

Lean Stratified Charged Hydrogen Combustion and Pollutant Formation

13 December 2023 Choongsik Bae

Future Transport Power Laboratory, Dept. Mechanical Engineering, KAIST

Active Carbon Neutrality (Reduction) Transport Power

2023-12-18

Source: Position paper, IASTEC, 2021

KAIS

Hydrogen Engine Competitiveness

- Competitive H2 ICE in aspect of value for money (5% ↑ over BEV, 153% ↑ over FCEV)
- Driving range 4% disadvantage over BEV, 41% disadvantage over FCEV

 \rightarrow Need to maximize H2 engine efficiency and develop innovative technology for H2 fuel tank

 H2ICE allows more sustainable supply chain independent from rare earth material needed for BEV & FCEV

Source: R&D Technology Forum : Sustainable Carbon neutral ICE, Hyundai Motor Company, 2023

Contents

- 1. Mixture formation with hydrogen injection in a constant-volume chamber
 - Visualization of mixing process with Schlieren
 - *LIBS measurement on hydrogen-nitrogen mixture strength
 - OH Chemiluminescence on hydrogen combustion with single injection
 - Characterization of double hydrogen injection
- 2. Lean stratified charge combustion in a hydrogen engine
 - Combustion stability and NOx emission measurement in single-cylinder engine
- Effects of EGR and post-injection on NOx emission reduction in prototype multi-cylinder engine

LIBS measurement on hydrogen mixing process

- * LIBS = Laser Induced Breakdown Spectroscopy
 Measure the local equivalence ratio of homogenous/stratified hydrogen mixture using *LIBS methodology
- 2. Define hydrogen jet shape created by hollow-cone injector
- 3. Obtain mixture flammability by examining local equivalence ratio
- 4. Observe spark plug arc discharge channel ignitability.

Experimental Setup (Schlieren & LIBS) in CVCC

*CVCC: Constant Volume Combustion Chamber

<High-speed schlieren jet structure>

Experiment Conditions

• LIBS under different ambient pressure / measurement location

Hollow-cone shaped Injector

KAIST

Experiment Conditions

LIBS under different ambient pressure / measurement location

KAIST

LIBS Calibration Post Processing

Where, $\boldsymbol{\alpha}, \boldsymbol{\beta}$ = empirical constant,

 I_H = Intensity of hydrogen atomic emission [counts]

 I_N = Intensity of nitrogen atomic emission [counts]

KAIST Future Transport Power Laboratory

Hydrogen Jet at Various Ambient Pressure

Hydrogen Stratified Combustion: Local equivalence ratio varies

combustion characteristics

- At high atmospheric pressure, jet is contracted so that hydrogen does not reach the spark plug directly .
- It is assumed that the increase in the atmospheric pressure is the main cause for the contracted jet shape (Spatial effect)
 Atmospheric Pressure Increase → Flame Area Reduction

Effect of Ambient Pressure on Jet Structure

 High ambient pressure makes the hydrogen move toward inner side of the jet structure → jet collapse

KAIST

Jet Structure: Reconstructed Hydrogen Jet Growth

Ambient pressure ↑

Hydrogen jet contraction according to atmospheric 1.2 pressure Ambient Pressure Ambient 1.1 -0.5 MPa - 1.0 MPa pressure ↑ location [cm] -1.5 MPa 2.0 MPa -2.5 MPa 3.0 MPa Centroid in radial le Injection direction 0.3 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 z-axis [cm]

High-speed schlieren imaging

High-speed shadow imaging

Despite hydrogen having a high diffusion rate, it is observed that jet shape collapses and contracts easily under high atmospheric pressure conditions due to low jet stiffness.

Mixture Strength Distribution

Measurement location

• Measured Equivalence Ratio Corresponds to the Results of Captured Hydrogen Jet Images

Hydrogen Energy Conversion (Pamb=0.1 Mpa, pinj=10Mpa)

OH chemiluminescence indicated local-rich mixture when the ignition discharged during the injection

: Because the injection was still made after the ignition discharge, high OH intensity was measured at the center of optical window.

time

OH chemiluminescence results (ASOI: 1024 μ s) *ianition discharge after the end of injection (a.u.)

2023-12-18

*Direct flame visualization *Direct flame visualization

*Direct flame visualization

KAIST Future Transport Power Laboratory

Injection duration

Double injection w.r.t. split ratio

Jet structure change depending on split ratio (P_{amb} = 5 bar, dwell time = 600µs)

For double injection, hydrogen jet spread out to spark plug penetration, but penetration was decreased \rightarrow Increases in 2nd injection portion caused jet dispersion after end of the 2nd injection

KAIST

Double injection w.r.t. split ratio

Changes in local equivalence ratio depending on split ratio (P_{amb} = 5 bar, dwell time = 600µs)

Dispersion of jet meant that jet was moving outward \rightarrow Low hydrogen concentration at jet center \rightarrow Lower local equivalence ratio measurement at the center

KAIS

Double injection w.r.t. dwell time

Jet structure change depending on dwell time (P_{amb} = 5 bar, split ratio = 3:7)

Although the change in penetration was limited depending on dwell time, jet width changed substantially → Increases in dwell time caused higher hydrogen dispersion

KAIST

Double injection w.r.t. dwell time

- Local equivalence ratio measurement

Effect of dwell time on the hydrogen jet equivalence ratio (P_{amb} = 5 bar, Split ratio = 3:7)

At dwell time = 200 μ s, hydrogen concentration at the jet center was increased (higher Ø) At dwell time = 1000 μ s, hydrogen dispersion was increased and concentration at the center was decreased (Lower Ø)

KAIS

Experimental Setup for Single Cylinder Engine

Lee, S., Kim, G., & Bae, C. (2021). Effect of injection and ignition timing on a hydrogen-lean stratified charge combustion engine. International Journal of Engine Research, 14680874211034682.

Experimental Conditions

- Experimental conditions for single-cylinder research engine
- Effect of ignition timing on hydrogen SCC

Parameters	Value	
Engine speed	1300 rpm	
Injection pressure	10 MPa	
Injection quantity	160 g/h	
Throttle valve position	0 % (WOT)	
Air excess ratio (λ)	2.5	
Injection timing (t _{inj})	32 bTDC [*]	
Ignition timing (t _{ig})	-12 – 18 aTDC	

Lean-stratified charge $(\lambda = 2.3)$

•	Effect of mixture formation mode on the combustion and emission characteristics
_	

Parameters	Homogeneous charge	Lean homogeneous charge	Lean-stratified charge		
Engine speed	1300 rpm				
Injection pressure (P _{inj})	10 MPa				
Injection quantity	188 g/h				
Throttle valve position	98 %	92 %	0 % (WOT)		
Air excess ratio (λ)	1	1.7	2.3		
Injection timing (t _{inj})	158 bTDC	158 bTDC	26 bTDC		
$\lambda = 1 \qquad \lambda > 1$					
Homogeneous charg $(\lambda = 1)$	e Lean homoge $(\lambda =$	neous charge Le 1.7)	ean-stratified charge $(\lambda = 2.3)$		

*Average value of 300 cycles

*Use only under COV_{IMEP} 5 % data

Results – Combustion stability (COV_{IMEP}), NOx

NOx

CA 50: 7 aTDC

IMEP_{not} =

0.24 MPa

λ=3.0

< IMEP and COV at different ignition timing >

In the case of hydrogen, **Stable operation within** wide mixture area (Overall low COV_{IMEP} measured)

In the case of hydrogen, the process required for phase change such as atomization and evaporation is not required, so **stable ignition is possible** immediately after injection is terminated

 Low indicated thermal efficiency result than LPG stratified combustion (Estimated to be due to heat transfer loss)

- Lower NOx emissions as air excess ratio increases
 - Confirm the possibility of reducing NOx emissions through stratification (ex. Leanboosting, e-turbo)

CA 50: 12 aTDC

IMEPnet =

0.39 MPa

λ=2.3

Air excess ratio

12

10

NOx (g/kWh)

4

2

CA 50: 14 aTDC

IMEP_{net} =

0 50 MPa

λ=1.95

Effect of EGR in a hydrogen prototype engine

NOx Trend and AFR Changes

NOx — Lambda

 NOx reduction by increasing EGR supply → Increasing H2 amount

 \rightarrow possible to improve engine performance

- Optimal EGR rate for each engine operating condition
 - Maximum NOx reduction when 10 ~ 20 % of EGR
 - NOx increased when more EGR rate than optimal rate

WOT Performance with EGR

• AFR could be reduced by supplying EGR while maintaining NOx limit

 \rightarrow Increasing the amount H2 supply

→ Better WOT performance (Max.
 13 % under mid-high speed
 range)

Source: R&D Technology Forum : Sustainable Carbon neutral ICE, Hyundai Motor Company, 2023

Effect of Post-Injection with ATS

Exhaust Gas Temp. and NOx Trend (@ 2,000 rpm/BMEP 14 bar)

- The more injection amount and the later injection timing of post-injection, the higher exhaust gas temperature and the lower NOx (@ same AFR, same BMEP)
 - \rightarrow Possible to improve engine power by lower AFR or reduce of aftertreatment system complexity when post-injection is applied

Source: R&D Technology Forum : Sustainable Carbon neutral ICE, Hyundai Motor Company, 2023

Target engine and development conceptBoosting SystemZero-Impact

• For high load, target is to achieve $\lambda > 1.7$ to prevent abnormal combustion.

NOx emission ratio (left), excess air ratio target

Two-stage boosting system combining 48 V driven electric supercharger & VGT is implemented.

WGT (a), VGT (b), 2-Stage boosting system (c)

KAIS

Summary

- Hydrogen ICEV has a better feasibility than BEV or FCEV because of its lower TCO and low dependence on rare earth material.
- Hydrogen ICE has a similar engine performance to conventional fossil fuel while maintaining lower NOx emission.
- LIBS can measure the local equivalence ratio of the hydrogen mixture.
- Delaying ignition timing increased the homogeneity of the stratified mixture.
- Double injection can modify the hydrogen jet behavior in terms of penetration and width → reduce the jet contraction at high ambient pressure.
- Hydrogen ICE is free from CO2 and has a wider flammable range compared to fossil fuel.
 - Air boosting systems such as WGT, VGT, and e-Turbo can improve performance and thermal efficiency.
- EGR should be considered to reduce NOx emission when produced more while operating an engine under lean stratified charge mode compared to lean homogeneous charge mode.

Thank you for your kind attention.

Contact

Choongsik Bae

Professor, PhD, FSAE

Future Transport Power Laboratory Dept. Mechanical Engineering KAIST

Tel.: +82 (0)42-350-3044

E-mail: csbae@kaist.ac.kr

Web: ftpl.kaist.ac.kr