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MODELING ECOSYSTEM THEN …
What was the common working relationship?
1. Centered around a common code platform
2. Each entity had particular strengths
3. Strong user community and open communication

Why did this working model change?
1. Complexity of proprietary combustion 

systems (meshing/sub-models)
2. Need for stronger parallelization 

(flow/chemistry)
3. User support & code maintenance
4. Growth and emergence of commercial 

codes



MODELING ECOSYSTEM NOW …
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1. Institutions centered around a growing 
‘web’ of commercial (COTS) and open 
source options

2. Implementing UDFs into commercial 
codes with need for validation

3. Heavy investment in national 
laboratory supercomputing 
infrastructure (drive to exascale)

4. Opportunities to accelerate machine 
learning and artificial intelligence



CAE IS VITAL FOR FUTURE PROPULSION 
SYSTEMS
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HPC Growth & Reduction in Hardware
Goal: First time capable designs to reduce iterations in the physical world

ASME ICEF Panel, 2019



INCREASED DEMAND FOR FAST, VALIDATED 
MODELS

1. Design direction
– Directional accuracy is important

2. Meet requirements or not
– Accuracy is important (not much room for error)

3. Hardware out of the loop
– Accuracy is important (not much room for error)

Can we do it faster? Can we do it cheaper? Can we do something new?



PERLMUTTER
LBNL
HPE/AMD/NVIDIA

DOE HPC ROADMAP LEADS TO 
MULTIPLE EXASCALE SYSTEMS

FY 2012 FY 2016 FY 2018 FY 2021 FY 2023FY 2022

EXASCALE 
SYSTEMS

*decommissioned

AURORA
ANL
HPE/Intel

TITAN*
ORNL
Cray/AMD/NVIDIA

MIRA*
ANL
IBM BG/Q

SEQUOIA*
LLNL
IBM BG/Q

THETA
ANL
Cray/Intel KNL

CORI
LBNL
Cray/Intel  Xeon/KNL

TRINITY
LANL/SNL
Cray/Intel  Xeon/KNL

SUMMIT
ORNL
IBM/NVIDIA

SIERRA
LLNL
IBM/NVIDIA

ORNL
HPE/AMD

LANL/SNL
HPE/Intel

LLNL
HPE/AMD



FOUR PRIMARY ALLOCATION PROGRAMS
For access to DOE Leadership Computing Facilities (OLCF and ALCF)

50%

10% Director’s
Discretionary

20%
ECPUP TO
Exascale Computing
Project

20%
ASCR Leadership 
Computing Challenge

ALCC



 Gold-standard data 
for AI => unearth 
new physics

 Fast solvers
 Physics based & data 

driven models for:
– Ignition
– Sprays
– Turbulent combustion
– Kinetic mechanisms

Initial & Boundary 
conditions

Design new
experiments / condition

Emphasis with Nek and commercial codes 
for hybrid computing architecturesPACE leads: M. Weismiller (DOE), M. McNenly (LLNL), S. Som (ANL), J. Szybist (ORNL), P. Miles (SNL)

TOWARDS PREDICTIVE ENGINE SIMULATIONS

SOFTWARE 
TECHNOLOGIES

Math libraries,
Co-design, … 

PELE
DNS of engine

condition

NEK5000
DNS & LES of
PACE engines

EXPERIMENTS
Optical & Metal engines, 

RCM, APS, ...

USCAR TECH 
TEAMS & OEMS

COMMERCIAL 
CFD TOOLS
 Scales on exascale

architecture
 PACE models
 Used by industry



High-fidelity wall-
resolved LES at 
limited conditions

~0.1-0.5 mm grid size
O (103-104) processors
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VISION
MULTI-FIDELITY SIMULATION FRAMEWORK

High-throughput 
design space 
exploration –
RANS

DNS for generating 
gold-standard datasets 
at select conditions

LEVERAGE A 
MULTI-FIDELITY 
SIMULATION 
FRAMEWORK TO:
 Improve understanding 

of flow and combustion 
processes

 Develop physics-
based and data-driven 
subgrid models

 Perform simulation-
based design 
optimization

 Develop surrogate 
models for fast 
design optimization

~0.5-1 mm grid size
O (100) processors

~10 μm grid size
O (104-105) processors

CAPABILITY COMPUTING

CAPACITY COMPUTING

Surrogate Models for 
design optimization



HPC used as a microscope –
illuminating processes that are 
inaccessible to experimentation

HPC simulations provide 
a benchmark for accuracy of 
engineering simulations 

Machine learning and pattern 
recognition will be applied to
 Resolve decades-old problems 

(e.g. root causes of cyclic variability) 
 Accelerate CFD simulations 
 Develop reduced order models 

enabling optimal CFD-based design
 Develop data-driven, accurate 

and efficient sub-models

EXISTING EFFORTS IN HPC & AI

HPC AI

PACE leads: M. Weismiller (DOE), M. McNenly (LLNL), S. Som (ANL), J. Szybist (ORNL), P. Miles (SNL)



EXAMPLE OF CAPACITY COMPUTING
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• Direct computation of combustion metrics over several computed engine cycles
• Fuel surrogate development matching chemical and physical properties
• Combined flame propagation (G-eqn), detailed kinetics simulations, and dynamic meshing 
• National laboratory supercomputing leveraging GPUs (Zero-RK solver)

Knock

Flame

LES4ECE, 2021



EXAMPLE OF CAPABILITY COMPUTING

GPU chemistry allows use of highly 
detailed reaction mechanisms  

Fully coupled 3D CHT modeling for 
accurate wall temperature distributions 

ASME ICEF Panel, 2019



Baseline Best Sector Full-cyl CHT+RANS
Geometry Sector Sector Cylinder Engine
Cycle Closed Closed Open Open
Max # cells ~170k ~1M ~2.5M ~4.5M
# species 47 144 144 144
# reactions 74 900 900 900
NOx Zel’dovich GRI 3.0 GRI 3.0 GRI 3.0

Soot Detailed PSM Hiroyasu Hiroyasu Hiroyasu

Turbulence RANS RANS RANS RANS

Other changes Spray and wall-film Intake swirl vane CHT

Wall time / cycle ~2 hr ~5 hr ~3.5 days ~2 weeks

Cases 500 602 20 8
DOE Annual Merit Review, 2019

• Improvement in NOx & HC emissions
• Mixed results on CO and Soot

COMPARISON OF EMISSION 
PREDICTIONS



PREDICTION OF ENGINE-OUT EMISSIONS USING 
DEEP CONVOLUTIONAL NEURAL NETWORKS

600 CFD Simulations

Training Data: 400 images
Validation Data: 100 images
Test or Unseen data: 100 images                                                                                                        
Total predicted variables: 3 (CO, HC, Smoke)

SAE 2021-01-0414



CNN VS CFD MODEL PREDICTIONS

SAE 2021-01-0414

CFD model is sector mesh, Hiroyasu Soot model, GRI 3.0 chemistry for NOx



NEW DNS/LES DATA -
LEVERAGING EXASCALE COMPUTING
 NEK5000 Spectral element method (SEM) code: 

– High numerical accuracy: Nth order tensor-product polynomials (N~ 5-15)
– Exponential (spectral) convergence with N
– Handle complex geometries with moving boundaries
– Efficient scaling on hybrid exascale architectures

 Objective: Perform gold-standard DNS/LES simulations for flow 
and develop/improve submodels for engineering simulations

ENGINE SIMULATIONS ON THETA & SUMMIT SUPERCOMPUTERS

PIs: Muhsin Ameen, Saumil Patel (ANL)



NEW DNS/LES DATA LEADING TO 
IMPROVED SUB-MODELS

 NEK5000 was used to perform DNS of GM’s TCC engine 
(at University of Michigan) on Theta
– LES > 95M grid points, scales on >16K procs
– DNS > 430M grid points, scales on >51K procs

* https://www.energy.gov/eere/vehicles/downloads/direct-numerical-simulation-dns-and-high-fidelity-large-eddy-simulation-les

OPEN-CYCLE LES1

DNS NEAR-SPARK PLUGCLOSED-CYCLE DNS

LES – FUEL INJECTION2

DNS – SACI COMBUSTION

 DNS enables development of new heat transfer and combustion models 
in industry use codes (like CONVERGE) on DOE Exascale machines

 LES framework within the higher order code provides a effective crucible 
to test efficacy of existing sub-models

1. S. Wu, M. Ameen, S. Patel, ASME ICEF2021-67671.  2. F. Colmenares, M. Ameen, S. Patel, ASME ICEF 2021-67848

https://www.energy.gov/eere/vehicles/downloads/direct-numerical-simulation-dns-and-high-fidelity-large-eddy-simulation-les


MACHINE LEARNING ACCELERATES 
X-RAY TOMOGRAPHY SEGMENTATION

COUPLED INJECTOR-SPRAY SIMULATIONS 
WITH DETAILED CHEMISTRY2

INJECTOR-TO-EMISSION PREDICTION TOOL
Fast and accurate 

Combustion Modeling
 2000+ species PAH mechanisms
 Turbulence chemistry interaction
 Detailed surrogates, soot models

Multiphase Flow Modeling
 Cavitation & erosion
 X-ray scanned geometry
 Transient needle dynamics

Coupled Framework
Ability to link injector performance 
with resultant mixing field, combustion 
development, and pollutant formation

CFD-predicted 
injection profile

iso-surface 
ready for CFD

Computed Tomography (CT) Slice

CTSegNet1

1. Tekawade et al., International Society for Optics and Photonics, 2019.  2. Mondal, Magnotti, Torelli et al., SAE Int. J. Adv. & Curr. Prac. in Mobility, 2021



 Reconstruction of x-ray scanned geometry
 Extraction of needle motion profiles
 Account for surface finish 
 CFD simulations capturing these effects

Video courtesy of Katie Matusik and Chris Powell (Argonne)

IN-NOZZLE FLOW SIMULATIONS ACCOUNTING 
MANUFACTURING TOLERANCES

Torelli, Pei, et al. SAE Int. J. Fuels & Lubr. 11(4), 2018



1. Mondal. Magnotti, Torelli et al., SAE Int. J. Adv. & Curr. Prac. in Mobility, 2021.  2. Magnotti et al., LES4ECE, 2021.

EMULATED FLOWFIELDS AT 
ORIFICE EXIT FOR STEADY AND 
TRANSIENT LES SIMULATIONS
 Gaseous volume fraction (𝛼𝛼)
 Velocity components (𝑢𝑢,𝑣𝑣,𝑤𝑤)
 Turbulent kinetic energy (k)
 Liquid mass (𝑚𝑚𝑙𝑙)

A-M1 INJECTOR
Side-oriented single-hole 
injector geometry

SIMULATION – DATA – LEARNING (SDL)
 Machine Learning models emulate internal 

flow fields at orifice exit
 Emulated flowfields coupled with:

– Lagrangian spray model1
– Eulerian-Lagrangian Spray 

Atomization (ELSA) model2

 Transfer learning underway to extend 
to other injectors and injection systems

DATA-DRIVEN EMULATOR USED TO PREDICT 
SPATIOTEMPORAL INJECTION PROFILE
Addresses expense of injector simulations



ACCURATE SPRAY COMBUSTION PREDICTIONS 
AT A FRACTION OF THE COST 

Injection 
Map from 
CFD (“Truth”)

Injection Map 
from GP-based 
Emulator

Max Temperature [K]
Error < 1%

Heat Release Rate [MJ/s]
Error < 1%

38 MILLION TIMES LESS EXPENSIVE

1. Mondal, Magnotti, Torelli et al., ASME ICEF 2021-67888, Accepted.

Emulator far less expensive than simulating the next point of interest



FIRST OF ITS KIND SIMULATION LINKS 
EROSION FROM AN X-RAY SCANNED INJECTOR 
WITH SPRAY, COMBUSTION AND EMISSIONS

Internal flow simulations indicate that erosion leads to: 
 Increased orifice exit diameter
 Reduction in fuel delivery rates of at least 2 – 3%
 Wider spray spreading angles

Reacting spray simulations indicate that erosion leads to: 
 Similar first and second stage ignition delays
 Shorter flame lift off length
 Higher soot and lower NOx production

1. Magnotti et al., ASME ICEF 2021-67775, Accepted. 
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Velocity Magnitude [m/s]Total Void Fraction



Diagnostics of SACI2

UNIVERSAL COMBUSTION MODEL
ENABLED BY ML
 New toolbox ML-CEMA (ML-accelerated chemical

explosive mode analysis) is developed for advanced 
flame diagnostics and modeling.

 ML-CEMA for any fuel combustion

Modeling of turbulent partially premixed flames3

– Sheds light on flame stabilization, auto-ignition, flame 
propagation, extinction, etc.

– Speed up turbulent combustion modeling (e.g., in LES) by 4X.
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ML-CEMA identifies locations of premixed reaction fronts and 
distinguishes between premixed and non-premixed flames

1. Chao Xu et al, AIAA SciTech 2020.  2. Chao Xu et al, ASME ICEF 2021.  3. Chao Xu et al, CNF 2018



Argonne’s Flamelet Solver together with Unsteady 
Flamelet Progress Variable (UFPV) model has been 
extensively validated against engine data with 
detailed chemistry and soot models1

 Accurate predictions in autoignition and unsteady 
heat release during interaction phase
 Captures both high temperature ignition and 

low temperature chemistry (LTC)

MULTI-COMPONENT DETAILED CHEMISTRY 
SIMULATIONS ENABLED WITH ANN

1. Kundu et al. Transportation Engineering 2020. 
2. Owoyele, Kundu, and Pal, Proceedings of the Combustion Institute, 2020

Z,
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v,
 χ

,…

M
ass fractions

Generation of manifold 
by solving flamelet
equations a priori

Argonne’s 
Flamelet solver

χ

Flamelet table

CFD simulations Deep learning techniques further circumvent the
issues of high memory footprint and retrieval cost
associated with large multi-dimensional flamelet
tables
 Mixture of Experts (MoE) approach2, combining 

regression and clustering, bifurcates combustion 
manifolds and learns large flamelet tables
 Allows for incorporation of high-dimensional tables from 

large chemistry mechanisms



STRONG LEARNER

WEAK LEARNER
(SVM, BFM, etc.)

EXPLORATION

EXPLOITATION

ACCELERATING ENGINE DESIGN 
OPTIMIZATION WITH ML
ActivO: Basic algorithm

Owoyele & Pal, ASME J. Energy Res. Technol. 2020

(Committee of Machines, RF, etc.)

WEAK LEARNER STRONG LEARNER

OPTIMIZATION PROGRESS



SIMULATION-DRIVEN DESIGN OPTIMIZATION
IC Engine optimization test problem

 Optimization of a heavy-duty engine operating on a 
gasoline-like fuel to minimize ISFC and adhering to 
emissions and pressure rise constraints

 Nine-dimensional design space
 Resources reduced from 112000 core hours to 20000 

core hours (over 80% decrease)
 Over 5-10x speedup (from 2 months to less than a week) 

over traditional algorithms (GA, PSO, etc.)
 Geometry optimization can also be handled 

(J. Energy Res. Technol. 2020, SAE 2020-01-1313)

Collaboration with Aramco Research Center-DetroitOwoyele & Pal, Applied Energy, 2021

ActivO vs GA



GRAND CHALLENGE PROBLEMS IN 5-15 YEARS 
THAT HPC & AI/ML CAN HELP SOLVE 
 Multi-cycle, multi-cylinder simulations including conjugate heat transfer 

and TCI modeling for future low-Carbon/no-Carbon fuels  (24-hour turn-around time)
 Coupled multi-scale modeling of two-phase fuel injection with engine 

combustion and after-treatment systems
– Cold start emission predictions

 Predicting cyclic variability and understanding root causes
– Engine knock/misfire, i.e., rare event detection

 DNS/high-fidelity LES for HD, Rail, Marine – well beyond exascale computing

4-cycle Progress Rail H 
Engine at Argonne (16.6 L)

CATEGORY DOMAIN VOLUME (L) RANS LES DNS
Light Duty 0.6315 Mesh size (mm) 0.5 0.015 0.009

Cell count (Millions) 2 100 416

Core hours (Millions) 0.035 1.9 3.7

Heavy Duty 2.5 Mesh size (mm) 0.35 0.02 0.01

Cell count (Millions) 3.1 296.9 1482

Core hours (Millions) 0.12 7.5 14.6

Rail 16.6 Mesh size (mm) 0.5 0.03 0.015

Cell count (Millions) 52.6 2629 10935

Core hours (Millions) 0.92003 49.9 97.3

Estimated 
computing cost 
per production 
simulation
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