Opportunities for Green Ammonia Combustion in Internal Combustion Engines

Will Northrop

1) Director, T.E. Murphy Engine Research Laboratory, University of Minnesota

2) Co-Founder, Aza Power Systems, Inc.

Collaborators: Seamus Kane^{1,2}, Evan Swift¹, Daniel Thomas¹, Clifford Goertemiller¹, Michael Reese¹, Matt Palys¹, Prodromos Daoutidis¹

ASME Future of Internal Combustion Engine Webinar Series April 13, 2022

Engine Fall Conference

Anhydrous ammonia enables the feeding of over half of the global population and is the 5th highest volume chemical produced

Ritchie, *Our World in Data*: https://ourworldindata.org/how-many-people-does-synthetic-fertilizer-feed#note-4; Erisman et al., 2008, Nat. Geoscience, 1 (10), 636-639.

UNIVERSITY OF MINNESOTA Driven to Discover®

The American Society of Mechanical Engineers ® ASME® It is produced conventionally through the Haber-Bosch Process using natural gas as the primary feedstock

Engine Fall Conference <u>с</u> nbusti n n

ASME

Anhydrous ammonia can also be produced using hydrogen and nitrogen from renewable sources

"Gray" hydrogen and ammonia from natural gas or coal

"Green" hydrogen and ammonia from renewable resources

"Blue" hydrogen and ammonia from natural gas or coal with carbon capture and sequestration

"Pink" hydrogen and ammonia from nuclear power

Engine Fall Conference

Rural green ammonia has promise to decarbonize agriculture and start a pathway towards a green hydrogen economy

Research shows that ammonia is ideal for long term energy storage and can be mixed with H_2 and batteries to decarbonize electricity production

- 100% wind-solar islanded energy system: No carbon fuels or grid connection
- Residential demand profiles with 10 MW annual average demand

UNIVERSITY OF MINNESOTA

Driven to Discover®

Optimized sizing and scheduling for lowest levelized cost of energy (LCOE)

- Batteries alone prohibitively expensive
- Lowest LCOE from combining H₂ and NH₃

Palys & Daoutidis. (2020). *Comput. Chem. Eng., 136*, 106875.

6

ASME

AZA

POWER Research Laboratory

Anhydrous ammonia has lower flammability and higher health hazard than conventional hydrocarbon fuels

For health and safety reasons, ammonia is NOT appropriate as an alternative for light or heavy-duty on-road transportation

Engine Fall Conference

nbustion

UNIVERSITY OF MINNESOTA Driven to Discover®

Motivating ammonia for use in off-highway internal combustion engine applications where fuel storage can be safely managed

Ammonia can be used in both compression ignition and spark-ignited engines

Compression Ignition

- 100% NH₃ requires high compression ratio (CR > 35:1)
- Dual-fuel strategies
- Minimum ~5% pilot diesel injection for low-speed engines
- Multiple injection strategies for emissions reduction

Spark Ignition

- Laminar flame speed low for ammonia alone
- H₂-NH₃ blends from cracking are promising
- Reduced volumetric efficiency
- Stoic-rich aftertreatment may be more effective than lean aftertreatment

- High NO_X and unburned ammonia emissions N_2O
- Catalytic aftertreatment is expensive benefit, unburned NH₃ as reductant for SCR for lean engines

Ammonia combustion proceeds through well-known chemistry; the complete mechanism has yet to be determined

ASME

Though anhydrous ammonia has low flammability, a small amount of hydrogen can sufficiently enhance combustion

Engine Fall Conference ustion

B

Dual-fuel compression ignition engine combustion of ammonia-hydrogen mixtures enabled by thermochemical recuperation (TCR)

Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine" *Energies* 14, no. 22: 7540. https://doi.org/10.3390/en14227540

UNIVERSITY OF MINNESOTA Driven to Discover®

In a practical application TCR improved thermal efficiency and enable higher ammonia fraction

- 3.5 kW less input fuel for ammonia case due to thermochemical • recuperation.
- 34.1% BTE vs. 33.3% for diesel baseline 2.4% improvement •

Kane, S. P., Zarling, D., and Northrop, W. F., ASME ICEF 2019. https://doi.org/10.1115/ICEF2019-7241

UNIVERSITY OF MINNESOTA **Driven to Discover®**

13

The American Society of Mechanical Engineers ® ASME

Diesel

Ammonia

Recovered Energy

7.8 kW

CO₂ emissions decrease linearly as a function of diesel replacement with ammonia

TCR enables up to 50% replacement of diesel fuel by energy

Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine" *Energies* 14, no. 22: 7540. https://doi.org/10.3390/en14227540

UNIVERSITY OF MINNESOTA Driven to Discover®

14

The American Society of Mechanical Engineers ® ASME® NH_3 emissions are improved compared to previous studies and PM-based DOE can oxidize NH_3 for higher load cases

Reiter, A.J.; Kong, S.C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. 2011, *Fuel 90*, 87–97, doi:10.1016/j.fuel.2010.07.055.

Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine" *Energies* 14, no. 22: 7540. https://doi.org/10.3390/en14227540

Engine Fall Conference

ustion

UNIVERSITY OF MINNESOTA Driven to Discover®

15

The American Society of Mechanical Engineers ® ASME® NO_X emissions are reasonable from the engine out location, but NH_3 oxidation on PM-based DOC favors NO instead of N_2

Unburned ammonia and hydrogen have potential to be used as reductants in downstream SCR; No urea needed

Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine" *Energies* 14, no. 22: 7540. https://doi.org/10.3390/en14227540

Engine Fall Conference

tion

UNIVERSITY OF MINNESOTA Driven to Discover®

N_2O is also produced by both the engine (and the DOC) as a function of ammonia fueling

Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine" *Energies* 14, no. 22: 7540. https://doi.org/10.3390/en14227540

UNIVERSITY OF MINNESOTA Driven to Discover®

N_2O has a greenhouse gas potential approximately 298 times that of CO_2 on a 100-year timescale

N₂O formation is favored in lean engine combustion and by aftertreatment catalysts at low temperature

- N₂O emissions must be controlled from both lean ammonia combustion and aftertreatment
- THC and CO from dual fuel still require mitigation

Kane, Seamus P., and William F. Northrop. 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine" *Energies* 14, no. 22: 7540. https://doi.org/10.3390/en14227540

UNIVERSITY OF MINNESOTA Driven to Discover®

18

The American Society of Mechanical Engineers ® ASME®

Engine Fall Conference u o Sti

Spark ignition engine combustion of ammonia-hydrogen mixtures

Lean combustion and aftertreatment favors N₂O formation, what about SI operation?

CFR engine with compressed air supply

Air heating, gas mixture control, and compression ratio (CR)

Range of experiments:

- Equivalence ratio = 0.9, 1.0, 1.1
- $H_2\%$ of fuel = 0, 5, 10
- CR = 14, 17

Constant intake pressure = 1 bar

Engine Fall Conference

nbustion

Rich operation appears to control NO_X well in SI mode independent of H_2 percentage

ubustion Engine Fall Conference \sim

A NO_X vs NH_3 tradeoff exists with equivalence ratio; increasing hydrogen concentrations appear to defeat it

ubustion Engine Fall Conference

ASME

AZA POWER Research Laboratory

N₂O emissions considerably lower than previous diesel work and decreases with equivalence ratio – More promising than lean operation

ASME

Ammonia combustion in engines is far from optimized for use in engines though promising trends are emerging

- NH₃ low reactivity and flame speed can be enhanced with low H₂ concentrations
- Fundamental combustion studies for refining chemical mechanisms and NH₃ flames needed
- Dual-fuel diesel operation can be enhanced by hydrogen addition and TCR
- NO_X from dual-fuel diesel combustion can be controlled; N_2O is a key challenge
- Stoichiometric and rich SI combustion is promising with as little as 5% $\rm H_2$ addition
- Advanced combustion modes due to ammonia's unique chemistry compared to HC's should be studied

Ammonia-H₂ Counterflow Flame at UMN MERL

Engine Fall Conference

Thank You

Will Northrop Associate Professor, University of Minnesota Director, T.E. Murphy Engine Research Laboratory <u>wnorthro@umn.edu</u> Founder, Aza Power Systems Inc. <u>wnorthrop@azapowersys.com</u>

https://www.mprnews.org/story/2019/06/19/can-fertilizer-fuel-greener-tractors

ASME

UNIVERSITY OF MINNESOTA Driven to Discover®

