

potential for eFuels as a drop-in replacement for ICE

Prof. Dr.-Ing. André Casal Kulzer Institute for Automotive Engineering, University of Stuttgart

13.04.2022 ASME Webinar ICEF 2022

Engine Fall Conference

Paris Climate Agreement

Commitment needed!

 Is electrification of new cars enough for sufficient GHG reduction?

 \rightarrow unfortunately not!

- Is there enough renewable electricity and infrastructure?
 → build-up necessary!
- How can we involve the existing car fleet?
 → with eFuels!

Worldwide road transportation (1.4 billion vehicles) is responsible for approximately one fifth of the global CO_2 emissions

IEA 2021 report: global pathway to net zero CO₂ by 2050

Sustainable mobility will be possible by electrification + renewable fuels_{CO2-neutral}

Figure 3.22 Global transport final consumption by fuel type and mode

in the NZE global pathway to net-zero CO₂ emissions in 2050

IEA. All rights reserved.

Electricity and hydrogen-based fuels account for more than 70% of transport energy demand by 2050

Note: LDVs = Light-duty vehicles; Other road = two/three wheelers and buses.

Future mobility trends

- Integrated mobility
 - Autonomous driving
 - Connectivity
 - Shared mobility
- Electrification

Source: International Energy Agency, 2021 Report *renewable Fuels: $\rm CO_2$ -neutral bioFuels and eFuels

BEV 62 kWh NMC 622 lithium-ion battery. one battery over entire service life Comparison vehicles have similar equipment and performance. Source: Volkswagen Fig.1 CO₂ balance comparison of electric, diesel and gasoline vehicles in the

https://www.volkswagenag.com/en/news/stories/2021/02/e-mobility-is-already-this-much-more-climate-neutral-today.html

Lifecycle CO₂ of BEV vs ICEV compact class vehicles

Renewable energy carriers (electric or molecular) lead to a diverse future!

Input variables

Vehicle basis

- Golf 8 and ID.3: production, utilization 200,000 km
- Most representative engine-gearbox combination and standard equipment
- Maintenance: Flat rate derivative
- ID.3 (1st Edition) Range: 440km

Fuel and power consumption (well-to-tank)

- EU fuels
- Energy mix EU-27

Consumption data (tank-to-wheel)

WLTP

* without taking into account the CO₂ neutrality of the site in Zwickau.

ID.3 Electricity consumption combined 15.4 - 14.5 kWh/100 km; CO2 emissions combined 0g/km, efficiency class.A+

Zero g_{CO2} emission vehicle

But circular CO₂ economy

(or ZEV) does not exist.

can, by reusing CO_2

(closed-cycle-CO₂)

for electricity and

renewable fuels

Green hydrogen based eFuels production e.g. MtG path

Source: SAE Capri 2021 "eFuels: a further step towards sustainable mobility", A. C. Kulzer, keynote speech

Prof. Dr.-Ing. André Casal Kulzer

Industrialization of eFuels is a worldwide task

Relevant issues: renewable energy cost, population density, technology competence, competitive situation

Worksplit/assets on the path to eFuels:

Technology driven countries

- Drivers of international defossilization
- High technological competence
- Development of large industrial projects

MENA/Chile/...

- Competence and experience in developing regional projects
- Best locations for renewable energy guarantee w/ competitive costs
- Surplus of renewable energy
- Readiness for economic participation

Source: LBST International Hydrogen Strategys 08/2020, Statista BMBF 2020; Dr. Ing. h.c. F. Porsche AG; Frontier Economics

Prof. Dr.-Ing. André Casal Kulzer

eFuels large scale production cost

eFuel price can compete with fossil fuel prices

 CO_2 -closed cycle (neutrality) regulatory influence reasonable and necessary

Source: SAE Capri 2021 "eFuels: a further step towards sustainable mobility", A. C. Kulzer, keynote speech; fossil fuel prices adapted (April 2022)

Haru Oni – strong wind! eFuels pilot plant

- Technology path: from power supply to finished eGasoline.
- Process steps: Wind power, direct air capture, electrolysis, methanol synthesis, gasoline synthesis.

Source:

https://www.haruoni.com/#/en

https://www.siemens-energy.com/global/en/news/magazine/2021/haru-oni.html

https://newsroom.porsche.com/en/2021/company/porsche-construction-begins-commercial-plant-production-co2-neutral-fuel-chile-25683.html

Development method for eFuel formulation

Formulation, testing, analysis, simulation, optimization as an iterative process

Source: SAE Capri 2021 "eFuels: a further step towards sustainable mobility", A. C. Kulzer, keynote speech

eFuel performance & emission assessment >50 fuels tested ! FKFS Porsche high-performance single cylinder engine & existing fleet vehicle testing

Source: SAE Capri 2021 "eFuels: a further step towards sustainable mobility", A. C. Kulzer, keynote speech

Prof. Dr.-Ing. André Casal Kulzer

RESEARCH IN MOTION.

EN228/eFuel blend capability & existing fleet compatibility Benchmark reFuel & POrsche SYNthetic at cold start & load jump @Porsche single cylinder engine CatHeating 1500/750mbar, TWA 40°C Cold Load Jump 1500/2bar→WOT, TWA 40°C

Source: SAE Capri 2021 "eFuels: a further step towards sustainable mobility", A. C. Kulzer, keynote speech

MtG based eFuel blending aspects vs. Next Gen eFuel

MtG eFuel ~200...300 components

High MtG blending quality influence:

*********	********
	AAAAAAAA
	AAAAAAAAA
	AAAAAAAA

	AAAAAAAAA

	AAAAAAAA
	AAAAAAAA

knock sensitivity / RON boiling curve / FBP amount C9+ aromatics emission behavior

Source: SAE Capri 2021 "eFuels: a further step towards sustainable mobility", A. C. Kulzer, keynote speech

Tailor-made eFuel < 10 components

Potentials:

higher knock sensitivity / RON improved evaporation behavior aromatics avoidance better emission behavior Next Gen eFuels definition for maximum emission potentials POrsche SYNthetic eFuel @single cylinder at Porsche

CatHeating 1500/750mbar, TWA 40°C

Source: SAE Capri 2021 "eFuels: a further step towards sustainable mobility", A. C. Kulzer, keynote speech

Cold Load Jump 1500/2bar→WOT, TWA 40°C

Next Gen eFuels definition for maximum performance & emission reduction

POSYN @single cylinder with high knock resistance & emission potentials

Source: SAE Capri 2021 "eFuels: a further step towards sustainable mobility", A. C. Kulzer, keynote speech

Summary

eMobility + eFuels \rightarrow path to sustainable mobility

- Renewable eFuels
 - necessary complement to eMobility
 - production based on green hydrogen and closed CO₂-cycle
- eFuels production costs
 - strongly depend on electrolysis step & renewable energy cost
 - cost efficient in regions of the world using wind or solar energy (where surplus of renewables!)
- Need for an eFuels development method
 - for best trade-of between <u>fuel properties</u> (clean & efficient combustion) and <u>production feasibility</u>
- Further potentials
 - within an adapted EN228 gasoline standard, optimized blending could lead to better quality and further emission reduction within the existing stock fleet
 - Next Gen eFuels offer additional opportunities for further performance and emission potentials, considering a widdened/new prospective fuel standard

leading sustainable powertrain system innovation

Prof. Dr.-Ing. André Casal Kulzer

Executive Board Member Automotive Powertrain Systems

Pfaffenwaldring 12 | 70569 Stuttgart | Germany andre.kulzer@fkfs.de

fkfs.de

in www.linkedin.com/in/andre-casal-kulzer-dr-ing/