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Anhydrous ammonia enables the feeding of over half of the global population
and is the 5™ highest volume chemical produced
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Ritchie, Our World in Data: https://ourworldindata.org/how-many-people-does-synthetic-fertilizer-feed#note-4;
Erisman et al., 2008, Nat. Geoscience, 1 (10), 636-639.
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It is produced conventionally through the Haber-Bosch Process using natural gas
as the primary feedstock

« >180 millions tons produced annually Heat Atmosphere
e 1.5-2.0% of all CO, emissions
Reaction Vessel Heat Exchanger
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Anhydrous ammonia can also be produced using hydrogen and nitrogen from
renewable sources

“Gray” hydrogen and ammonia from
natural gas or coal

“Green” hydrogen and ammonia from

Haber
renewable resources Hleiolies

Process

“Blue” hydrogen and ammonia from
natural gas or coal with carbon capture
and sequestration

Atmosphere
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hydrogen and ammonia from
nuclear power
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Rural green ammonia has promise to decarbonize agriculture and start a
pathway towards a green hydrogen economy
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Research shows that ammonia is ideal for long term energy storage and can be
mixed with H, and batteries to decarbonize electricity production

= 100% wind-solar islanded energy system: No carbon fuels or grid connection
* Residential demand profiles with 10 MW annual average demand
= Optimized sizing and scheduling for lowest levelized cost of energy (LCOE)

Wind N R N
Turbines Production Storage 3
NH; -
Production
PV H, : H, 1T
Arrays Production Storage
Battery H,-to- Power |¢
TR T T ST
" Power ] NH;-to- g
| _Demand Power NH; Storage ¢
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Power Hymep Ny mmep NH; m

= Batteries alone prohibitively expensive

= Lowest LCOE from combining H, and NH;
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Anhydrous ammonia has lower flammability and higher health hazard than
conventional hydrocarbon fuels

Gasoline Anhydrous Ammonia

o

FIRE HAZARD Flash Points:

4 Below 73°F

3 Below 100°F
2 Below 200°F
1 Above 200°F
0 will not Burn

HEALTH HAZARD

4 Deadly

3 Extreme Danger
2 Hazardous

1 Slightly Hazardous
0 Normal Material

INSTABILITY

4 May Detonate
3 Stock + Heat may Detonate
2 Violent Chemical Change

SPECIFIC HAZARD

OX Oxidizes ACID Acid 1 Unstable if Heated
ALK Alkaline COR Corrosive 0 Stable
W  Use No Water 4* Radioactive
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SA Simple Asphyxiate

For health and safety reasons, ammonia is NOT appropriate as an
alternative for light or heavy-duty on-road transportation
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Motivating ammonia for use in off-highway internal combustion engine
applications where fuel storage can be safely managed

Distributed Power
Generation

Agricultural
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Ammonia can be used in both compression ignition and spark-ignited engines

Compression lgnition

e 100% NH; requires high compression
ratio (CR > 35:1)

e Dual-fuel strategies
e Minimum ~5% pilot diesel injection for
low-speed engines

e Multiple injection strategies for
emissions reduction

Spark lgnition

Laminar flame speed low for ammonia alone
H,-NH; blends from cracking are promising
Reduced volumetric efficiency

Stoic-rich aftertreatment may be more
effective than lean aftertreatment

e High NO, and unburned ammonia emissions — N,O

e Catalytic aftertreatment is expensive — benefit, unburned NH; as reductant for SCR for lean

engines
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Ammonia combustion proceeds through well-known chemistry; the complete
mechanism has yet to be determined
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Though anhydrous ammonia has low flammability, a small amount of hydrogen can
sufficiently enhance combustion

o 2501 —O— Ichikawa et al., 0.1 MPa -
5 100 | |--4&-- Ichikawa et al., 0.3 MPa
{_’ 90 —{ 1 Ichikawa et al., 0.5 MPa
8 80 200 X Leeetal, 0.1 MPa v .
= 75 O Lietal, 0.1 MPa
Lcll_) T 60 v Kumar et al., 0.1 MPa
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Use waste exhaust heat to partially decompose ammonia . (-)

= thermochemical recuperation (TCR)
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Dual-fuel compression ignition engine combustion of ammonia-hydrogen mixtures
enabled by thermochemical recuperation (TCR)
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Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in
a Compression Ignition Engine" Energies 14, no. 22: 7540. https://doi.org/10.3390/en14227540
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In a practical application TCR improved thermal efficiency and enable higher
ammonia fraction

Ammonia Diesel

e 3.5 kW less input fuel for ammonia case due to thermochemical ReCOV;;eSV\E/nefgv

recuperation.

* 34.1% BTE vs. 33.3% for diesel baseline — 2.4% improvement

M1 9'TS
M 006

Diesel REACTOR

-

S

B

~J

~

3
ENGINE
\ ENGINE
L\. S - _/"J

EVAP ]

" comp { Turs |

Turblne Work Turbine Wor

48.3 kW Work

Q
(O)
C
(O]
o
Q
Y
C
(]
O
©
LL
)
=
(@)
C
L
C
(@)
=
(72}
=25
0
£
O
O
'©
C
e
Q
e
=

ASME

o 48.3 kW Work 1.66kW
1.36kW ‘ DOC ’
Catalvet 55.1 kW Thermal
) Th | atalyst Hea Losses
‘ HX ’ 51.8 kW erma Exchange aporator
| | Losses
N 2.38 kW 3.72 kW
446 kW > Exhaust Heat Exc

38.2 kW Exhaust

N
N
@)
N
L
1]
O
¥

Kane, S. P, Zarling, D., and Northrop, W. F., ASME ICEF 2019. https://doi.org/10.1115/ICEF2019-7241
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CO, emissions decrease linearly as a function of diesel replacement with ammonia

Ammonia Fuel Fraction [%]

TCR enables up to 50% replacement of diesel fuel by energy

Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in
a Compression Ignition Engine" Energies 14, no. 22: 7540. https://doi.org/10.3390/en14227540
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NH; emissions are improved compared to previous studies and PM-based DOE
can oxidize NH; for higher load cases

Ammonia Fuel Fraction [%]

Reiter, A.J.; Kong, S.C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. 2011, Fuel
90, 87-97, doi:10.1016/j.fuel.2010.07.055.

Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in
a Compression Ignition Engine" Energies 14, no. 22: 7540. https://doi.org/10.3390/en14227540
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NO, emissions are reasonable from the engine out location, but NH; oxidation
on PM-based DOC favors NO instead of N,
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Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in
a Compression Ignition Engine Energies 14, no. 22: 7540. https://doi.org/10.3390/en14227540
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N,O is also produced by both the engine (and the DOC) as a function of
ammonia fueling
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N,O has a greenhouse gas potential approximately 298 times that of CO, on a
100-year timescale

Ammonia Energy Fraction [%]
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N,O formation is favored in lean engine combustion and by aftertreatment catalysts at low temperature

* N,0 emissions must be controlled from both lean ammonia combustion and aftertreatment
 THC and CO from dual fuel still require mitigation
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Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in
a Compression Ignition Engine" Energies 14, no. 22: 7540. https://doi.org/10.3390/en14227540
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Spark ignition engine combustion of ammonia-hydrogen mixtures

AExhaust ..
Faclty HAC = > Lean combustion and aftertreatment favors N,O
formation, what about Sl operation?

CFR engine with compressed air supply

= Air heating, gas mixture control, and compression
ratio (CR)

Range of experiments:

BTl

Combustion Analyzer O

* Equivalenceratio=0.9,1.0, 1.1

* H,%of fuel=0,5, 10
*L*%@% 3 « CR=14,17

i, ||, Constant intake pressure = 1 bar
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Rich operation appears to control NO, well in SI mode independent of H,
percentage

Equivalence Ratio [-]
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A NO, vs NH; tradeoff exists with equivalence ratio; increasing hydrogen
concentrations appear to defeat it
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N,O emissions considerably lower than previous diesel work and decreases with
equivalence ratio — More promising than lean operation

Equivalence Ratio [-]
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Ammonia combustion in engines is far from optimized for use in engines though
promising trends are emerging

e NH; low reactivity and flame speed can be enhanced with low H,
concentrations

e Fundamental combustion studies for refining chemical ——
mechanisms and NH; flames needed

e Dual-fuel diesel operation can be enhanced by hydrogen addition
and TCR

e NO, from dual-fuel diesel combustion can be controlled; N,O is a Ammonia-H, Counterflow Flame at
key challenge UMN MERL

e Stoichiometric and rich S| combustion is promising with as little as
5% H, addition
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e Advanced combustion modes due to ammonia’s unique chemistry
compared to HC’s should be studied

N
N
@)
N
L
1]
O
¥

7 3 Wt
#)AZA 1% urphy Engine M UNIVE.RSITY OF MINNESSTA
POWER REE" ;’shwl.’qlgjorgtory Driven to Discover



Thank You

Will Northrop
Associate Professor, University of Minnesota
Director, T.E. Murphy Engine Research
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