

ld: 77962

POWER OPTIMIZATION OF A POINT ABSORBER WAVE ENERGY CONVERTER

Kathyayani Nandakumar¹, Abdus Samad²

Wave Energy and Fluids Engineering Laboratory

Department of Ocean Engineering, Indian Institute Technology Madras.

GTIndia2021

WHAT IS WAVE ENERGY?

- Condensed form of solar power produced by the wind action blowing across the ocean water surface.

Increasing Energy Density Potential

RESULTS

Available Wave Power (W)

Average power absorbed by the PTO

Absorbed Power (W) at H=15cm

▲ Exp-Uncontrolled – Inviscid-Controlled – Viscous-Controlled

Absorption efficiency at H=15cm

Exp-Uncontrolled Inviscid-Controlled Viscous-Controlled

Energy (E) produced by the prototype in kWh:

Power produced by the full-scale device of diameter 'D' is estimated using Froude's similarity parameter ' ϵ '.

Max. Power per cycle (W)

Model	Prototype	Full-scale
Uncontrolled	7	480

Scaling factor for power: ^{23.5}

Latch-controlled 12

805

APPLICATIONS

CONCLUSION

Offshore Surveillance

Desalination plant

OBJECTIVES & METHODOLOGY

- Aim is to enhance the energy capture bandwidth of PA using latch control & compare it with an uncontrolled device.

- To investigate the influence of viscous forces on modulating the optimized power.

- Latching enhances the power by 11 times at off-resonant states resulting in roughly uniform power production for a wide range of sea-states.

- Inviscid-Controlled model exaggerates the power absorption capacity of PA, whereas Viscous model results in realistic optimization.

- Viscous latching produces 1.5 times higher energy compared to an uncontrolled device.

Latching aims to commercialize PAs which is estimated to produce electricity at the cost of ₹1-₹
3 per unit [1] (71% lower than the conventional cost).

REFERENCES

[1] Ravindran, M., and Paul Mario Koola. "Energy from Sea Waves—the Indian Wave Energy Programme." *Current Science*, vol. 60, no. 12, Temporary Publisher, 1991, pp. 676–80,

[2] Vijayasankar, V., Amarnath G., S. S A, and Samad, A., Experimental Investigation Of A Novel Direct Mechanical Drive Wave Energy Converter.4th Asian Wave And Tidal Energy Conference, Taiwan 2018.

¹kathyayanin97@gmail.com

²samad@iitm.ac.in