Transient Analysis of Fluid Flow Through a Fluidic Diode Used in a Wave Energy Converter Doddamani Hithaish¹, Abdus Samad²

Wave Energy and Fluids Engineering Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras Chennai-600036, India. ¹hithaishdoddamani@gmail.com, ²samad@iitm.ac.in

Introduction

- Ocean waves are produced from the energy transfer from the wind over the ocean surface.
- □ The oscillating water column device is extensively studied among the various wave energy harvesting devices because of its simplicity in operation and maintenance [1].

Working of oscillating water column

- □ Pneumatic energy of the oscillating water column can be harnessed by arranging the pair of conventional air turbines (Twin turbine) to eliminate the requirement of flow rectification [2].
- Twin turbine performance is less than individual turbine because the turbine alone unable to block the airflow in the opposite cycle completely [3].
- □ A fluidic diode that offers variable resistance to fluid flow can be used to improve the flow blockage. Its performance is given by diodicity.

Numerical methodology

Inlet	\sim	Οι
Duct	\square	Duct
		FD
10.2 L		10.2 L

Computational domain

Numerical	setup		
Parameter	Description		
Analysis type	Steady flow		
Mesh	Unstructured/Tetrahed		
	ral		
Fluid	Incompressible air		
Residual convergence	1 x 10 ⁻⁶	$0.5 \qquad 0.23 \qquad 0.3 \qquad 1$	
value		-0.3	
No. of iterations	5500	1	
Turbulence modelRealizable k-ε		-1 - Occillating oin flow	
Near wall treatment	Scalable wall function	Uscinating all now	

Grid convergence index was used to arrive at the optimum no of mesh elements [6] Boundary condition for forward flow constant flow rate at the inlet and outlet is open to the atmosphere for reverse flow the boundary condition reverses.

After numerical validation of the study state is performed the same model was used for oscillating flow condition. □ ANSYS FLUENT 16.2 was used for the simulations.

GTindia2021-78083

SETTING THE STANDARL

$$uu = \frac{\frac{1}{T} \int_0^T (T_f + T_r) \omega \, dt}{\frac{1}{T} \int_0^T \Delta p_T Q dt}$$