

REIMAGINING IC ENGINE DEVELOPMENT LEVERAGING NEXT-GENERATION HPC & AI

SIBENDU SOM

Manager & Principal Computational Scientist Energy Systems Division Argonne National Laboratory

RONALD O. GROVER, JR.

Staff Researcher, General Motors Research & Development Co-chair, US DRIVE Advanced Combustion and Emissions Control (ACEC) Tech Team

MODELING ECOSYSTEM THEN ...

What was the common working relationship?

- 1. Centered around a common code platform
- 2. Each entity had particular strengths
- 3. Strong user community and open communication

Why did this working model change?

- Complexity of proprietary combustion systems (meshing/sub-models)
- 2. Need for stronger parallelization (flow/chemistry)
- 3. User support & code maintenance
- 4. Growth and emergence of commercial codes

MODELING ECOSYSTEM NOW ...

- Institutions centered around a growing 'web' of commercial (COTS) and open source options
- 2. Implementing UDFs into commercial codes with need for validation
- 3. Heavy investment in national laboratory supercomputing infrastructure (drive to exascale)
- 4. Opportunities to accelerate machine learning and artificial intelligence

CAE IS VITAL FOR FUTURE PROPULSION SYSTEMS

Goal: First time capable designs to reduce iterations in the physical world

HPC Growth & Reduction in Hardware

INCREASED DEMAND FOR FAST, VALIDATED MODELS

- 1. Design direction
 - Directional accuracy is important
- 2. Meet requirements or not
 - Accuracy is important (not much room for error)

- 3. Hardware out of the loop
 - Accuracy is important (not much room for error)

Can we do it **faster**? Can we do it **cheaper**? Can we do something **new**?

DOE HPC ROADMAP LEADS TO MULTIPLE EXASCALE SYSTEMS

FOUR PRIMARY ALLOCATION PROGRAMS

For access to DOE Leadership Computing Facilities (OLCF and ALCF)

TOWARDS PREDICTIVE ENGINE SIMULATIONS

PACE leads: M. Weismiller (DOE), M. McNenly (LLNL), S. Som (ANL), J. Szybist (ORNL), P. Miles (SNL)

Gold-standard data for AI => unearth new physics

- Fast solvers
- Physics based & data driven models for:
 - Ignition
 - Sprays
 - Turbulent combustion
 - Kinetic mechanisms

Feedback

COMMERCIAL CFD TOOLS

- Scales on exascale architecture
- PACE models
- Used by industry

USCAR TECH

TEAMS & OEMS

VISION MULTI-FIDELITY SIMULATION FRAMEWORK

LEVERAGE A MULTI-FIDELITY SIMULATION FRAMEWORK TO:

- Improve understanding of flow and combustion processes
- Develop physicsbased and data-driven subgrid models
- Perform simulationbased design optimization
- Develop surrogate models for fast design optimization

EXISTING EFFORTS IN HPC & AI

HPC used as a microscope – illuminating processes that are inaccessible to experimentation

HPC simulations provide a benchmark for accuracy of engineering simulations

Machine learning and pattern recognition will be applied to

- Resolve decades-old problems (e.g. root causes of cyclic variability)
- Accelerate CFD simulations
- Develop reduced order models enabling optimal CFD-based design
- Develop data-driven, accurate and efficient sub-models

PACE leads: M. Weismiller (DOE), M. McNenly (LLNL), S. Som (ANL), J. Szybist (ORNL), P. Miles (SNL)

EXAMPLE OF CAPACITY COMPUTING

- Direct computation of combustion metrics over several computed engine cycles
- Fuel surrogate development matching chemical and physical properties
- Combined flame propagation (G-eqn), detailed kinetics simulations, and dynamic meshing
- National laboratory supercomputing leveraging GPUs (Zero-RK solver)

EXAMPLE OF CAPABILITY COMPUTING

GPU chemistry allows use of highly detailed reaction mechanisms

Fully coupled 3D CHT modeling for accurate wall temperature distributions

COMPARISON OF EMISSION PREDICTIONS

- Improvement in NOx & HC emissions
- Mixed results on CO and Soot

	Baseline	Best Sector	Full-cyl	CHT+RANS	
Geometry	Sector	Sector	Cylinder	Engine	
Cycle	Closed	Closed	Open	Open	
Max # cells	~170k	~1 M	~2.5M	~4.5M	
# species	47	144	144	144	
# reactions	74	900	900	900	
NOx	Zel'dovich	GRI 3.0	GRI 3.0	GRI 3.0	
Soot	Detailed PSM	Hiroyasu	Hiroyasu	Hiroyasu	
Turbulence	RANS	RANS	RANS	RANS	
Other changes		Spray and wall-film	Intake swirl vane	СНТ	
Wall time / cycle	~2 hr	~5 hr	~3.5 days	~2 weeks	
Cases	500	602	20	8	

DOE Annual Merit Review, 2019

CNN VS CFD MODEL PREDICTIONS

CFD model is sector mesh, Hiroyasu Soot model, GRI 3.0 chemistry for NOx

- NEK5000 Spectral element method (SEM) code:
 - High numerical accuracy: N^{th} order tensor-product polynomials ($N \sim 5-15$)
 - Exponential (spectral) convergence with N
 - Handle complex geometries with moving boundaries
 - Efficient scaling on hybrid exascale architectures
- **Objective:** Perform gold-standard DNS/LES simulations for flow and develop/improve submodels for engineering simulations

ENGINE SIMULATIONS ON THETA & SUMMIT SUPERCOMPUTERS

(RS-CPU.(1 Rank per Core)

111

135

nekRS-GPU,(1 Rank per GPU)

75

NEW DNS/LES DATA LEADING TO IMPROVED SUB-MODELS

-

Liquid phase

Gas phase

- NEK5000 was used to perform DNS of GM's TCC engine (at University of Michigan) on Theta
 - LES > 95M grid points, scales on >16K procs
 - DNS > 430M grid points, scales on >51K procs

- DNS enables development of new heat transfer and combustion models in industry use codes (like CONVERGE) on DOE Exascale machines
- LES framework within the higher order code provides a effective crucible to test efficacy of existing sub-models

* https://www.energy.gov/eere/vehicles/downloads/direct-numerical-simulation-dns-and-high-fidelity-large-eddy-simulation-les

1. S. Wu, M. Ameen, S. Patel, ASME ICEF2021-67671. 2. F. Colmenares, M. Ameen, S. Patel, ASME ICEF 2021-67848

INJECTOR-TO-EMISSION PREDICTION TOOL

Fast and accurate

MACHINE LEARNING ACCELERATES X-RAY TOMOGRAPHY SEGMENTATION

Computed Tomography (CT) Slice

COUPLED INJECTOR-SPRAY SIMULATIONS WITH DETAILED CHEMISTRY²

Multiphase Flow Modeling

- Cavitation & erosion
- X-ray scanned geometry
- Transient needle dynamics

Combustion Modeling

- 2000+ species PAH mechanisms
- Turbulence chemistry interaction
- Detailed surrogates, soot models

Coupled Framework

Ability to link injector performance with resultant mixing field, combustion development, and pollutant formation

1. Tekawade et al., International Society for Optics and Photonics, 2019. 2. Mondal, Magnotti, Torelli et al., SAE Int. J. Adv. & Curr. Prac. in Mobility, 2021

IN-NOZZLE FLOW SIMULATIONS ACCOUNTING MANUFACTURING TOLERANCES

Video courtesy of Katie Matusik and Chris Powell (Argonne)

- Reconstruction of x-ray scanned geometry
- Extraction of needle motion profiles
- Account for surface finish
- CFD simulations capturing these effects

DATA-DRIVEN EMULATOR USED TO PREDICT SPATIOTEMPORAL INJECTION PROFILE

Addresses expense of injector simulations

1. Mondal. Magnotti, Torelli et al., SAE Int. J. Adv. & Curr. Prac. in Mobility, 2021. 2. Magnotti et al., LES4ECE, 2021.

ACCURATE SPRAY COMBUSTION PREDICTIONS AT A FRACTION OF THE COST

Emulator far less expensive than simulating the next point of interest

1. Mondal, Magnotti, Torelli et al., ASME ICEF 2021-67888, Accepted.

FIRST OF ITS KIND SIMULATION LINKS EROSION FROM AN X-RAY SCANNED INJECTOR WITH SPRAY, COMBUSTION AND EMISSIONS

Internal flow simulations indicate that erosion leads to:

- Increased orifice exit diameter
- Reduction in fuel delivery rates of at least 2 3%
- Wider spray spreading angles

1. Magnotti et al., ASME ICEF 2021-67775, Accepted.

Reacting spray simulations indicate that erosion leads to:

- Similar first and second stage ignition delays
- Shorter flame lift off length
- Higher soot and lower NOx production

UNIVERSAL COMBUSTION MODEL ENABLED BY ML

- New toolbox ML-CEMA (ML-accelerated chemical explosive mode analysis) is developed for advanced flame diagnostics and modeling.
- ML-CEMA for any fuel combustion

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

- Sheds light on flame stabilization, auto-ignition, flame propagation, extinction, etc.
- Speed up turbulent combustion modeling (e.g., in LES) by 4X.

Diagnostics of SACI²

ML-CEMA identifies locations of premixed reaction fronts and distinguishes between premixed and non-premixed flames

1. Chao Xu et al, AIAA SciTech 2020. 2. Chao Xu et al, ASME ICEF 2021. 3. Chao Xu et al, CNF 2018

Modeling of turbulent partially premixed flames³

MULTI-COMPONENT DETAILED CHEMISTRY SIMULATIONS ENABLED WITH ANN

1. Kundu et al. Transportation Engineering 2020.

2. Owoyele, Kundu, and Pal, Proceedings of the Combustion Institute, 2020

Argonne's Flamelet Solver together with Unsteady Flamelet Progress Variable (UFPV) model has been extensively validated against engine data with detailed chemistry and soot models¹

- Accurate predictions in autoignition and unsteady heat release during interaction phase
- Captures both high temperature ignition and low temperature chemistry (LTC)

Deep learning techniques further circumvent the issues of high memory footprint and retrieval cost associated with large multi-dimensional flamelet tables

- Mixture of Experts (MoE) approach², combining regression and clustering, bifurcates combustion manifolds and learns large flamelet tables
- Allows for incorporation of high-dimensional tables from large chemistry mechanisms

ACCELERATING ENGINE DESIGN OPTIMIZATION WITH ML

ActivO: Basic algorithm

Owoyele & Pal, ASME J. Energy Res. Technol. 2020

iteration number

SIMULATION-DRIVEN DESIGN OPTIMIZATION

IC Engine optimization test problem

- Optimization of a heavy-duty engine operating on a gasoline-like fuel to minimize ISFC and adhering to emissions and pressure rise constraints
- Nine-dimensional design space
- Resources reduced from 112000 core hours to 20000 core hours (over 80% decrease)
- Over 5-10x speedup (from 2 months to less than a week) over traditional algorithms (GA, PSO, etc.)
- Geometry optimization can also be handled (J. Energy Res. Technol. 2020, SAE 2020-01-1313)

Collaboration with Aramco Research Center-Detroit

Owoyele & Pal, Applied Energy, 2021

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

GRAND CHALLENGE PROBLEMS IN 5-15 YEARS THAT HPC & AI/ML CAN HELP SOLVE

- Multi-cycle, multi-cylinder simulations including conjugate heat transfer and TCI modeling for future low-Carbon/no-Carbon fuels (24-hour turn-around time)
- Coupled multi-scale modeling of two-phase fuel injection with engine combustion and after-treatment systems
 - Cold start emission predictions
- Predicting cyclic variability and understanding root causes
 - Engine knock/misfire, i.e., rare event detection
- DNS/high-fidelity LES for HD, Rail, Marine well beyond exascale computing

CATEGORY	DOMAIN VOLUME (L)		RANS	LES	DNS
Light Duty	0.6315	Mesh size (mm)	0.5	0.015	0.009
		Cell count (Millions)	2	100	416
		Core hours (Millions)	0.035	1.9	3.7
Heavy Duty	2.5	Mesh size (mm)	0.35	0.02	0.01
		Cell count (Millions)	3.1	296.9	1482
		Core hours (Millions)	0.12	7.5	14.6
Rail	16.6	Mesh size (mm)	0.5	0.03	0.015
		Cell count (Millions)	52.6	2629	10935
		Core hours (Millions)	0.92003	49.9	97.3

4-cycle Progress Rail H Engine at Argonne (16.6 L)

ACKNOWLEDGEMENTS

SPONSORS

U.S. Department of Energy

- Gurpreet Singh
- Michael Weismiller
- Kevin Stork

Co-Optimization of **Fuels & Engines**

Aramco Research Center (Detroit)

Yuanjiang Pei & team

ARGONNE NATIONAL GENERAL MOTORS R&D LABORATORY Jian Gao

- Riccardo Scarcelli
- Muhsin Ameen
- Roberto Torelli
- Pinaki Pal
- Gina Magnotti
- Chao Xu
- Ope Owoyele
- Sudeepta Mondal
- Saumil Patel
- Cody Nunno
- Juan Colmenares

- Alok Warey
- Venkatesh Gopalakrishnan
- Patrick Szymkowicz
- Scott Parrish

ORNL

- Dean Edwards
- Wael Elwasif
- Charles Finney
- Suzy Tichenor

LLNL

- Russell Whitesides
- Matt McNenly
- Goutham Kukkadapu
- Simon Lapointe

CONVERGENT SCIENCE, INC.

For licensing support & discussions

INCITE 2021 AND ALCC 2018, 2019 COMPUTING GRANTS

ARGONNE LEADERSHOP COMPUTING FACILITY AND OAK RIDGE LEADERSHIP COMPUTING FACILITY

THANK YOU

CONTACT Sibendu Som Manager & Principal Computational Scientist Argonne National Laboratory Email: ssom@anl.gov CONTACT Ronald Grover Staff Researcher General Motors R&D Email: ronald.grover@gm.com