair Qingze Zou, Program Chair

VIRTUAL CONFERENCE October 5–7, 2020

All Time	s in US EDT	Pre Conference	e (October 4) - ноst	ed by Conference Volunteers			
1:00PM	3:00PM	Mitigating Gasoline Particulate Emi	Workshop 1: Mitigating Gasoline Particulate Emissions: Challenges and Best Practices, a Modeling and Control Perspective				
3:00PM	5:00PM	Cont	Workshop 2: rollable Tensegrity Structures and Mem	branes			
All Time	s in US EDT		Day 1 (October 5)			
10:00AM	10:50AM	Plenary 1: The price of battery degr	radation and the value of battery electrified transportation Speaker: Dr. Anna Stefanopoulo	health estimation in the transition to u			
10:50AM	11:00AM		Break				
11:00AM	12:00PM	NSF Program Directors Presentations	Technical Session: Adaptive and Intelligent Systems Control	Technical Session: Advanced Driver Assistance and Autonomous Technologies			
12:00PM	12:30PM	Breako	ut Room (Open forum continued di	scussion)			
12:00PM	12:10PM	Break					
12:10PM	1:10PM	Technical Session: Advances in Control Design Methods	Technical Session: Advances in Nonlinear Control	Technical Session: Assistive and Rehabilitation Devices Design, Modeling, Analysis and Control			
1:10PM	1:40PM	Breako	ut Room (Open forum continued di	scussion)			
1:10PM	1:20PM		Break				
1:20PM	2:20PM	Technical Session: Vehicle Dynamics, Estimation and Control	Technical Session: Energy and Power Systems	Technical Session: Estimation and Identification I			
2:20PM	2:50PM	Breako	ut Room (Open forum continued di	scussion)			
2:20PM	2:30PM		Break				
2:30PM	3:30PM	Technical Session: Advances in Motion and Vibration Control	Technical Session: Advances in Robotics I	Technical Session: Dynamics and Control of Human-Robot Systems			
3:30PM	4:00PM	Breako	ut Room (Open forum continued di	scussion)			
3:30PM	3:40PM		Break				

3:40PM	4:40PM		Technical Session: Advances in Sensors and Actuators	Technical Session: Vibration and Control Systems I			
4:40PM	5:10PM		Breakout Room (Open forum continued discussion)				
4:40PM	4:50PM	Industrial Workshop		Break			
4:50PM	5:30PM		Technical Session: Modeling and Control of Engine and After-treatment Systems	Technical Session: Biomedical and Rehabilitation Systems			
All Time	s in US EDT	Post Day 1	Sessions - Hosted by C	onference Volunteers			
5:40PM	6:50PM		Best Student Paper Presentations				
7:30PM	10:00PM	DSCD General Meeting					
All Time	s in US EDT		Day 2 (October 6)			
10:00AM	10:50AM	Plenary 2: Robotic Fish: Make "Sense" of the Underwater World Speaker: Dr. Xiaobo Tan					
10:50AM	11:00AM	Break					
11:00AM	12:20PM	Awards & Oldenburger Lecture Speaker: Dr. Mark Spong					
12:20PM	12:25PM	Break					
12:25PM	1:15PM	Technical Session: Building Energy Systems (invited)	Technical Session: Advandc Power Systems	Technical Session: Vibrations: Modeling , Analysis, and Control			
1:15PM	1:45PM	Breako	ut Room (Open forum continued dis	scussion)			
1:15PM	1:20PM		Break				
1:20PM	2:20PM	Student Career Advising/Networking Session	Technical Session: Estimation and Identification II	Technical Session: Advances in Mechatronics Systems			
2:20PM	2:50PM	Breako	ut Room (Open forum continued dis	scussion)			
2:20PM	2:30PM		Break				
2:30PM	3:30PM		Technical Session: Advanced Manufacturing Systems	Technical Session: Advances in Robotics II			
3:30PM	4:00PM	NSF Program Director Workshop	Breakout Room (Open	forum continued discussion)			
3:30PM	3:40PM			Break			
3:40PM	4:40PM		Technical Session: Control and Estimation of Energy Systems	Technical Session: Vibration and Control Systems II			
4:40PM	5:10PM	Breako	ut Room (Open forum continued dis	scussion)			
4:40PM	4:50PM	Break					

4:50PM	5:30PM		Technical Session: Estimation and Identification III	Technical Session: Driver Assistance and Autonomous Technologies				
All Time	s in US EDT		Day 3 (October 7)				
10:00AM	10:50AM	Plenary 3: Nyquist Lecture: A Hot Topic with Controls at its Core Speaker: Professor Marcia O'Malley						
10:50AM	11:00AM		Break					
11:00AM	12:00PM	Technical Session: Design, modeling and control of rehabitation devices	Technical Session: Multi-agent and Networked Systems	Technical Session: Path Planning and Motion Control				
12:00PM	12:30PM	Breako	Breakout Room (Open forum continued discussion)					
12:00PM	12:10PM		Break					
12:10PM	1:10PM	Technical Session: Unmanned Ground and Aerial Vehicles I	Technical Session: Modeling and Control of Soft Actuators and Manipulators					
1:10PM	1:40PM	Breakout Room (Open forum continued discussion)						
1:10PM	1:20PM		Break					
1:20PM	2:20PM	Technical Session: Unmanned Ground and Aerial Vehicles II	Technical Session: Energy Storage Systems	Technical Session: Improving Vehicle Efficiency and Reducing Emissions				
2:20PM	2:50PM	Breako	ut Room (Open forum continued dis	scussion)				
2:20PM	2:30PM		Break					
2:30PM	3:30PM	Technical Session: Advances in Robotics III	Technical Session: Tracking Control Systems	Technical Session: Connected Vehicle Systems				
3:30PM	4:00PM	Breako	ut Room (Open forum continued dis	scussion)				
3:30PM	3:40PM		Break					
3:40PM	4:40PM	Technical Session: Intelligent Transportation and Vehicles	Technical Session: Motion and Vibration Control Applications					
4:45PM	5:00PM		Closing Remarks					

Live Presentations

Plenary 1: October 5th – 10:00AM

Speaker: Dr. Anna Stefanopoulou William Clay Ford Professor of Technology Department of Mechanical Engineering University of Michigan

Title: The price of battery degradation and the value of battery health estimation in the transition to electrified transportation

Abstract: Replacing a gasoline or diesel internal combustion engine vehicle (ICEV) with an electric vehicle (EV) will zero out the tailpipe emissions and depending on where it charges can have 50% lower greenhouse gas emissions. Key barrier to EV adoption is the higher up-front cost of EVs compared to ICEVs. Using transit buses, we will show how the total cost of ownership depends on the lower operating cost due to fuel and maintenance savings that depend on the route, utilization, and charging of the vehicle. If the battery stays healthy, vehicle to building, vehicle to grid, and other 2nd life applications can provide additional value streams and be considered as a long-horizon optimization problem.

The battery state of health (SOH) is thus at the crux of the payback calculations and consequently can tip the EV adoption. Unfortunately, estimating the battery health with high confidence can only be done under certain discharge patterns. Identifying the physical origin of the degradation is even more difficult but very important, because it can inform the battery management system and hence prevent further degradation. We will present various on-board signals for tracking the intrinsic "aging wrinkles" in batteries. We will conclude by highlighting the estimation of gas venting and assess the intensity of thermal runaway for firstresponders and post-accident management of damaged batteries. This presentation will be similar to the one presented in IEEE ECCE and ICCAS.

Bio: Prof. Anna Stefanopoulou, is the William Clay Ford Professor of Technology and the Director of the Energy Institute at the University of Michigan. Stefanopoulou joined the Department of Mechanical Engineering in 2000 after working at the University of California, Santa Barbara and in the automotive industry, where she developed algorithms and calibrations for highly efficient and advanced powertrains. Stefanopoulou is currently working with a multidisciplinary group to knit automotive and manufacturing expertise with battery and grid experts with the goal to realize a clean electrified transportation.

She is in the fellow rank of three of the largest engineering societies (IEEE, SAE, ASME). Her innovation in powertrain control technology has been recognized by multiple awards and has been documented in a book, 21 US patents, 340 publications (8 of which have received awards) on estimation and control of internal combustion engines and electrochemical processes such as fuel cells and batteries. Stefanopoulou also has co-authored influential reports on the cost effectiveness of fuel-efficient technologies for light-duty vehicles, sponsored by the National Academies, to help inform policymakers.

NSF Program Directors Presentations: October 5th – 11:00AM

This presentation will describe opportunities that are relevant to the robotics, dynamics and controls communities. The presentation will also describe programs targeted toward junior investigators, as well as guidelines for proposal preparation and NSF's Intellectual Merit and Broader Impacts criteria.

Radhakisan (Kishan) S. Baheti - Kishan handles the areas of Control and Sensor Networks in the Power, Controls and Adaptive Networks (PCAN) Program in ECS.

Jordan M. Berg – Jordan is Program Director in the Division of Civil, Mechanical, and Manufacturing Innovation (CMMI), in the Engineering Directorate (ENG) of the US National Science Foundation (NSF). He is Emeritus Professor of Mechanical Engineering at Texas Tech University, where he served as Co- Director of the Nano Tech Center, and Associate Director of the DISCO (Dynamic Intelligent Systems, Control and Optimization) group

Irina Dolinskaya – Irina is a Program Director at the National Science Foundation (NSF) in the Division of Civil, Mechanical & Manufacturing Innovation (CMMI). Dr. Dolinskaya services Dynamics, Control and Systems Diagnostics (DCSD) and Foundational Research in Robotics (Robotics) programs, as well as National Robotics Initiative (NRI 2.0) and Navigating the New Arctic (NNA) NSF's 10 Big Ideas.

Robert Landers – Robert is a Curators' Distinguished Professor of Mechanical Engineering in the Department of Mechanical and Aerospace Engineering at the Missouri University of Science and Technology (formerly University of Missouri Rolla) and served as the department's Associate Chair for Graduate Affairs for eight years. He is currently a program manager at the National Science Foundation

Eduardo Misawa – Eduardo is currently a Program Director in the Directorate for Engineering at the National Science Foundation, where he manages the Engineering Research Centers (ERC) and Network for Computational Nanotechnology (NCN) programs.

Industrial Workshop Panel: October $5^{th} - 3:40PM$ - This session will not be recorded

Claus Danielson: Speaking about his experience going between academia and industry from when he was a controls researcher at MERL and now a professor at UMN, highlighting (and dismantling) the idea that you are "locked in" to the career you choose upon graduation.

Evan Chang-Siu: Speaking about his experience as a teaching faculty member. He spent time at a robotics startup and then moved into a teaching-focused undergraduate institution, which are two opposite ends of the career spectrum.

Erin McColl: Speaking about taking her technical background in mechatronics and applying it to a technical program management role, a position that many engineers are qualified for but may not know about.

Sarah Thornton: Speaking about applying her degree in controls and ethics research to the field of systems engineering.

Plenary 2: October 6th -10:00AM

Speaker: Dr. Xiaobo Tan MSU Foundation Professor & Richard M. Hong Endowed Chair Department of Electrical & Computer Engineering Department of Mechanical Engineering Michigan State University

Title: Robotic Fish: Make "Sense" of the Underwater World

Abstract: Bioinspired robotic fish have gained widespread interest due to their natural appeal and promising prospect for underwater sensing. In this talk I will share our robotic fish work, from lab research to field experimentation. I will focus on gliding robotic fish "GRACE", which combines maneuverability of robotic fish with energy-efficiency of underwater gliders. I will highlight the roles of dynamics and control in advancing the goal of autonomous sensing, through a series of examples motivated by applications of practical relevance: exploiting spiral dynamics of GRACE to monitor harmful algal blooms, developing distributed filtering algorithms to track movement of invasive fish species, and facilitating human-robot collaboration in underwater search and rescue.

Bio: Dr. Xiaobo Tan is an MSU Foundation Professor and the Richard M. Hong Endowed Chair in Electrical and Computer Engineering at Michigan State University. He received his bachelor's and master's degrees in automatic control from Tsinghua University, Beijing, China, in 1995, 1998, respectively, and his Ph.D. in electrical and computer engineering from the University of Maryland in 2002. His research interests include underwater robotics, soft robotics, smart materials, and control systems. He has published about 300 papers and been awarded four US patents in these areas.

Dr. Tan is a Fellow of IEEE and ASME. He was a recipient of the NSF CAREER Award (2006), MSU Teacher-Scholar Award (2010), MSU College of

Engineering Withrow Distinguished Scholar Award (2018), Distinguished Alumni Award from the ECE Department at University of Maryland (2018), and multiple best paper awards. Dr. Tan is currently a Senior Editor for IEEE/ASME Transactions on Mechatronics (TMECH), and has served as an Associate Editor for Automatica, Technical Editor for TMECH, and guest editor for six journals. He has been on the organizing committees for a number of international conferences, including serving as the General Chair for the 2018 ASME Dynamic Systems and Control Conference. Dr. Tan is keen to integrate his research with educational and outreach activities, and has served as Director of an NSF-funded Research Experiences for Teachers (RET) Site program at MSU from 2009 - 2016 and Curator of a robotic fish exhibit at MSU Museum in 2016-2017.

Rufus Oldenburger Lecture: October 6th – 11:00AM

Speaker: Dr. Mark Spong Professor of Systems Engineering Professor of Electrical and Computer Engineering Excellence in Education Chair Erik Jonsson School of Engineering & Computer Science University of Texas at Dallas

Title: Life in the Underactuated Lane

Abstract: Underactuated mechanical systems are those with fewer actuators than degrees of freedom and arise in several applications including flexible-joint and flexible-link robots, gymnastic robots, as well as walking, flying, and swimming robots. In addition, the relatively new area of soft robots presents new challenges and opportunities for control of underactuated systems. Various tools have been applied to control underactuated systems, such as static and dynamic feedback linearization, partial feedback linearization, and passivity-based control. In this talk I will present several results that my students and I have obtained for flexible-joint robots, gymnastic robots, and other systems, and discuss how these ideas may prove useful for controlling soft robots.

Bio: Mark W. Spong received his doctorate degree in systems science and mathematics in 1981 from Washington University in St. Louis. He has held faculty positions at Lehigh University (1981-82), Cornell University (1982-84), and at the University of Illinois at Urbana-Champaign (1984-2008).

He is currently Professor of Systems Engineering, Professor of Electrical and Computer Engineering and holds the Excellence in Education Chair at the University of Texas at Dallas. From 2008-2017 he was the Dean of the Erik Jonsson School of Engineering and Computer Science at UT-Dallas. He is also Donald Biggar Willett Professor Emeritus from the University of Illinois at Urbana-Champaign.

Professor Spong is Past President of the IEEE Control Systems Society and past Editor-in-Chief of the IEEE Transactions on Control System Technology. He is a Life Fellow of the IEEE and a Fellow of IFAC. His main research interests are in robotics, mechatronics, and nonlinear control theory. He has authored or coauthored more than 300 technical articles in control and robotics, five books and holds one patent. He has made fundamental contributions in robust and nonlinear control of robot manipulators, teleoperators, bipedal walking robots, and multi-robot systems.

Professor Spong's notable awards include the 2020 Rufus Oldenberger Medal from the ASME, the 2018 Bode Lecture Prize from the IEEE CSS, the 2016 Nyquist Lecture Prize from the ASME, the 2011 Pioneer in Robotics Award from the IEEE Robotics and Automation Society, the first IROS Fumio Harashima Award for Innovative Technologies in 2007, the IEEE Transactions on Control Systems Technology Outstanding Paper Award, the Senior Scientist Research Award from the Alexander von Humboldt Foundation, the Distinguished Member Award from the IEEE Control Systems Society, the John R. Ragazzini and O. Hugo Schuck Awards from the American Automatic Control Council, and the IEEE Third Millennium Medal.

Student Career Advising/Networking Session -Navigating a Post-Graduate Career Path in a Challenging Time: October 6th – 1:20PM

This session will not be recorded

Dr. Selina Pan is a Senior Research Scientist for Planning and Control at Toyota Research Institute. She received the Ph.D. degree in mechanical engineering from UC Berkeley in 2014, the M.S. degree in mechanical engineering from UC Berkeley in 2009, and the B.S.E. degree in aerospace engineering from the University of Michigan in 2008. Her doctoral research was in unmanned aircraft and automotive engine control. Her current research interests are in ethics, driver-vehicle interaction, and integrated path planning and tracking in autonomous vehicles.

Sam Pedigo is the Boeing-side Director of the University of Washington/Boeing collaborative research lab called BARC (Boeing Advanced Research Center). In this role, he leads university students and Boeing embedded engineers in collaborative research into many different areas relevant to aerospace manufacturing. Sam's responsibilities include finding appropriate research projects, contract development, mentoring students and Boeing engineers, and conducting tours of the research facilities.

Igor Alvarado is a Business Development and Account Manager at National Instruments (NI). He received the A.S. and B.S. degrees in mechanical engineering from Kansas State University in 1982 and 1984, respectively. At NI, he helps to develop collaborations and strategic partnerships with national labs and leading universities in the U.S. in such areas as Cyber-Physical Systems, Energy, Medical Imaging/Devices and RF/Wireless Communications. He has led the design, development and deployment of real-time, measurement and intelligent control systems that involve advanced numerical methods and algorithms using high-performance embedded computing platforms. He is also an NSF Innovation-Corps mentor.

Karsin Lam is an Industrial Engineer at Quanser. He graduated from Ontario Tech University in 2016 with a B.Eng degree in mechanical engineering. At Quanser, he works on streamlining new products from R&D to production, creating processes and introducing new technology to raise the efficiency of operations within the company. He has spearheaded many initiatives including introducing new ERP, data management and project management systems to Quanser in the short time he has been with the company. He was also involved in programs such as FIRST robotics where he mentored students through competitive robotics providing a path towards an education and career in STEM.

Dr. Bernhard Knigge is Director of the RSS HDI Firmware teams at Western Digital Corporation, focusing on head disk interface spacing control and defect management. Bernhard studied Physics at the TU Munich. He then pursued his Ph.D. in Engineering Sciences from UCSD, with his thesis focusing on head disk interface physics. Bernhard is an expert in the tribology field with over 20+ years of experience; he held positions at IBM Almaden Research Center and Hitachi GST where he made significant contributions to the head disk interface design and to improve drive reliability; in particular Bernhard invented the slider-disk contact potential compensation scheme. He joined Western Digital in 2009 where he led the PMR and HAMR tribology teams. He has also mentored many students and initiated new research projects inside and outside of Western Digital. In the last 4 years Bernhard is managing the world-wide HDI Firmware teams. In 2016, Bernhard was honored with the "Outstanding Alumni Award" from UCSD. He holds 55 patents and has authored and co-authored over 50 publications. He enjoys reading, skiing, hiking and playing the piano

Plenary 3: Nyquist Lecture: October 7th – 10:00AM

Title: Haptics: A Hot Topic with Controls at its Core

Abstract: We depend on touch-based, or haptic, information throughout our daily activities, even in ways that we do not consciously realize. Given the importance of this sensory channel, haptic feedback is becoming commonplace in consumer electronic devices and advanced robotic systems. From simple smart watch vibration notifications to state of the art full body haptic displays in virtual reality games, the potential for our sense of touch to enhance information transfer and realism is clear. What is "under the hood," making realistic haptic interactions possible? Feedback and stability are critical concepts, central to realizing high-fidelity haptics. These concepts also play out in the applications of haptic guidance, virtual environment-based training , and rehabilitation robotics that have shaped my own research. In this talk, I will discuss the fundamental concepts in dynamic systems and controls that are at the heart of these haptic

interactions. I will also share how the dynamic systems and controls community launched the field of haptics, and the need for our continued engagement in the field going forward.

Bio: Marcia O'Malley is the Thomas Michael Panos Family Professor in Mechanical Engineering, Computer Science, and Electrical and Computer Engineering at Rice University where she directs the MAHI (Mechatronics and Haptic Interfaces) Lab. Her research addresses issues that arise when humans physically interact with robotic systems, with a focus on training and rehabilitation in virtual environments. She is a Fellow of both the American Society of Mechanical Engineers and the Institute of Electrical and Electronics Engineers. She serves as a senior associate editor for the ACM Transactions on Human Robot Interaction and the IEEE/ASME Transactions on Mechatronics, and as co-Editor in Chief of the IEEE Transactions on Haptics.

Workshops

October 4th - 1:00PM

Mitigating Gasoline Particulate Emissions: Challenges and Best Practices, a Modeling and Control Perspective Workshop:

Impending particulate emissions regulations have placed emphasis on the number of particles emitted from gasoline engines, creating an imposing challenge for manufacturers who utilize direct injection combustion strategies. While substantial work remains in the in-cylinder prevention of gasoline particulates, the immediate need remains their removal from current exhaust streams. Filtration of gasoline particulates creates unique challenges due to the inherent nature of spark ignited engine operation. This workshop outlines and addresses the fundamental modeling and control challenges of filtering gasoline particulates, provides best practices for experimental particulate investigations, introduces the audience to the unique challenges of physically modeling gasoline particulate filters, and speaks toward the impact of particulate filtration on engine control.

October 4th - 3:00PM Controllable Tensegrity Structures and Membranes Workshop:

The growing need for lightweight, flexible, adaptive mechanical systems led to increased interest in structural networks which include a large number of cables. This approach to structural design leads to significant reduction in weight as well as increased flexibility compared to classical bar assemblies because cables are lightweight and flexible. Important members of the cable structures family are tensegrity structures, which are prestressed cable-bar networks that elicit significant interest from the dynamic and control community. These structural designs have a bio-inspired flavor since they mimic the articulated skeletons of living organisms. In these organisms, tendons and muscles control the movement of the skeletal structure, playing the equivalent role of cables, while bones can be assimilated with bars. If membranes are added to these structures, they mimic the skin of living organisms. Importantly, recent advances in power electronics, signal processing, control, as well as materials, computational capabilities and system design, enable implementation of modern controllers that can effectively control the behavior of such structures networks. Following these major breakthroughs, this workshop discussed key challenges, fundamental principles, and recent advances in the analysis, design, and control of tensegrity and membrane structures.

October 6th - 2:30PM NSF Program Director Workshop

So, you think you have a great research idea, now how do you get funding from the National Science Foundation (NSF) to do the work? A well-scoped and written proposal is instrumental to successful submission. This session targets junior faculty and researchers who might be new to NSF and describes detailed guidelines and practical advice for proposal preparation. The presenter will go over NSF review process and Intellectual Merit and Broader Impacts criteria, as well as share most common mistakes made by the Primary Investigators when submitting a proposal. Question-and-answer session will follow the presentation.

Technical Committee Meetings

Automotive and Transportation Systems (ATS) Technical Committee

Time: Oct 6, 6pm-7pm (EDT) Link: to be hosted by Marcello Canova (canova.1@osu.edu)

Bio-Systems and Health Care (BSHC) Technical Committee Meeting

Time: Oct 6, 8pm-9pm (EDT) To be hosted by Dumitru Caruntu (<u>dumitru.caruntu@utrgv.edu</u>)

Mechatronics Technical Committee Meeting

Time: Oct 6, 7pm EDT To be hosted by Dr. Garrett Clayton (garret.clayton@villanova.edu

Robotics Technical Committee Meeting

Time: Oct 6, 8pm-9pm (EDT) To be hosted by Dr. Jongeun Choi (jongeunchoi@yonsei.ac.kr)

Vibrations Technical Committee Meeting Time: Oct 6, 7pm-8pm (EDT) To be hosted by Dr. Minhgui Zheng (mhzheng@buffalo.edu)

Energy Systems (ES) Technical Committee Meeting

Time: Oct 6, 7pm-8pm (EDT) To be hosted by Dr. Scott Moura (<u>smoura@berkeley.edu</u>)

VIRTUAL CONFERENCE October 5–7, 2020

Technical Session Program						
Session Name	Time	Paper Number	Paper Title	Presenting Author	Session Chair	Session Co- Chair
			October 5th - All times in US EDT			
		DSCC2020-3211	Position and Attitude Control of Underactuated Drones Using the Adaptive Function Approximation Technique	Azin Shamshirgaran		
Adaptive and Intelligent Systems	11am -	DSCC2020-3111	Further Results on Performance Guarantees in Adaptive Control of Uncertain Systems With Unmodeled Dynamics	Kadriye Merve Dogan		
Control	12nm	DSCC2020-3245	Sensor and Actuator Intrusion Detection for Cyber-Physical Systems via Adaptive Estimation Algorithm	Jiayi Su	ChengZhi Yuan	Xu Jin
Control	izpiii	DSCC2020-3117	Decentralized Iterative Learning Cooperative Impedance Control for a Team of Robot Manipulators	Xu Jin		
		DSCC2020-3112	A Novel Intelligent Learning Control Scheme for Discrete-Time Nonlinear Uncertain Systems in Multiple Environments	Jingting Zhang		
		DSCC2020-3286	Control Design for Autonomous Vehicle Emergency Safe Stop System Based on Differential Dynamic Programming	Lisheng Yang		
Advanced Driver Assistance and	11am -	DSCC2020-3253	Minimum Safety Distances for Emergency Braking Manuevers in Car-Following Applications	Devin Schafer		
Autonomous Technologies	12nm	DSCC2020-3141	The Effects of Trailer Towing on the Dynamics of a Lane-Keeping Controller	Illes Voros	Junmin Wang	Pingen Chen
Autonomous reenhologies	izpiii	DSCC2020-3113	Real-Time Driver Model Parameter Identification: An Algebraic Approach	Zejiang WANG		
		DSCC2020-3115	A Lateral Motion Planning Method for Automated Vehicles Based on Sinusoids	Wei WANG		
		DSCC2020-3191	Iterative Learning Control for Hybrid Systems	Kirti Deo Mishra		Kirti Deo Mishra
Advances in Central Design	12:10pm - 1:10pm	DSCC2020-3331	Output-Feedback Lpv Control of Permanent Magnet Synchronous Motors	Shahin Tasoujian	Beibei Ren	
Advances III Control Design Methods		DSCC2020-3327	Pd Controller With Self Adaptive Gains for Quadrotor Waypoint Navigation	Madhavan Sudakar		
Methods		DSCC2020-3267	Robust Iterative Learning Control for Interval Linear Systems	Kirti Deo Mishra		
		DSCC2020-3221	Error Dynamics Design via a Repetitive Loop for Ude-Based Robust Control to Reject Periodic Disturbances	Yeqin Wang		
		DSCC2020-3151	Nonlinear Zero-Dynamics Attacks Targeting Nuclear Power Plants	Jacob Farber	_	Peiman
	12:1000	DSCC2020-3271	Constrained Control of Input Delayed Systems With Partially Compensated Input Delays	Imoleayo Abel		
Advances in Nonlinear Control	1:10pm	DSCC2020-3149	New Analysis/design of Generalized Discrete Pi Controller via Discrete Time Delay Control for Nonlinear Systems	Suresh Reddy	Suresh Reddy	Naseradinmousa
		DSCC2020-3144	New Stability Analysis and Design of Discrete Time Delay Control for Nonaffine Nonlinear Systems	Suresh Reddy		vi
		DSCC2020-3114	Experimental and Analytical Nonzero-Sum Differential Game-Based Control of a 7-Dof Robotic Manipulator	Mostafa Bagheri		
		DSCC2020-3216	Effect of Additional Weight on Human Squat Exercise Stability: Ground Reaction Forces and Centers of Pressure	Dumitru Caruntu		
Invited: Assistive and	12:1000	DSCC2020-3164	Angular Velocity Control of Pneumatic Soft Robotic Digits	W. Y. Shi		u Kamran Iqbal
Rehabilitation Devices Design,	12:10pm -	DSCC2020-3161	Modeling and Analysis of the Effects of Startle Reaction on Group Coordination	Violet Mwaffo	Dumitru Caruntu	
Modeling, Analysis and Control,	1. Topin	DSCC2020-3269	Optimal Realization of Endpoint Stiffness in Static Human Arm Postures	kamran iqbal		
		DSCC2020-3227	An Inconspicuous, Integrated Electronic Travel Aid for Visual Impairment	Alain Boldini		
		DSCC2020-3167	Improving Passenger Comfort by Exploiting Hub Motors in Electric Vehicles: Suspension Modeling	Di Chen		
Vehicle Dynamics, Estimation and Control	1:20pm - 2:20pm	DSCC2020-3121	Multi-Objective Optimal Design of an Active Aeroelastic Cascade Control System for an Aircraft Wing With a Leading and Trailing Control Surface	Yousef Sardahi	YOUSEF SARDAHI	Gladys Abapo
		DSCC2020-3301	A Novel Plate-Like Sensor Utilizing Curvature-Based Stiffening for Nanometrology Applications	Rafiul Shihab		
		DSCC2020-3146	Observer Design for the Series Interconnection of Li-Ion Battery Cells Subject to Reduced Voltage Information	Luis D. Couto		
	1.00	DSCC2020-3193	Suggestion-Based Fuel Efficient Control of Connected and Automated Vehicles	Tinu Vellamattathil Baby		. .
Energy and Power Systems	1:20pm -	DSCC2020-3145	Adaptive Equivalent Factors of Multi-Objective Energy Management for Fuel Cell Hybrid Electric Vehicles	Yan Ma	John Wagner	Baisravan
	2.20pm	DSCC2020-3110	Model Predictive Control Fot a Synchronous Machine With a Pulsed, Constant-Power Load	Adam Parry		Homenaudhun
		DSCC2020-3108	A Traveling Wave Thermoacoustic Engine - Design and Test	Chengshi Wang	1	
		DSCC2020-3210	An Online Transfer Learning Approach for Identification and Predictive Control Design With Application to Rcci Engines	Yajie Bao		

		DSCC2020-3312	Design, Modeling, and Identification of an Experimental Liquid-Level Control System: Enabling Research in Fault Diagnosis	Hilina Workneh		Nicole Abaid
Estimation and Identification I	1:20pm -	DSCC2020-3235	Bearing-Only Localization of a Quasi-Static Sound Source With a Binaural Microphone Array	Aidan Bradley	IOANNIS	
	2:20pm	DSCC2020-3186	Modeling and Parameter Identification for Condition Monitoring of Surface-Mount Permanent Magnet Machines Under Magnet Demagnetization	Fanny Pinto Delgado	RAPTIS	
		DSCC2020-3287	Passivitv-Based Disturbance Observer Design	Ying-Chun Chen		
		DSCC2020-3153	Advanced Dynamics Analysis of a Drilling Roller Reamer as a Rigid Multibody System	Opeyemi Adewuya		
		DSCC2020-3320	On the Zeros of an Undamped Three-Dof Flexible System	Siddharth Rath		
Advances in Motion and	2:30pm -	DSCC2020-3246	New Hammerstein Modeling and Analysis for Controlling Melt Pool Width in Powder Bed Fusion Additive Manufacturing	Dan Wang	Bryan	Vu Chan
Vibration Control	3:30pm	DSCC2020-3251	Nems Circular Plates Under Hard Electrostatic Excitations: Amplitude-Frequency Response of Superharmonic Resonance of Second Order to Include Casimir Effect	Dumitru Caruntu	Maldonado	xu Chen
		DSCC2020-3342	Adrc-Based Model Predictive Control of Irrigation Canals	Jose Carreno		
		DSCC2020-3163	Steerable Needle Trajectory Following in the Lung: Torsional Deadband Compensation and Full Pose Estimation With 5dof Feedback for Needles Passing Through Flexible Endoscopes	Tayfun Efe Ertop		
	2:30pm -	DSCC2020-3291	Cooperation and Null-Space Control of Networked Omni-Directional Mobile Manipulators	Michael Chua	Peiman	
Advances in Robotics I	3:30pm	DSCC2020-3158	Modelica-Based Control of a Delta Robot	Scott Bortoff	Naseradinmous	Scott Bortoff
	0100pm	DSCC2020-3156	Navigation and Obstacle Avoidance of Snake-Robot Guided by a Co-Robot Uay Visual Servoing	Mahdi Haghshenas-Jarvani	avi	
		DSCC2020-3181	Experimental and Analytical Decentralized Adaptive Control of a 7-Dof Robot Manipulator	Alexander Bertino		
		DSCC2020-3125	Adantive Trajectory Tracking During Motorized and Ees-Induced Binens Curits via Integral Concurrent Learning	Brendon Allen		
		DSCC2020-3296	Adaptive Hapedance Control for the Hantic Shared Driving Task and an on Angline of Modern Control for Control for the Hantic Shared Driving Task and the Modern Control for the Hantic Shared Driving Task and the Hantic Shared Driving Task and the Ha	Amirbossein Ghasemi		
Dynamics and Control of Human-	2:30pm -	DSCC2020-3311	Matorized and Eurocianal Electrical Stimulation Induced Europe Teak Beach Material Adaptive Concurrent Learning Control	Jonathan Casas	Amirhossein	
Robot Systems	3:30pm	DSCC2020-3177	Relative Stip Resonance as a Massime of Engagement During Via via Virtual Reality	Roni Barak Ventura	Ghasemi	
		DSCC2020-3131	Carryanic own response as a weashe of Engagement barry in yir and reary	Kimberly Stubbs		
		DSCC2020-3131	releoperated whomeder and the steake of constant and the steake of the s	Noah Koble		
		DSCC2020-3297	Design of a Aerila Coral Roboti Osing a high-stoke Compitatin Linear Electromagnetic Actuation	Soroush Korivand		
Advances in Sensors and	3:40pm -	DSCC2020-3324	Dana Gap and vadual nequency manipulation by magneticsticitive material in a Santwich Plate Studiole	Subbradeen Boy	Yi Mazumdar	
Actuators	4:40pm	DSCC2020-3277	The Energy of Shindhareous Auditory and Visual Sensing Cues in a two-chinensional Vicsek Model	Subiliadeep Roy		
		DSCC2020-3337	Notion Equations for the ball and beam and the ball and Arc Systems	Constance Lare		
		DSCC2020-3321	Dynamic wodeling of voice Coll wotor-Actuated Flexible internationales	Hongyang Shi		
	3:40pm -	DSCC2020-3132	Stability Analysis and Controller Design for Linear Time Periodic Systems Using Normal Forms	Subramanian		
		DSCC2020-3254	The Effect of Time Delay on the Stability Control of Trailers	Hanna Zsofia Horvath		Sangram Redkar
Vibration and Control Systems I	4:40pm	DSCC2020-3160	Simultaneous Vibration Mitigation and Energy Harvesting of a Nonlinear Oscillator	Paul-Camille Kakou	Oumar Barry	
		DSCC2020-3176	Effect of Electromechanical Coupling on Locally Resonant Metastructures for Simultaneous Energy Harvesting and Vibration Attenuation Applications	Mohammad Bukhari		
		DSCC2020-3209	Data Driven Feedforward Control Design and Input Shaping Techniques for Multi Actuator Drives	Prateek Shah		
Modeling and Control of Engine	4:50pm -	DSCC2020-3255	Control-Oriented Modeling of Cycle-to-Cycle Combustion Variability at the Misfire Limit in Si Engines	Bryan Maldonado		
and After-treatment Systems	5:30pm	DSCC2020-3332	A Receding-Horizon Framework to Co-Optimizing the Velocity and Power-Split of Automated Plug-in Hybrid Electric Vehicles	Di Chen	Pingen Chen	
	0.0000111	DSCC2020-3317	Control-Oriented Model Development and Experimental Validation for a Modern Diesel Engine	Kuo Yang		
Biomedical and Rebabilitation	4:50pm -	DSCC2020-3129	A Cellular Automata Model for Dynamics and Control of Cardiac Arrhythmias	Min Xiong		
Systems	4.50pm - 5:30pm	DSCC2020-3128	On a Gamified Brain-Computer Interface for Cognitive Training of Spatial Working Memory	Ziming Liu	Xiaopeng Zhao	
Systems		DSCC2020-3127	Modeling Analysis of the Wrist Dynamics via an Ellipsoidal Joint	Jiamin Wang		
		DSCC2020 2118	October 6th - All times in US EDT			
Building Energy Systems	12.25nm	DSCC2020-3118	Control Structure Design of Building Huge Systems Lieng a Data Driven Self Ontrol Steel Infliction Learning Methods and Control Structure Design of Building Huge Systems Lieng a Data Driven Self Ontrol Steel With Active Set Change	Zhongfan Zhao	Marcalla	
(invited)	12.25pm -	DSCC2020-3294	Control structure besign of building myac systems using a bata-briven self-optimizing control with Active Set Change	Stophopia Stopker	Canova	Ján Drgoňa
(invited)	1. ISpili	DSCC2020-3184	Parametric modeling and optimal control of a combined releasing and power system with Energy Storage	Stephanie Stockar	Canova	
		DSCC2020-3229	Achieving improved Personalization and Energy Eindency in Contabled work-Spaces Through Data-Driven Predictive Control	Syed Ansan Raza Naqvi		
	10:05000	DSCC2020-3109	Arm Motion Dynamics to Excite a Mobile Energy Harvesting AutoWinder	Abby George	Javad	
Advandc Power Systems	12.25pm -	DSCC2020-3252	Development and implementation of a New Optimal Supplemental Lighting Control Strategy in Greenhouses	Shirin Aizail	Mohammadpour	John Wagner
	1. ISpin	DSCC2020-3303	Characterization of Duty Cycles for the Peak Snaving Electric Grid Energy Storage Application	Kevin Moy	Velni	
		DSCC2020-3318	Parameter identification and Sensitivity Analysis for Zero-Dimensional Multi-Physics Lithium-Sultur Battery Models	Chu Xu		
Vibrations: Modeling , Analysis, and Control	10.05	DSCC2020-3284	Including image-Based Perception in Disturbance Observer for warehouse Drones	Zhu Chen		
	12:25pm -	DSCC2020-3194	Performance Evaluation of Suspended Energy Harvesting Backpack Using Hait-Wave Mechanical Rectification	Jia Mi	Minghui Zheng	Dumitru Caruntu
	i.iopm	DSCC2020-3199	Physics based wullit-ridelity Data Fusion for Efficient Characterization of Mode Shape Variation Under Uncertainties	Kai Zhou		
		DSCC2020-3217	Prequency-Amplitude Response of Subharmonic Resonance of One-Third Order of Electrostatically Actuated Mems Circular Plates	Dumitru Caruntu		
		DSCC2020-3230	Ettect of Neural Network on Reduction of Noise for Edge Detection	Diane Peters		
	1:20pm -	DSCC2020-3159	Input Excitation Analysis for Black-Box Quadrotor Model System Identification	John Angarita	Qingze Zou	
Estimation and Identification II	2:20pm	DSCC2020-3304	Adaptive Parameter Estimation With Convergence Analysis for the Prandtl-Ishlinskii Hysteresis Operator	Xiaobo Tan		Diane Peters
		DSCC2020-3283	An Improved Model of Height Profile for Drop-on-Demand Print of Uv Curable Ink	Yumeng Wu	J	

		DSCC2020-3264	Mobile Sensing of Multi-Dimensional Dynamic Field via Compressed Sensing	Tianwei Li		
		DSCC2020-3105	Hapticwall - an Encountered-Type Two-Dimensional Vertical System for Virtual Reality	Yuwei Li		
		DSCC2020-3306	Design Analysis of a Distributed Actuation-Sensing System Using Direct Field-Feedback for Eddy-Current Pattern Control	Min Li		Yuwei Li
Advances in Mechatronics	1:20pm -	DSCC2020-3288	Dynamic Prediction-Based Optical Localization of a Robot During Continuous Movement	Jason Greenberg	Min Li	
Systems	2:20pm	DSCC2020-3220	A Numerical Investigation of an Eddy Current Sensor for Detecting Small Defects in Metal Additive Manufacturing	Zhengva Guo		
		DSCC2020-3107	Control Design for an Emulator of Mechatronic Powertrain Dynamics: A Case Study	Laurens Jacobs		
		DSCC2020-3238	A Control-Oriented Dynamical Model of Deposited Droplet Volume in Electrohydrodynamic. Let Printing	Isaac Spiegel		
		DSCC2020-3222	A Switched Adaptive Model for Laver-to-Laver Selective Laser Melting With Varving Laser Paths	Xin Wang	-	
Advanced Manufacturing	2:30pm -	DSCC2020-3197	Devices-Informed Gaussian Process Reset Ontimal Control of Laser Powder Red Fusion	Yong Ren	Doug Bristow	Lavne Clemen
Systems	3:30pm	DSCC2020-3260	Anyline memory data Driven Exercises Control Design to Dual Stone Hard Disk Drives	Prateek Shah		
		DSCC2020-3258	Application of hermal Effects in De-Maters Lising Pseudosand Educations	Lavne Clemen		
		DSCC2020-3183	Marker Based Pow Alignment Control for an Aniguitural Socialitana Pohot			
		DSCC2020-3105	Internet Dasce New Augmenter Control of Angeneticities Cooling Robot	Chandler Banotta		
Advances in Robotics II	2:30pm -	DSCC2020-3303	Distributed and Lassification of Ambient Vortex Wake From the Kinematics of a Biologonical Summing Robot Lion Neural Networks	Phanindra Tallanragada	Yuniun Xu	Biswanath
Advances in Robolies in	3:30pm	DSCC2020-3232	Densing and classification of Antibient Voltex wake 1 on the Internation of a bioinspired swimming Robot Osing Redual Retworks	Riswapath Samanta	Turijuri Xu	Samanta
		DSCC2020-3279	Visual reargements of the rest of the second s	Sinon Sohin Condon		
		DSCC2020-3276	Design of a Parallel clastic hopper with a wrapping can internation rempirate based withday fundole bamping control Multi-Low Historrapida Estimation for Thermal Management Customs of Elocation Visiona	Bamala Tappaua		
Control and Estimation of	2:40pm	DSCC2020-3175	Multi-Level interial citical estimation for memain waitagement systems or electime vehicles	Faillela Taillious	Ellen Vi	
Energy Systems	4:40pm	DSCC2020-3190	Interactical Mouth-Timescale Energy Management for Hybrid-Electic Arctan	Depiel Leister	Mazumdar	Yan Chen
Energy Systems	4.400111	DSCC2020-3203	Nonimear hierarchical who for maximizing Aricrant Themail Endurance	Daniel Leister	Mazurnaan	
		DSCC2020-3233	Graph-Based Design and Control Optimization of a Hyond Electrical Energy Storage System	Cary Laird		
		DSCC2020-3257	Violational Control of a 2-Link Mechanism	Zakia Ahmed		
	2.40	DSCC2020-3276	Towards a wootile kobot for vibration Control and Inspection of Power Lines	Paul-Camille Kakou		
Vibration and Control Systems II	3:40pm -	DSCC2020-3307	Leveraging Conventional Control to Improve Performance of Systems Using Reinforcement Learning	Geraid Eaglin	Phanindra Talla	¹ Joshua Vaughan
-	4:40pm	DSCC2020-3310	Parameter Sensitivity Analysis of Peizoelectrically-Actuated Flexural/torsional Vibrating Beams	Roya Salehzadeh	pragada	
		DSCC2020-3326	Nonholonomic Systems With Redundant Degrees of Freedom Can Exploit Nonlinear Frequency Response to Improve Speed and Efficiency of Locomotion	Phanindra Tallapragada		
	4:50pm -	DSCC2020-3295	Dynamic Modeling of a Steerable Drifter	Eric Gaskell		
Estimation and Identification III	5:30pm	DSCC2020-3292	Data-Driven Drop Formation Modeling in Nanoliter Drop-on-Demand Inkjet Printing	Jie Wang	Warren White	
	0.00pm	DSCC2020-3298	Continuum of Motion Equations and Control Laws for the Inverted Pendulum Cart and Rotary Pendulum	Constance Lare		
Driver Assistance and	4:50pm -	DSCC2020-3174	Combined Trajectory Planning and Tracking for Autonomous Vehicles on Deformable Terrains	James Dallas		
Autonomous Technologies		DSCC2020-3293	Switched Control Barrier Functions With Applications to Vehicle Safety Control	Yiwen Huang	Yao Ma	
, atomotion de l'échnologies	0.0000111	DSCC2020-3122	Inverse Reinforcement Learning Based Driver Behavior Analysis and Fuel Economy Assessment	Mehmet Ozkan		
October 7th - All times in US EDT						
		DSCC2020-3104	Numerical Simulation of Dynamic Bending Deflection of a Disc Cam Profile With Roller Follower System	Louay S. Yousuf		
Design modeling and control of	11:00om	DSCC2020-3225	Sampled-Data Observer Based Dynamic Surface Control of Delayed Neuromuscular Functional Electrical Stimulation	Qiang Zhang		
rebabitation devices	12:00pm	DSCC2020-3196	An Ultrasound Imaging Based Observer for Estimating Nmes-Induced Muscle Fatigue: Theory and Simulation	Zhiyu Sheng	Nitin Sharma	Ayonga Hereid
Tenabitation devices	12.00pm	DSCC2020-3170	Dynamic Locomotion of a Lower-Limb Exoskeleton Through Virtual Constraints Based Zmp Regulation	Victor Paredes Cauna		
		DSCC2020-3140	The Swirling Pendulum: Conceptualization, Modelling, Equilibria and Control Synthesis	Sujay Kadam		
		DSCC2020-3178	Formation Control for Underactuated Surface Vessel Networks	Bo Wang		
Multi agent and Naturaliad	11:000	DSCC2020-3162	Formation Control of Non-Holonomic Mobile Robots Moving on Slippery Surfaces	Violet Mwaffo	l la chi che	
Sustana	11:00am -	DSCC2020-3206	Cooperative Localization of Vehicles in Three-Dimensional Space	Juan Carlos Oliveros	Ashrufiyon	Blake Buchanan
Systems	12:00pm	DSCC2020-3315	Stability and Control of Chaplygin Beanies Coupled to a Platform Through Nonholonomic Constraints	Blake Buchanan	Astriuliuon	
		DSCC2020-3136	Passivity-Based Distributed Acquisition and Station-Keeping Control of a Satellite Constellation in Areostationary Orbit	Emmanuel Sin		
		DSCC2020-3208	Contact-Rich Trajectory Generation in Confined Environments Using Iterative Convex Optimization	Weiye Zhao		
		DSCC2020-3241	On the Ergodicity of an Autonomous Robot for Efficient Environment Explorations	Rabiul Hasan Kabir		
Path Planning and Motion	11:00am -	DSCC2020-3300	Trajectory Generation From Paths for Autonomous Ground Vehicles	Letian Lin	Kooktae Lee	Changliu Liu
Control	12.00pm	DSCC2020-3169	Predictive Motion Planning for Autonomous Vehicles With Geometric Constraints via Convex Optimization	Yan Ma		
		DSCC2020-3328	Interaction-Aware Behavior Planning for Autonomous Vehicles Validated With Real Traffic Data	Jinning Li		
		DSCC2020-3126	A Control Algorithm Framework for Time-of-Arrival and Arrival Airspeed Control	Shawn Stephens		
		DSCC2020-3239	Optimal Control of a Multirotor Unmanned Aerial Vehicle Based on a Multiphysical Model	Nicolas Michel		
	12:10pm -				Kam Leang	Manish Kumor
Unmanned Ground and Aerial	12:10pm -	DSCC2020-3205	Autonomous Light Assessment Drone for Dark Skies Studies	Matthew N. Goodell	Kam Leang	Manish Kumar
Unmanned Ground and Aerial Vehicles I	12:10pm - 1:10pm	DSCC2020-3205 DSCC2020-3319	Autonomous Light Assessment Drone for Dark Skies Studies Developmental Reinforcement Learning of Control Policy of a Quadcopter Uav With Thrust Vectoring Rotors	Matthew N. Goodell Aditya Milind Deshpande	Kam Leang	Manish Kumar
Unmanned Ground and Aerial Vehicles I	12:10pm - 1:10pm	DSCC2020-3205 DSCC2020-3319 DSCC2020-3139	Autonomous Light Assessment Drone for Dark Skies Studies Developmental Reinforcement Learning of Control Policy of a Quadcopter Uav With Thrust Vectoring Rotors Attack-Resilient Observer Pruning for Path-Tracking Control of Wheeled Mobile Robot	Matthew N. Goodell Aditya Milind Deshpande Yu Zheng	Kam Leang	Manish Kumar
Unmanned Ground and Aerial Vehicles I	12:10pm - 1:10pm	DSCC2020-3205 DSCC2020-3319 DSCC2020-3139 DSCC2020-3232	Autonomous Light Assessment Drone for Dark Skies Studies Developmental Reinforcement Learning of Control Policy of a Quadcopter Uav With Thrust Vectoring Rotors Attack-Resilient Observer Pruning for Path-Tracking Control of Wheeled Mobile Robot Modeling and Simulation of Aircell Actuator Seat Cushion With Pneumatic Line Lao and Capacitative Effects	Matthew N. Goodell Aditya Milind Deshpande Yu Zheng Pavan Nuthi	Kam Leang	Manish Kumar
Unmanned Ground and Aerial Vehicles I	12:10pm - 1:10pm	DSCC2020-3205 DSCC2020-3319 DSCC2020-3139 DSCC2020-3232 DSCC2020-3259	Autonomous Light Assessment Drone for Dark Skies Studies Developmental Reinforcement Learning of Control Policy of a Quadcopter Uav With Thrust Vectoring Rotors Attack-Resilient Observer Pruning for Path-Tracking Control of Wheeled Mobile Robot Modeling and Simulation of Aircell Actuator Seat Cushion With Pneumatic Line Lag and Capacitative Effects Monolithic Leg Design With Compliant Knee Joint for Bipedal Robots: Design and Preliminary Results	Matthew N. Goodell Aditya Milind Deshpande Yu Zheng Pavan Nuthi Ciaphus Rouse	Kam Leang	Manish Kumar
Unmanned Ground and Aerial Vehicles I Modeling and Control of Soft	12:10pm - 1:10pm -	DSCC2020-3205 DSCC2020-3319 DSCC2020-3139 DSCC2020-3232 DSCC2020-3259 DSCC2020-3259 DSCC2020-3313	Autonomous Light Assessment Drone for Dark Skies Studies Developmental Reinforcement Learning of Control Policy of a Quadcopter Uav With Thrust Vectoring Rotors Attack-Resilient Observer Pruning for Path-Tracking Control of Wheeled Mobile Robot Modeling and Simulation of Aircell Actuator Seat Cushion With Pneumatic Line Lag and Capacitative Effects Monolithic Leg Design With Compliant Knee Joint for Bipedal Robots: Design and Preliminary Results Towards Explainable Co-Robots: Developingconfidence-Based Shared Control Paradiams	Matthew N. Goodell Aditya Milind Deshpande Yu Zheng Pavan Nuthi Ciaphus Rouse Amirhossein Ghasemi	Kam Leang Ayse Tekes	Olugbenga

		DSCC2020-3198	Development of Wire Actuated Monolithic Soft Gripper Positioned by Robot Manipulator	Martin Garcia		
Linear and Crowned and April		DSCC2020-3212	Optimal Tuning of Single-Axis Satellite Attitude Control Parameters Using Genetic Algorithm	Amin Ghorbanpour		
	4.00-	DSCC2020-3243	Dynamic Genetic Algorithm for Optimizing Movement of a Six-Limb Creature	Javier Viana		
Vehicles II	2:20pm	DSCC2020-3268	Application of Fuzzy Logic for Developing Sense and Avoid Techniques for Uav Flight Operations in National Airspace	Zoe Lee	Xiaobo Tan	Qi Lu
Venicles II	2.20pm	DSCC2020-3308	Uncertainty and Disturbance Estimator-Based Robust Region Tracking Control for Multiple Quadrotors	Qi Lu		
		DSCC2020-3275	Fuzzy Logic Controller for Force Feedback Control of Quadcopter via Tether	Bennett Breese		
		DSCC2020-3124	Temperature Sensor Deployment for Scalable Battery Packs	Mengzhu Gao		
	1.20pm -	DSCC2020-3172	Extended Physics-Based Reduced-Order Capacity Fade Model for Lithium Ion Battery Cells	Zachary Salyer	Domoon	
Energy Storage Systems	2:20pm	DSCC2020-3180	Combining Non-Parametric and Parametric Models for Stable and Computationally Efficient Battery Health Estimation	Antti Aitio	Soudbakhsh	David Howey
	2.20pm	DSCC2020-3188	Bending Detection of Li-Ion Pouch Cells Using Impedance Spectra	Mohsen Derakhshan	Countration	
		DSCC2020-3218	Estimation of Parameter Probability Distributions for Lithium-Ion Battery String Models Using Bayesian Methods	Luis D. Couto		
		DSCC2020-3265	Data-Driven Post-Filtering of Acoustics Noise in Atomic Force Microscope Imaging	Jiarong Chen		
		DSCC2020-3274	Resilient Flocking Control for Connected and Automated Vehicles With Cyber-Attack Threats	Yan Chen		
Improving Vehicle Efficiency and	1:20pm -	DSCC2020-3240	A Predictive Frontal and Oblique Collision Mitigation System for Autonomous Vehicles	Chuanyang Sun	Yan Chen	Zongxuan Sun
Reducing Emissions	2:20pm	DSCC2020-3213	Computationally Efficient Urea-Dosing Controllers for Urea-Scr	Kaushal Kamal Jain		- J
		DSCC2020-3192	Investigating Trajectory Based Combustion Control Using a Controlled Trajectory Rapid Compression and Expansion Machine (Ct-Rcem)	Abhinav Tripathi		
		DSCC2020-3314	Receding Horizon Control for a 2d Point-Mass Hopping Model Navigating on Terrain With Stepping Stones and Stairs	Ali Zamani		
	2:30pm -	DSCC2020-3247	Inverse Kinematic Analysis of Muscular Hydrostat Inspired Soft Robot With Chain-Like Optimization With an Embedded Controller	Edmond Richer		
Advances in Robotics III	3:30pm	DSCC2020-3256	Maximum Correntropy Kalman Filter for Orientation Estimation With Application to Lidar Inertial Odometry	Seyed Fakoorian	Hanz Richter	Minghui Zheng
		DSCC2020-3234	Prioritized Foraging Strategies for an Ant Colony-Inspired Swarm System	Hari R Iyer		
		DSCC2020-3200	Energy-Optimal, Direct-Phase Control of Brushless Motors for Robotic Drives	Amin Ghorbanpour		
		DSCC2020-3329	A Novel Approach to Time Series Forecasting Using Model-Free Adaptive Control Framework	Meenakshi Narayan		Meenakshi Narayan
	2.20pm	DSCC2020-3207	Two-Stage Robust Tracking Controller for Linear Systems With Known Uncertainty Using Filtered Basis Functions	Keval Ramani	lashus	
Tracking Control Systems	2:30pm	DSCC2020-3263	Multiple Sliding Surface Controller for a Quadrotor for Improved Robustness Against Wind Disturbances	Madhavan Sudakar	Vaughan	
	5.50pm	DSCC2020-3316	Effect of Short-Term Weather Predictions on Model Predictive Trajectory Tracking Performance of Unmanned Surface Vessels	Joshua Vaughan	Vaugnan	
		DSCC2020-3281	Optimal Data-Driven Modeling-Free Differential-Inversion-Based Iterative Control: A Wafer Stage Example	Zezhou Zhang		
		DSCC2020-3335	Safe Decision and Control for Connected Automated Vehicles	Sanghoon Oh		GABOR OROSZ
		DSCC2020-3173	High-Fidelity Teleoperated Scaled Vehicles for Research and Development of Intelligent Transportation Technologies	Cong Wang		
Connected Vehicle Systems	2:30pm -	DSCC2020-3150	State-Constrained Optimal Solutions for Safe Eco-Approach and Departure at Signalized Intersections	Jihun Han	Cong Wang	
	3:30pm	DSCC2020-3250	Benchmarking Fuel Economy of Connected and Automated Vehicles in Real World Driving Conditions via Monte Carlo Simulation	Shreshta Rajakumar Deshpande	Cong Wang	
		DSCC2020-3201	Multi-Car Convex Feasible Set Algorithm in Trajectory Planning	Jing Huang		
		DSCC2020-3148	Speed Trajectory Generation for Energy Efficient Connected and Automated Vehicles	Lung En Jan		
Intelligent Transportation and	2:40pm	DSCC2020-3138	Motion Planning for Autonomous Driving With Extended Constrained Iterative Lqr	Yutaka Shimizu		
Vehicles	3.40pm	DSCC2020-3219	Traffic Prediction for Merging Coordination Control in Mixed Traffic Scenarios	Yunli Shao	Junfeng Zhao	Yunli Shao
Venicies	4.40pm	DSCC2020-3244	Optimal Path Planning for a Team of Heterogeneous Drones to Monitor Agricultural Fields	Saba Faryadi		
		DSCC2020-3334	An Integrated Hardware and Software Platform for Control of Automatic Ground Vehicles	Jian Chu		
		DSCC2020-3106	Advanced Dynamics Analysis of a Drilling Stabilizer	Opeyemi Adewuya		
		DSCC2020-3133	Head-Positioning Control in Triple-Stage-Actuator Hard Disk Drives Using Mixed H2/hinf Synthesis Methodologies	Zhi Chen	la Opeyemi bi Adewuya	
Motion and Vibration Control	3:40pm -	DSCC2020-3154	Nonlinear Modeling and Analysis of Power Lines With Stockbridge Dampers Under Vortex-Induced Vibrations	Arun Lee Malla		0
Applications	4:40pm	DSCC2020-3155	On the Nonlinear Vibration Analysis of a Hand-Held Impact Machine	Oreoluwa Alabi		
		DSCC2020-3338	Optimal Selection of Basis Functions for Minimum-Effort Tracking Control of Nonminimum Phase Systems Using Filtered Basis Functions	Keval Ramani		

Awards

Henry M. Paynter Outstanding Investigator Award

Jeffrey L. Stein University of Michigan Department of Mechanical Engineering 2480 GGB (George G. Brown Laboratory) 2350 Hayward Ann Arbor, MI 48109-2125 stein@umich.edu

Bio: Prof. Stein has been on faculty at The University of Michigan since 1983 becoming a Full Professor in 1996. He received his B.S. in premedical studies with a minor in Psychology (1973) from the Univ. of Massachusetts; his S.B. and S.M. (1976) and Ph.D. (1983) all in Mechanical Engineering and from the Massachusetts Institute of Technology. He was the PI in 2014 on a Global Challenges for a Third Century Phase I interdisciplinary project "Sustainable Transportation for a 3rd Century: An Interdisciplinary Approach to Addressing the Last Mile Problem for Enhanced Accessibility". He was also the Director of the recently completed NSF EFRI-RESIN Project "A Multi-Scale Design and Control Framework for Dynamically Coupled Sustainable

and Resilient Infrastructures, with Application to Vehicle-to-Grid Integration" and he is a founding member of and former Associate Director of the Automotive Research Center (ARC). He was the Program Chair of the 2012 DSCC (Dynamic Systems and Control Conference) and a former chair of the Executive Committee and the Honors and Award Committee of the Dynamic Systems and Control Division of ASME. He is a Fellow of ASME and is currently the chair of ASME's Energy and Environmental Standards Advisory Board. Finally, he is an Associate Editor of Simulation Modeling Practice and Theory and a former Associate Editor of the ASME Transactions: Journal of Dynamics Systems Measurement and Control.

Prof. Stein's expertise is in the use of computer based modeling and simulation tools for system design and control with applications to sustainable transportation and advanced manufacturing. He recently completed an NSF EFRI RESIN grant focused on resiliency and sustainability of the power grid and transportation infrastructures as a function of the design of plug-in hybrid electric vehicles. His current work is on sustainable transportation at the nexus of autonomous vehicles, urban planning, public policy and business in solving the last mile problem of public transportation. His contributions include developing a fundamental understanding of the design and control issues for utilizing renewable energy sources for transportation including hybrid electric vehicles. He is also contributing to the control of large, fast moving

autonomous vehicles and tele- operated vehicles. In addition he is involved in global concurrent design and manufacturing with a focus on internet distributed hardware in-the-loop simulation technologies.

Prof. Stein's discipline expertise in dynamic systems modeling has lead to the concept of proper models - that is dynamic mathematical models with physical state variables and parameters that have the minimum yet sufficient complexity to meet a given engineering objective. He has also developed algorithms for automating the creation of these types of models. Prof. Stein has also made fundamental contributions to complex systems and concurrent design through his work on internet-distributed hardware in-the-loop simulation and to the state estimation literature through is work on input, state and parameter estimation. His contributions include the following application areas: automotive and truck engineering (alternative energy vehicle propulsion, electric/hybrid vehicles, vehicle mobility, engine in-the-loop simulation, vehicle parameter identification), manufacturing (machine tool cutting force estimation, machine tool spindle bearing thermal bearing load estimation and reconfigurable machine tool design), bioengineering (design and control of above-knee prostheses). He has authored or co- authored over 185 articles in journals and conference proceedings.

He has received numerous honors and awards including: Three doctoral students (one twice) being selected as Best Student Paper Finalist at the 2009, 2013, 2014 and 2015 Dynamic Systems and Control Conferences; Invited Speaker, Congressional Briefing, "The Road to the New Energy Economy: Electric Cars", March 23, 2011, Rayburn Office Bldg., Washington, DC. Invited Plenary Speaker, 2010 International Conference on Bond Graph Modeling, Orlando, FL, DSC ASME DSCD Michael J. Rabins Leadership Award, 2012, ASME Dedicated Service Award (2010), ASME Fellow (2006), Outstanding Teacher, Department of Mechanical Engineering Teacher Incentive Program, (1999-2000), Invited manuscript in the Special 50th Anniversary Issue of the Journal of Dynamic Systems Measurement and Control (1993), Presidential Young Investigator Award, National Science Foundation (1987).

Charles Stark Draper Innovative Practice Award

Reza Moheimani Department of Systems Engineering The University of Texas at Dallas Richardson, TX 75080 Reza.Moheimani@utdallas.edu

Bio: Reza Moheimani holds the James Von Ehr Distinguished Chair in Science and Technology in the Department of Systems Engineering at the University of Texas at Dallas with appointments in Electrical and Computer Engineering and Mechanical Engineering Departments. He is the founding Director of UTD Center for Atomically Precise Fabrication of Solid-State Quantum Devices and founder and Director of Laboratory for Dynamics and Control of Nanosystems. He is Editor-in-Chief of Mechatronics, and a past associate editor of IEEE Transactions on Control Systems Technology, IEEE Transactions on Mechatronics and Control Engineering Practice. He received the Nathaniel B. Nichols Medal (IFAC, 2014), IEEE Control Systems Technology Award (IEEE CSS, 2009) and IEEE Transactions on Control Systems Technology Outstanding Paper Award (IEEE

CSS, 2007 and 2018). He is a Fellow of IEEE, IFAC and Institute of Physics (UK).

Moheimani received the B.Sc degree in Electrical Engineering from Shiraz University, Iran in 1990 and M.Eng.Sc and Ph.D. degrees in Electrical Engineering from University of New South Wales, Australia in 1993 and 1996, respectively. His current research interests include applications of control and estimation in high-precision mechatronic systems, high-speed scanning probe microscopy and atomically precise manufacturing. He is leading a multidisciplinary effort to develop new tools and methods for fabrication of solid-state quantum devices with atomic precision based on ultra-high vacuum scanning tunneling microscope.

Michael J. Rabins Leadership Award

Jordan Berg National Science Foundation Program Director, CMMI Division 708B Mount Vernon Ave Alexandria, VA 22301-1700 jberg@nsf.gov jordan.Berg@ttu.edu

Bio: Jordan M. Berg serves as a Program Officer in the Engineering Directorate of the US National Science Foundation. His research interests include nonlinear and geometric control, soft robotics, human-machine systems, and the modeling, simulation, design, and control of nano- and micro-systems. He received the BSE and MSE in Mechanical and Aerospace Engineering from Princeton University in 1981 and 1984, and the PhD in Mechanical Engineering and Mechanics and the MS in Mathematics and Computer Science from Drexel University in 1992. In 1996 he joined the faculty of the Mechanical Engineering Department of Texas Tech University, where he remained until 2018. He began at NSF as a rotator in 2014, and returned as a permanent employee in 2018. At NSF he co-directs the Dynamics, Control, and Systems Diagnostics program in

the Division of Civil, Mechanical, and Manufacturing Innovation, and has served on several cross-cutting programs, including the Future of Work at the Human-Technology Frontier: Core Research, Foundational Research in Robotics, EFRI Continuum, Compliant, and Configurable Soft Robotics Engineering, National Robotics Initiative 2.0, Cyber Physical Systems, and the National Artificial Intelligence Research Institutes. In 2008 he studied and taught in Sri Lanka as a Fulbright Scholar. He was Program Chair of the 2014 ASME Dynamic Systems & Control Conference, and General Chair of the 2015 International Conference on Advanced Intelligent Mechatronics, and the 2018 American Control Conference. He is a Fellow of ASME.

Rudolf Kalman Best Paper Award

The Winners of the 2020 Rudolf Kalman Best Paper Award are:

Patrick M. Sammons

Mechanical and Aerospace Engineering Department,

Missouri University of Science and Technology,

Rolla, MO 65409

e-mail: pmsd44@mst.edu

Douglas A. Bristow Mechanical and Aerospace Engineering Department, Missouri University of Science and Technology, Rolla, MO 65409 e-mail: dbristow@mst.edu

Robert G. Landers

Mechanical and Aerospace Engineering Department, Missouri University of Science and Technology, Rolla, MO 65409 e-mail: landersr@mst.edu

for their paper:

Sammons, P. M., Bristow, D. A., and Landers, R. G. "Two-Dimensional Modeling and System Identification of the Laser Metal Deposition Process." ASME. J. Dyn. Sys., Meas., Control. February 2019; 141(2): 021012. https://doi.org/10.1115/1.4041444

Bio: Patrick Sammons earned his B.S. in Mechanical Engineering from University of Missouri - Columbia in 2009. He earned his M.S. and PhD, both in mechanical engineering, from Missouri University of Science and Technology (Missouri S&T), Rolla, Missouri, USA in 2012 and 2016, respectively, with a focus on modeling, estimation, and control for manufacturing processes. In 2016, he joined the University of Michigan as a Postdoctoral Research Fellow conducting research focused on iterative process control and micro-scale manufacturing. Currently, he is an Associate Director of Data Science at Veterans United Home Loans.

manufacturing, atomic force microscopy, and machine tools and robotics. Dr. Bristow's research is funded by the National Science Foundation, the Department of Energy, MxD, and multiple companies. He is an Associate Editor at the ASME Journal of Dynamic Systems, Measurement and Control.

ISME*

Bio: Dr. Robert G. Landers (landersr@mst.edu) is a Curators' Distinguished Professor of Mechanical Engineering in the Department of Mechanical and Aerospace Engineering at the Missouri University of Science and Technology. He is currently a program manager at the National Science Foundation working in the Dynamics, Controls, and System Diagnostics, Robotics, Cyber Physical Systems, and Future Manufacturing programs. He received his Ph.D. degree in Mechanical Engineering from the University of Michigan in 1997. His research interests are in the areas of modeling, analysis, monitoring, and control of manufacturing processes, and in the estimation and control of lithium ion batteries and hydrogen fuel cells. He received the Society of Manufacturing Engineers' Outstanding Young Manufacturing Engineer Award in 2004 and the *ASME Journal of Manufacturing Science and Engineering's* Best Paper Award in 2014. He is a Fellow of ASME, and a senior member of IEEE and SME.

Special Thanks To

Conference Organizing Committee

General Chair

Jiong Tang

University of Connecticut

Program Chair Qingze Zou Rutgers University

Publications Chair Junmin Wang University of Texas at Austin

Workshops & Tutorials Chair

Manish Kumar

University of Cincinnati

Publicity Chair Chinedum Okwudire University of Michigan

Students and Young Members Chair

Xu Chen

University of Washington

Students and Young Members Chair

Beibei Ren

Texas Tech University

Invited/Special Sessions Chairs

Kenn Oldham University of Michigan

Yunjun Xu

University of Central Florida

Local Arrangement Chair Xiayun (Sharon) Zhao

University of Pittsburgh

DSCD Editorial Board Chair

Pennsylvania State University

ASME Conference Manager

Andrew Koleba

ASME Senior Segment Manager

Barbara Zlatnik

ASME Webtool Manager

Stacey Cooper

DSCD Editorial Board

Chair: Qian Wang, Penn State University

Members:	
Guodong Yin	Southeast University
Junfeng Zhao	GM
Xinmin Liu	University of Chicago
Siavash Rezazadeh	UT Dallas
Reza Tafreshi	Texas A&M University
Pingen Chen	Tennessee Technological University
Fariba Fateh	Kansas State University
Chris Vermillion	University of North Carolina at Charlotte
Chengzhi Yuan	University of Rhode Islands
Jim Dabney	University of Houston-Clear Lake
Warren N. White	Kansas State University
Wenlong Zhang	Arizona State University
Yan Chen	Arizona State University
Subramanian Ramakrishnan	University of Minnesota at Duluth
Stephanie Stockar	Ohio State University
Rasoul Salehi	University of Michigan
Luzheng Bi	Beijing Institute of Technology
Zheng Chen	Zhejiang University
Chuanfeng Wang	Cryptomove Inc.
Tuhin Das	University of Central Florida
Zhaojian Li	Michigan State University
Rachel Wang	Eaton Company
Mohammad Al Janaideh	Memorial University of Newfoundland

Minghui Zheng	SUNY Buffalo
Zheng Chen	University of Houston
Ioannis Raptis	University of Massachusetts Lowell
May-Win Thein	University of New Hampshire
Yildiray Yildiz	Bilkent University (Turkey)
Beibei Ren	Texas Tech University
John Wagner	Clemson University
Nader Sadegh	Georgia Tech
Shuxia Tang	Texas Tech University
Yao Ma	Texas Tech University
Yen-Chen Liu	National Cheng Kung University, Taiwan
Xiangrui Zeng	Worcester Polytechnic Institute
Mohammadreza Radmanesh	NASA-JPL
Baisravan HomChaudhuri	Illinois Institute of Technology
Marcello Canova	Ohio State University
Nikhil Bajaj	University of Pittsburg

Dynamic Systems and Control Division Leadership

- **Executive Committee:**
- Chair: Santosh Devasia, University of Washington Vice Chair: Jordan Berg, Texas Tech University Past Chair: Robert Landers, Missouri S&T Secretary: Kam Leang, University of Utah Treasurer: Rajesh Rajamani, University of Minnesota Senior Member: XiaoBo Tan, Michigan State University Junior Member: Jingang Yi, Rutgers University

Honors Committee:

Chair: Roberto Horowitz, University of California, Berkeley Vice Chair: Kim Stelson, University of Minnesota Member: Eric Tseng, Ford Motor Company Member: Rama Yedavalli, Ohio State University Member: George Chiu, Purdue University Member: Neville Hogan, Massachusetts Institute of Technology Member: Tsu-Chin Tsao, University of California, Los Angeles

Advisory Committee:

Ranjan Mukherjee, Michigan State University Peter Meckl, Purdue University Anna Stefanopoulou, University of Michigan Robert Landers, Missouri S&T

Nominating Committee:

Robert Landers, Missouri S&T Anna Stefanopoulou, University of Michigan Peter Meckl, Purdue University Ranjan Mukherjee, Michigan State University

Automotive and Transportation Systems (ATS) Technical Committee

Chair: Marcello Canova, Ohio State University Vice Chair: Mahdi Shahbakhti, University of Alberta Recording Secretary: Yan Chen, Arizona State University Session Organizer: Carrie Hall, Illinois Institute of Technology Industry Liaison: Selina Pan, Toyota Research Institute Past Chair: Taehyun Shim, University of Michigan-Dearborn

Bio-Systems and Health Care (BSHC) Technical Committee

Chair: Dumitru Caruntu, The University of Texas Rio Grande Valley Vice-Chair: Nitin Sharma, University of Pittsburgh Recording Secretary: Wenlong Zhang, Arizona State University Publicity Chair: Amirhossein Ghasemi, University of North Carolina at Charlotte Past Chair: Davide Priovesan, Gannon University

Mechatronics Technical Committee

Chair: Garrett Clayton, Villanova University Vice-Chair: Douglas Bristow, Missouri U of Sci and Tech Secretary: Kira Barton, University of Michigan Conference Chair: Sandipan Mishra, RPI Awards Chair: Kenn Oldham, University of Michigan

Robotics Technical Committee

Chair: Jongeun Choi, Yonsei University Vice-Chair: Davide Piovesan, Gannon University Secretary: Biswanath Samanta, Georgia Southern University Past-Chair: Manish Kumar, University of Cincinnati

Vibrations Technical Committee

Chair: Minghui Zheng, University at Buffalo Vice-Chair: Oumar Barry, Virginia Tech Secretary: Phanindra Tallapragada, Clemson University Publicity Chair: Matteo Aureli, University of Nevada, Reno Past Chair: Xu Chen, University of Washington

Energy Systems (ES) Technical Committee

Chair: Scott Moura, University of California at Berkeley Vice-Chair: Chris Vermillion, University of North Carolina at Charlotte Secretary: Stephanie Stockar, Penn State University Publicity Chair: Xinfan Lin, University of California, Davis Industry Liaison: Matt Williams, Northrop Grumman Student Liaisons: Ting Cai, University of Michigan-Ann Arbor; Alireza Goshtasbi, University of Michigan-Ann Arbor; Ning Tian, University of Kansas

Past Chair: Mahdi Shahbakhti, Michigan Technological University

