

ASME® 2019 InterPACK® International Technical Conference on

Packaging and Integration of Electronic and Photonic Microsystems Conference

> CONFERENCE October 7–9, 2019

Hilton Anaheim Anaheim, California

Program

www.asme.org/events/interpack

The American Society of Mechanical Engineers ® ASME®

Welcome

Sreekant Narumanchi General Conference Chair

Xiaobing Luo General Conference Vice-Chair

Samuel Graham General Conference Vice-Chair

WELCOME LETTER

On behalf of the ASME Electronic and Photonic Packaging Division (EPPD), welcome to the 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems (InterPACK) being held at the Hilton Anaheim in Anaheim, CA, from October 7–9, 2019.

The InterPACK Conference is ASME EPPD's flagship conference and has a long history of providing a forum to disseminate and share information on cutting-edge research in the areas of packaging and reliability of electronic devices, components, and systems for researchers in Academia, Government, and Industry, and the 2019 meeting will continue with that tradition. The organizers have developed a comprehensive technical program, with nearly 230 technical papers and presentations, close to 100 posters, as well as tutorials, panels, workshops, and keynotes aligned with the areas of heterogeneous integration, servers of the future, edge and cloud computing, internet of things, flexible and wearable electronics, photonics and optics, power electronics, energy conversion and storage, and autonomous, hybrid and electric vehicles. The conference program is set up to promote networking between the attendees, offering opportunities to foster collaboration.

We are pleased to announce that we have six keynote presentations from distinguished experts in the areas of electronic and photonic packaging, including "High Speed, High Bandwidth Density, High Efficiency Optical Interconnects" by John Bowers from the University of California Santa Barbara, "Advanced Packaging for Heterogeneous Integration" by Ravi Mahajan from Intel, "Wired and Wireless Charging: Status, Challenges and Opportunities" by Burak Ozpineci from the Oak Ridge National Laboratory, "Soft Electronic and Microfluidic Systems for the Skin" by John Rogers from the Northwestern University, "Sustainability of Commercial Printers" by Masumi Sato from the Ricoh Company, and "Building Trust in Al Systems" by Mohak Shah from LG Electronics. This year, we also formed and promoted new Tracks on Photonics and Optics, as well as the Internet of Things. The area of photonics and optics packaging is developing fast and fully aligned with the mandate of the ASME EPPD and InterPACK. We are pleased to offer new workshops - the Robotics, Self-Driving Cars, and Artificial Intelligence Workshop (thanks to volunteers from Intel Corporation) and comprehensive Professional Development Workshops, comprising multiple sessions focusing on aspects such as career planning, intellectual property, entrepreneurship, and networking. We sincerely thank the ASME Design, Materials, and Manufacturing (DMM) Segment Leadership Team for supporting the workshops with the TEC Development Funds.

We hope that you will enjoy the exciting program that has been organized for you by numerous volunteers, including track chairs, session chairs, workshop and tutorial organizers, panel moderators, and technical paper reviewers. We thank them as well as the staff at ASME for the many hours put into making this a high-quality conference and look forward to enjoying the outcome of their hard work. We also thank all our sponsors across the globe for their generous support as well as participation.

We wish you the very best as you attend InterPACK 2019!

Sreekant Nrumanchi General Conference Chair

Xiaobing Luo General Conference Vice-Chair

Samuel Graham General Conference Vice-Chair Ankur Jain Conference Program Chair

Jin Yang Conference Program Co-Chair

Kazuyoshi Fushinobu Conference Program Co-Chair

Tomoyuki Hatakeyama Conference Program Co-Chair

Ankur Jain Conference Program Chair

Jin Yang Conference Program Co-Chair

Kazuyoshi Fushinobu Conference Program Co-Chair

Tomoyuki Hatakeyama Conference Program Co-Chair

WELCOME LETTER	
SCHEDULE AT-A-GLANCE	4
GENERAL INFORMATION	8
SPONSORS	10
KEYNOTES	15
AWARD LUNCHEON SPEAKERS	
TUTORIALS	
WORKSHOPS	23
PANEL SESSIONS	27
COMMITTEE MEETINGS	
POSTER SESSION	
TECHNICAL SESSIONS	
AUTHOR INDEX	
2019 INTERPACK CONFERENCE LEADERSHIP	118
SESSION ORGANIZERS	
ADVERTISEMENTS	
INTERPACK, EPPD, ASME LEADERSHIP AND PERSONNEL	
HOTEL FLOOR PLANS	
NOTES	137

SUNDAY, OCTOBER 6

TIME	SESSION #	EVENT	ROOM
7:00PM-9:00PM		InterPACK Leadership Dinner (By Invitation)	

MONDAY, OCTOBER 7

TIME	SESSION #	EVENT	ROOM
7:00AM-7:45AM		Authors' Breakfast	Pacific Ballroom C
8:00AM-9:30AM		TECHNICAL SESSIONS	
	1-7	Design and Characterization II	Huntington A
	2-1	Data Center Cooling I	Huntington B
	5-1	DUV-LED I	Huntington C
	6-1	Wide Bandgap Materials, Devices, and Circuits	Palos Verdes A
	8-2	Electric/Hybrid Cars	Palos Verdes B
	11-1	Suhir Tutorial	El Capitan A
9:30AM-10:30AM	12-1	Keynote: Masumi Sato: Sustainability of Commercial Printers	Pacific Ballroom A
9:30AM-10:30AM	12-4	Keynote: John Rogers: Soft Electronic and Microfluidic Systems for the Skin	Pacific Ballroom B
10:30AM-10:45AM		Tea/Coffee Break	Pacific Ballroom Foye
10:45AM-12:15PM		TECHNICAL SESSIONS	
	1-3	Microfabrication	Huntington A
	2-2	Two Phase Cooling I	Huntington B
	5-2	DUV-LED II	Huntington C
	6-2	Ultra-Wide Bandgap Gallium Oxide Electronics	Palos Verdes A
	7-9	Challenges and Opportunities in Thermal Management of Components and Systems	Palos Verdes B
	8-4	Material Modeling for Automotive Packaging I	Redondo
12:15PM–1:45PM	12-8	Lunch / InterPACK Achievement Award	Pacific Ballroom C
1:45PM-3:15PM		TECHNICAL SESSIONS	
	1-4	Fundamentals of Thermal Transport	Huntington A
	2-3	Two Phase Cooling II	Huntington B
	5-3	Integrated Photonics and Wide Bandgap Photonics	Huntington C
	6-3	Device Thermal Management and Reliability	Palos Verdes A
	8-6	Prognostics and Health Management of Automotive Electronics	Palos Verdes B
	13-5	Track 2 Panel	Malibu
3:15PM-3:30PM		Tea/Coffee Break	Pacific Ballroom Foyer
3:30PM-5:00PM		TECHNICAL SESSIONS	
	1-5	Design and Characterization I	Huntington A
	2-4	Fundamental Cooling Technologies	Huntington B
	5-4	Nanostructure/Flexible Materials & Devices	Huntington C
	6-7	Two-Phase Cooling	Palos Verdes B
	7-4	Solid-State Cooling	Palos Verdes A
3:30PM-6:30PM		WORKSHOPS	
3:30PM-6:30PM	10-7	Heterogeneous Integration Roadmap (HIR) Workshop	Malibu
5:00PM-6:30PM	10-2	Professional Development Workshop on Entrepreneurship	El Capitan A
5:00PM-6:30PM	10-3	Professional Development Workshops on IP	El Capitan B
6:30PM-8:30PM		Poster Session	Laguna
6:30PM-7:30PM	14-1	K-16 Committee Meeting	Malibu
7:30PM-8:30PM	14-2	Electronic and Photonic Packaging Division (EPPD) Executive Committee Meeting	Malibu

TUESDAY, OCTOBER 8

BOAM-9:30AM TECHNICAL SESSIONS 4.10 Design & Machenip Ger Beable Electronics Hutnington A 4.20 Visible LD and its Applications Hutnington A 6.20 Visible LD and its Applications Hutnington A 7.20 Thermal Management Optimization Strategies Palos Verdes A 9:30AM-10:30AM 12:0 Keynote: Burk Optimization Strategies Palos Verdes A 9:30AM-10:30AM 12:0 Keynote: Strak Optimization Strategies Palos Verdes A 9:30AM-10:30AM 12:0 Keynote: Strak Optimization All Systems Palotic Baltroom Forget 9:30AM-10:30AM 12:0 Keynote: Strak Optimization All Systems Palotic Baltroom Forget 10:30AM-10:30AM 12:0 Keynote: Strak Optimization All Systems Palotic Baltroom Forget 10:30AM-10:30AM 12:0 Keynote: Strak Optimizations Hutnington A 10:30AM-10:30AM 12:0 Keynote: Strak Optimizations Hutnington A 10:40AM-10:30AM 12:0 Keynote: Strak Optimizations Hutnington A 10:40AM-10:30AM 12:0 Keynote: Strak Optimizations Hutnington A 10:40AM-10:30AM Hoto Topications Hutnington A Hutnington A 10:40AM-10:30AM Keynote: Strak Optimizations Hutnington A Hutnington A	TIME	SESSION #	EVENT	ROOM
2-5 Data Center Cooling II Huntington A 4-1 Design & Modeling for Floxible Electronics Huntington B 4-1 Design & Modeling for Floxible Electronics Huntington C 5-5 Visible ED and its Applications Palos Verdes A 7-2 Thermal Management Optimization Strategies Palos Verdes A 9:30AM-10:30AM 12-2 Keynots: Burk Oxpinee: Viried and Wireless Charging: Status, Challenges and Opportunities Foldie Bilroom A 9:30AM-10:30AM 12-2 Keynots: Burk Oxpinee: Viried and Wireless Charging: Status, Challenges and Opportunities Pacific Ballroom A 9:30AM-10:30AM 12-2 Keynots: Wark Oxpinee: Viried and Wireless Charging: Status, Challenges and Opportunities Pacific Ballroom A 9:30AM-10:30AM 12-3 Keynots: Mark Oxpinee: Viried and Wireless Charging: Status, Challenges and Opportunities Pacific Ballroom A 9:30AM-10:30AM 12-3 Keynots: Mark Oxpinee: Viried and Wireless Charging: Status, Challenges and Opportunities Pacific Ballroom A 9:30AM-10:30AM 12-5 Keynots: Mark Mark Building Demonstrations Huntington A 10:30AM-10:45AM TasiCoffee Break Pacific Ballroom A 10:4 Marcharge Cooling Palos Verdes A 10:4 Marcharge Cooling Palos Verdes A 12:5PM-5:15PM Tasi Panel Sarta Monica <td>7:00AM-7:45AM</td> <td></td> <td>Authors' Breakfast</td> <td>Pacific Ballroom C</td>	7:00AM-7:45AM		Authors' Breakfast	Pacific Ballroom C
4.1 Design & Modeling for Flexible Electronics Huntington B 5.5 Visible ED and its Applications Huntington C 6.6 Power Electronics Packaging Reliability Palos Vardes A 7.2 Thermal Management Optimization Strategies Palos Vardes A 9:30AM-10:30AM 12-2 Keynote: Burka Ozpineć: Wired and Wireless Charging: Status, Challenges Pacific Baliroom A 9:30AM-10:30AM 12-6 Keynote: Burka Ozpineć: Wired and Wireless Charging: Status, Challenges Pacific Baliroom A 9:30AM-10:30AM 12-6 Keynote: Burka Ozpineć: Wired and Wireless Charging: Status, Challenges Pacific Baliroom A 9:30AM-10:45AM TeCH-INCLA SESSIONS TeCH-INCLA SESSIONS Huntington B 10:45AM-12:15PM 4.6 FHE Design & Modeling Denonstrations Huntington C 12:5PM-14:5PM 12.7 Inchr/ Alan Katu Award Pacific Baliroom C 12:5PM-14:5PM 12.7 Inchr/ Alan Katu Award Pacific Baliroom C 14:5PM -3:15PM 12.7 Tack 7 Parel Huntington C 14:5PM -3:15PM 12.7 Microbarnel Hack Sinks Huntington A 14:5PM -3:15PM 13.7 Microbarnel Hack Sink Huntington A 14:5PM -3:15PM 12.7 Teck Fellowicks, and Solar Cells I Huntington A 14:5PM -3:15PM	8:00AM-9:30AM		TECHNICAL SESSIONS	
5.5 Visible LED and its Applications Hurtlington C 6-6 Power Electronics Packaging Reliability Palos Vardes A 7.2 Thermail Management Optimization Strategies Palos Vardes B 12.2 Jain and Mukhergies Tutorial El Capitan A 9:30AM-10:30AM 12.2 Keynots: Buriak Orphneci: Wired and Wireless Charging: Status, Chellenges Pacific Ballroom A 9:30AM-10:30AM 12.6 Keynots: Buriak Orphneci: Wired and Wireless Charging: Status, Chellenges Pacific Ballroom A 9:30AM-10:30AM 12.6 Keynots: Buriak Orphneci: Wired and Wireless Charging: Status, Chellenges Pacific Ballroom A 9:30AM-10:30AM 12.6 Keynots: Buriak Orphneci: Wired and Wireless Charging: Status, Chellenges Pacific Ballroom Foyer 10:30AM-10:45AM Teal/Coffee Break Pacific Ballroom Foyer Pacific Ballroom Foyer 10:45AM-12:15PM Teal/Coffee Break Pacific Ballroom Coding Hurtington A 4-6 FHE Design & Modeling Demonstrations Hurtington B Pacific Ballroom Coding 11:4 Luo Tuorial El Capitan A Pacific Ballroom Coding 11:4 Luo Tuorial El Capitan A Pacific Ballroom Coding 11:4 Luo Tuorial El Capitan A Pacific Ballroom Coding 11:4 Luo Tuorial El Capitan A Pacific		2-5	Data Center Cooling II	Huntington A
6-6Power Electronics Packaging ReliabilityPalos Vardes A7-2Thermal Management Optimization StrategiesPalos Vardes A9-30 Adm -10:30 AM12-0Kaynote: Burk Orgines: Vired and Wireless Charging: Status, Challenges gand OpportunitiesPalofic Ballroom A9-30 Adm -10:30 AM12-0Kaynote: Mohak Shai: Building Trust in Al SystemsPacific Ballroom A9-30 Adm -10:30 AM12-6Kaynote: Mohak Shai: Building Trust in Al SystemsPacific Ballroom A0-30 AM0.05 AM12-6Rectores Participation APacific Ballroom A10-30 AM0.05 AM12-6Rectores Participation APacific Ballroom A10-30 AM0.05 AM12-6Rectores Participation APacific Ballroom A10-30 AM0.05 AM12-6Rectores Participation APalos Vardes A10-30 AM0.05 AM12-6Rectores Participation ARuntington A10-30 AM0.05 AM12-7Rectores Participation ARuntington A12-50 AM12-7Tack 7 PanelRuntington A12-50 AM12-7Rectores Participation ARuntington A12-50 AMRectores Participation ARuntington ARuntington		4-1	Design & Modeling for Flexible Electronics	Huntington B
7.2 Thermal Management Optimization Strategies Paios Verdes B 11.2 Jain and Mukheiges Tutorial El Capitan A 9:30AM-10:30AM 12.2 Keynote: Burak Ozpineć: Wired and Wireless Charging: Status, Chailenges and Opportunities Pacific Balroom A 9:30AM-10:30AM 12.6 Keynote: Mana Shah: Building Tusi in Al Systems Pacific Balroom B 9:30AM-10:30AM 12.6 Keynote: Mona Shah: Building Tusi in Al Systems Pacific Balroom B 9:30AM-10:30AM 12.6 Keynote: Mona Shah: Building Tusi in Al Systems Pacific Balroom B 9:30AM-10:4SAM 12.6 Immersion Cooling I Huntington A 4.5 FHE Design & Modeling Demonstrations Huntington C 5.6 LED, OLED and Photo Devices Palos Verdes A 7.3 Phase-Change Cooling Palos Verdes A 12.15PM-1:45PM 12.7 Tack 7 Panel Bill Cooling A 12.15PM-1:45PM 12.7 Lunch / Alian Kraus Award Pacific Balroom C 14.8 Microsytams Packaging Huntington A 15.7 Organic Meterials and Devices Huntington A 14.5 Microsytams Packaging Huntington A 14.5 Microsytams Packaging I Huntington A 14.5 Microsytams Packaging I Matington A 14.5		5-5	Visible LED and its Applications	Huntington C
11-2Jain and Muknerjee TutorialEl Capitan A9:30AM-10:30AM12-2Ksynote: Burak Ozpineci: Wired and Wireless Charging: Status, Challenges and OpportunitiesPacific Ballroom A and Opportunities9:30AM-10:30AM12-6Ksynote: Mohas Shah. Building Trust in Al SystemsPacific Ballroom Foyer10:30AM-10:30AM12-6Ksynote: Mohas Shah. Building Trust in Al SystemsPacific Ballroom Foyer10:35AM-12:15PMTackOffee BreakPacific Ballroom Foyer10:45AM-12:15PMTECHNICAL SESSIONSHunington A Hunington C2-6Immersion Cooling IHunington C2-6.4Mctrology TechniquesPalos Verdes A Palos Verdes A3-7Pase-Chenge CoolingPalos Verdes A11:4Luo TutorialEl Capitan A12:15PM-4.45PM12-7Iuch / Allan Kraus AwardPalos Verdes A12:15PM-5.45PM12-7Iuch / Allan Kraus AwardPalos Verdes A14:4Luo TutorialHunington A12:15PM-5.45PM12-7Iuch / Allan Kraus AwardPalos Verdes A14:19Microchannel Heat SinksMicrochannel Heat SinksHunington B14:2Material Modeling for Automotive Packaging IHunington C13:2Track 4 PanelSattoMalibu13:4Track 4 PanelSattoMalibu13:5Material Modeling for Automotive Packaging IIPalos Verdes A2:5Palos Verdes BPalos Verdes B2:20PM-5:00PM5-8Packaging and Thormal Management IHunington A13:4Tra		6-6	Power Electronics Packaging Reliability	Palos Verdes A
9:30AM-10:30AM12:2Keynote: Burak Ozpineci: Wired and Wireless Charging: Status, Challenges and OpportunitiesPacific Balroom A and Opportunities9:30AM-10:45AM12:6Keynote: Mohak Shah: Building Trust in Al SystemsPacific Balroom Roger10:45AM-12:15PMTECHNICAL SESSIONSHuntington A List of Keynote: Burak Shah: Building DemonstrationsHuntington A 		7-2	Thermal Management Optimization Strategies	Palos Verdes B
9:30AM-10:30AM 12-6 Keynote: Mohak Shah: Building Trust in Al Systems Pacific Ballroom Fore 9:30AM-10:35AM Tea/Coffee Break Pacific Ballroom Fore 10:30AM-10:45AM Tec/HNICAL SESSIONS Huntington A 2.6 Immersion Cooling I Huntington B 3.6 HE Design & Modeling Demonstrations Huntington B 5.6 LED, OLED and Photo Devices Pacis Verdes A 7.3 Phase-Change Cooling Pacis Verdes A 7.3 Phase-Change Rooling Pacis Verdes A 7.4 Batterial Modeling for Automotive Packaging Huntington A 7.4 Batterials and Devices Huntington A 7.5 Or		11-2	Jain and Mukherjee Tutorial	El Capitan A
10:30AM-10:45AM Ta/Coffee Break Pacific Ballnoom Foyer 10:45AM-12:15PM TECHNICAL SESSIONS Huntington A 4.6 FHE Design & Modeling Demonstrations Huntington B 5.6 LED, OLED and Photo Devices Huntington C 6.4 Metrology Techniques Palos Verdes A 7.3 Phase-Change Cooling Palos Verdes A 7.3 Phase-Change Cooling Santa Monica 11:4 Luo Tubrial El Capitan A 12:15PM-145PM 12:7 Lunch / Allan Kraus Award Pacific Ballnoom C 14:4 Luo Tubrial El Capitan A Palos Verdes B 12:15PM-145PM 12:7 Lunch / Allan Kraus Award Pacific Ballnoom C 14:45PM-3:15PM TECHNICAL SESSIONS Huntington A 14:5 Microchannel Heat Sinks Huntington C 14:5 Microchannel Heat Sinks Huntington C 13:3 Track A Panel Santa Monica 13:3 Women in Engineering Malibu 13:3 Women in Engineering Malibu 13:3 Track A Panel Santa Monica 3:3:5PM -3:30PM TechNICAL SESSIONS Huntington A 3:3:5PM -3:30PM Teck A Panel Santa Monica 3:3:3:5PM -3:30PM Falos	9:30AM-10:30AM	12-2		Pacific Ballroom A
10.45AM-12:15PM TECHNICAL SESSIONS 2-6 Immersion Cooling I Huntington A 4-6 FHE Design & Modeling Demonstrations Huntington B 5-6 LED, OLED and Photo Devices Huntington C 6-4 Metrology Techniques Palos Verdes B 7-3 Phase-Change Cooling Palos Verdes B 13-2 Track 7 Panel Santa Monica 12.15PM-1.45PM 1.7 Lunch / Alian Kraus Award El Capitan A 12.15PM-1.45PM 1.7 Lunch / Alian Kraus Award Palos Verdes B 12.15PM-1.45PM 1.7 Lunch / Alian Kraus Award Huntington A 12.15PM-1.45PM 1.7 Lunch / Alian Kraus Award Huntington A 12.15PM-1.45PM 1.7 Cognic Materials and Devices Huntington A 1.4 Microchannel Heat Sinks Huntington A Huntington A 6.7 Organic Materials and Devices Huntington A Huntington A 7.6 Batterias Supercapacitors, and Solar Cells I Malibu Balos Verdes A 3.7 Track 4 Panel Santa Monica Balos Verdes A 3.30PM-5:00PM Tack/Offee Break M	9:30AM-10:30AM	12-6	Keynote: Mohak Shah: Building Trust in Al Systems	Pacific Ballroom B
2-6Immersion Cooling IHuntington A4-6FHE Design & Modeling DemonstrationsHuntington D5-6LED, OLED and Photo DevicesHuntington C6-4Metrology TachniquesPalos Verdes A7-3Phase-Change CoolingPalos Verdes A1-4Luo TutorialEl Capitan A12:15PM-1:45PM1:27Lunch / Allan Kraus AwardPacific Ballroom C12:45PM-3:15PMTECHNICAL SESSIONSEl Capitan A12:45PM-3:15PM1:6Microsystems PackagingHuntington A5-7Organic Materials and DevicesHuntington C1-8Microsystems PackagingHuntington C7-10Batteries, Supercapacitors, and Solar Cells IPalos Verdes A1-8Microsystems Packaging IIPalos Verdes A1-8Microsystems Packaging IIPalos Verdes A1-9Microsystems Packaging IIPalos Verdes A1-9Batteries, Supercapacitors, and Solar Cells IPalos Verdes A1-9Track A PanelSanta Monica1-9Track A PanelSanta Monica1-9Tack A PanelSanta Monica3:30PM-5:00PM5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington C1-9Piace Change MaterialsHuntington C1-9Piace Change MaterialsHuntington A6-9Phase Change CoolingMalibu13-0Track B PanelA14Track S PanelMalibi15-0Hitterface Mat	10:30AM-10:45AM		Tea/Coffee Break	Pacific Ballroom Foyer
4-6FHE Design & Modeling DemonstrationsHuntington B5-6LED, OLED and Photo DevicesHuntington C6-4Metrology TechniquesPalos Verdes A7.3Phase-Change CoolingPalos Verdes A7.3Phase-Change CoolingPalos Verdes A12-12Track 7 PanelSanta Monica12-12Lunch / Allan Kraus AwardPachfic Ballroom C12-15PM-1:45PM12-7Lunch / Allan Kraus AwardPachfic Ballroom C14.4Lunch / Allan Kraus AwardPachfic Ballroom C14.5Microsystems PackagingHuntington A5-7Organic Materials and DevicesHuntington C6-8Microchannel Heat SinksHuntington C7-11Batteries, Supercapacitors, and Solar Cells IPalos Verdes A3-30Women in EngineeringMallbu3-37Track 4 PanelSanta Monica3-30PM-5:00PMTECHNICAL SESSIONSTECHNICAL SESSIONS5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington A6-9Phase Change MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A8-13Track 4 PanelSanta Monica3-14Track 4 PanelMallbu3-15Palos Verdes AHuntington A6-9Phase Change MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A7-10Tarck 4 PanelSanta Monica5-10<	10:45AM-12:15PM		TECHNICAL SESSIONS	
5-6LED, OLED and Photo DevicesHuntington C6-4Metrology TechniquesPalos Verdes A7-3Phase-Change CoolingPalos Verdes A7-3Phase-Change CoolingPalos Verdes A13-2Track 7PanelSanta Monica11-4Luo TutorialEl Capitan A12:15PM-1-145PM12.7Lunch / Allan Kraus AwardPacific Ballinoon C12:15PM-1-145PMTECHNICAL SESSIONSHuntington A5-7Organic Materials and DevicesHuntington A5-7Organic Materials and DevicesHuntington C7-1Batteries, Supercapacitors, and Solar Cells IPalos Verdes A8-5Material Modeling for Automotive Packaging IIPalos Verdes A13-7Track 4 PanelSanta Monica3:15PM-3:30PMTeck/Offee BreakPacific Ballnoom Foyer3:30PM-5:00PMTECHNICAL SESSIONSHuntington A5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A6-10Thermal Interface MaterialsHuntington C13-1Track 4 PanelSanta Monica13-2Thermal Interface MaterialsHuntington C13-3VorKSHOPSYolk13-4Track 1 PanelMalbu13-5NorkShOPSMalbu13-6NorkShOPSMalbu13-1Introduction to Robotics, Self-Drivin		2-6	Immersion Cooling I	Huntington A
6-4Metrology TechniquesPalos Verdes A7.3Phase-Change CoolingPalos Verdes B7.3Phase-Change CoolingPalos Verdes B13-2Track 7 PanelSanta Monica11-4Luo TutorialEl Capitan A12.15PM-145PM12.7Lunch / Allan Kraus AwardPacific Balleom C14.45PM-3:15PMTECHNICAL SESSIONSHuntington A5.7Organic Materials and DevicesHuntington B6.8Microsystems PackagingHuntington C7.1Batteries, Supercapacitors, and Solar Cells IPalos Verdes A8.5Material Modeling for Automotive Packaging IIPalos Verdes A8.5Material Modeling for Automotive Packaging IIMalibu13.3Women in EngineeringMalibu3:30PM-5:00PMTecHNICAL SESSIONSPacific Balleoom Foyer3:30PM-5:00PMTecHNICAL SESSIONSPalos Verdes A5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington A6-9Phase Change MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A5-00PMTrack 1 PanelMalibu13.4Track 1 PanelMalibu13.4Track 1 PanelMalibu5-00PM13.4Track 1 PanelMalibu5-00PM13.4Track 1 PanelMalibu5-00PM13.4Track 1 PanelMalibu5-00PM13.4Track 1 PanelMalibu5-00PM13		4-6	FHE Design & Modeling Demonstrations	Huntington B
7-3 Phase-Change Cooling Pelos Verdes B 13-2 Track 7 Panel Santa Monica 11-4 Luo Tutorial El Capitan A 12:15PM-145PM 12-7 Lunch / Allan Kraus Award Pacific Ballroom C 1:45PM-3:15PM 12-7 Lunch / Allan Kraus Award Pacific Ballroom C 1:45PM-3:15PM 12-7 Lunch / Allan Kraus Award Pacific Ballroom C 1:45PM-3:15PM 12-7 EtcHNICAL SESSIONS Huntington A 1:45 Microsystems Packaging Huntington C Palos Verdes A 1:45 Microchannel Heat Sinks Huntington C Palos Verdes A 1:5 Material Modeling for Automotive Packaging II Palos Verdes B 1:5 Material Modeling for Automotive Packaging II Palos Verdes B 1:5 Material Modeling for Automotive Packaging II Palos Verdes B 1:5 Material Modeling for Automotive Packaging II Palos Verdes B 1:5 Material Modeling for Automotive Packaging II Palos Verdes A 1:5 Teak Panel Santa Monica 1:5 Packaging and Thermal Management I Huntington A 5:9 Phase Change Mater		5-6	LED, OLED and Photo Devices	Huntington C
13-2Track 7 PanelSanta Monica11-4Luo TutorialEl Capitan A12:15PM-1:45PM12.7Lunch / Allan Kraus AwardPacific Ballroom C1:45PM-3:15PMTECHNICAL SESSIONSHuntington A5-7Organic Materials and DevicesHuntington B6-8Microchannel Heat SinksHuntington C7-1Batteries, Supercapacitors, and Solar Cells IPalos Verdes A8-5Material Modeling for Automotive Packaging IIPalos Verdes B13-3Women in EngineeringMalibu13-7Track 4 PanelSanta Monica3:15PM-3:30PMTea/Coffee BreakHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A8:0PM-5:0OPMTea/Coffee BreakHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A5:0OPM-6:30PMVorKISHOPSVila A5:0OPM-6:30PMVorRISHOPSVila A6:00Thermal Interface MaterialsHuntington C10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A10-2Professional Development Workshop on CommunicationEl Capitan B6:30PM-7:30PM14.3InterPACK Meeting (Open)Malibu </td <td></td> <td>6-4</td> <td>Metrology Techniques</td> <td>Palos Verdes A</td>		6-4	Metrology Techniques	Palos Verdes A
14.4Luo TutorialEl Capitan A12.15PM-1:45PM12.7Lunch / Allan Kraus AwardPacific Ballroom C1:45PM-3:15PMTECHNICAL SESSIONSHuntington A1.6Microsystems PackagingHuntington A5.7Organic Materials and DevicesHuntington B6.8Microchannel Heat SinksHuntington C7.1Batteries, Supercapacitors, and Solar Cells IPalos Verdes A8.5Material Modeling for Automotive Packaging IIPalos Verdes B13.4Women in EngineeringMalibu13.7Track 4 PanelSanta Monica3:30PM-5:00PMTECHNICAL SESSIONSFac/Coffee Break3:30PM-5:00PMTECHNICAL SESSIONSHuntington A6:9Phase Change MaterialsHuntington A6:9Phase Change MaterialsHuntington A6:9Phase Change MaterialsHuntington A6:9Phase Change MaterialsHuntington A7:0Track 4 PanelMalibu13.4Track 4 PanelMalibu13.4Track 4 PanelMalibu13.4Track 4 PanelMalibu13.4Track 4 PanelMalibu13.4Track 4 PanelMalibu13.4Track 4 PanelMalibu14.4Interface MaterialsMuntington C15.00PM-6:30PMVORKSHOPSMalibu13.4Track 4 PanelMalibu13.4Track 4 PanelMalibu13.4Track 4 PanelMalibu13.4Track 4 PanelMalibu </td <td></td> <td>7-3</td> <td>Phase-Change Cooling</td> <td>Palos Verdes B</td>		7-3	Phase-Change Cooling	Palos Verdes B
12:15PM-1:45PM 12.7 Lunch / Allan Kraus Award Pacific Ballroom C 1:45PM-3:15PM TECHNICAL SESSIONS Huntington A 1:6 Microsystems Packaging Huntington A 5:7 Organic Materials and Devices Huntington B 6:8 Microchannel Heat Sinks Huntington C 7:1 Batterials, Supercapacitors, and Solar Cells I Palos Verdes A 8:5 Material Modeling for Automotive Packaging II Palos Verdes B 13:3 Women in Engineering Malibu 3:15PM-3:30PM Tack 4 Panel Santa Monica 3:30PM-5:00PM TECHNICAL SESSIONS Pacific Ballroom Fover 3:30PM-5:00PM TECHNICAL SESSIONS Ferdio Thermal Interface Materials Huntington A 6:30 Phase Change Materials Huntington A Malibu 6:40 Thermal Interface Materials Huntington C Malibu 1:41 Track 4 Panel Malibu Malibu 1:42 Track 4 Panel Malibu Malibu 6:50 Phase Change Materials Huntington A Malibu 6:41 Track 4 Panel Malibu Malibu <t< td=""><td></td><td>13-2</td><td>Track 7 Panel</td><td>Santa Monica</td></t<>		13-2	Track 7 Panel	Santa Monica
1.45PM-3:15PM TECHNICAL SESSIONS 1.6 Microsystems Packaging Huntington A 5-7 Organic Materials and Devices Huntington B 6-8 Microchannel Heat Sinks Huntington C 7-1 Batteries, Supercapacitors, and Solar Cells I Palos Verdes A 8-5 Material Modeling for Automotive Packaging II Palos Verdes B 8-5 Material Modeling for Automotive Packaging II Palos Verdes B 13-3 Women in Engineering Malibu 13-7 Track 4 Panel Santa Monica 3:35PM-3:30PM Tec/NICAL SESSIONS Verdes B 3:30PM-5:00PM Tec/Coffee Break Huntington A 6:40 Thermal Interface Materials Huntington A 6:40 Thermal Interface Materials Huntington C 6:40 Thermal Interface Materials Huntington C 7-6 Batteries, Supercapacitors, and Solar Cells III Palos Verdes A 5:00PM-6:30PM WORKSHOPS Malibu Malibu 5:00PM-6:30PM WORKSHOPS Santa Monica Santa Monica 5:00PM-6:30PM Molt Professional Development Workshop on Communication El Capitan A		11-4	Luo Tutorial	El Capitan A
1-6Microsystems PackagingHuntington A5-7Organic Materials and DevicesHuntington B6-8Microchannel Heat SinksHuntington C7-10Batteries, Supercapacitors, and Solar Cells IPalos Verdes A8-5Material Modeling for Automotive Packaging IIPalos Verdes B8-5Material Modeling for Automotive Packaging IIPalos Verdes B13-30Women in EngineeringMalibu3:15PM-3:30PMTea/Coffee BreakSanta Monica3:30PM-5:00PMTECHNICAL SESSIONSTECHNICAL SESSIONS5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington A6-9Phase Change MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A5:00PM-6:30PMTrack 8 PanelMalibu5:00PM-6:30PMWORKSHOPSMalibu5:00PM-6:30PMWORKSHOPSSanta Monica5:00PM-6:30PMK-16 Professional Development Workshop on CommunicationEl Capitan A6:30PM-7:30PMH-3InterPACK Meeting (Open)Malibu7:30PM-8:00PMH-4InterPACK Meeting (Advisory)Santa Monica	12:15PM-1:45PM	12-7	Lunch / Allan Kraus Award	Pacific Ballroom C
5-7Organic Materials and DevicesHuntington B6-8Microchannel Heat SinksHuntington C7-1Batteries, Supercapacitors, and Solar Cells IPalos Verdes A8-5Material Modeling for Automotive Packaging IIPalos Verdes B13-3Women in EngineeringMalibu13-7Track 4 PanelSanta Monica3:15PM-3:30PMTea/Coffee BreakPacific Ballroom Foyer3:30PM-5:00PMTECHNICAL SESSIONSFECHNICAL SESSIONS5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A5:00PM-6:30PMWORKSHOPSSanta Monica5:00PM-6:30PMWORKSHOPSVilia A10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica	1:45PM-3:15PM		TECHNICAL SESSIONS	
6-8Microchannel Heat SinksHutington C7-1Batteries, Supercapacitors, and Solar Cells IPalos Verdes A8-5Material Modeling for Automotive Packaging IIPalos Verdes B13-3Women in EngineeringMalibu13-7Track 4 PanelSanta Monica3:15PM-3:30PMTea/Coffee BreakPacific Ballroom Foyer3:30PM-5:00PMTECHNICAL SESSIONSHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A5:00PM-6:30PMTrack 4 PanelSanta Monica5:00PM-6:30PMTrack 4 PanelMalibu6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A5:00PM-6:30PMTrack 4 PanelMalibu5:00PM-6:30PMVORKSHOPSVORKSHOPS5:00PM-6:30PM10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A6:30PM-7:30PM10-3InterPACK Meeting (Open)Malibu6:30PM-7:30PM14-4InterPACK Meeting (Advisory)Santa Monica		1-6	Microsystems Packaging	Huntington A
7.1Batteries, Supercapacitors, and Solar Cells IPalos Verdes A8.5Material Modeling for Automotive Packaging IIPalos Verdes B13.3Women in EngineeringMalibu13.7Track 4 PanelSanta Monica3:15PM-3:30PMTack 4 PanelSanta Monica3:30PM-5:00PMTECHNICAL SESSIONSPacific Ballroom Foyer5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A5:00PM-6:30PMTrack 1 PanelSanta Monica5:00PM-6:30PMWORKSHOPSSanta Monica5:00PM-6:30PM10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A6:30PM-7:30PM14-3InterPACK Meeting (Open)El Capitan A6:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		5-7	Organic Materials and Devices	Huntington B
8-5Material Modeling for Automotive Packaging IIPalos Verdes B13-3Women in EngineeringMalibu13-7Track 4 PanelSanta Monica3:15PM-3:30PMTea/Coffee BreakPacific Ballroom Foyer3:30PM-5:00PMTECHNICAL SESSIONSHuntington A6-9Phase Change MaterialsHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A5:00PM-6:30PMWORKSHOPSSanta Monica5:00PM-6:30PMWORKSHOPSVORKSHOPS10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		6-8	Microchannel Heat Sinks	Huntington C
13-3Women in EngineeringMalibu13-7Track 4 PanelSanta Monica3:15PM-3:30PMTea/Coffee BreakPacific Ballroom Foyer3:30PM-5:00PMTECHNICAL SESSIONSHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A13-1Track 1 PanelMalibu5:00PM-6:30PMVORKSHOPSSanta Monica5:00PM-6:30PMVorkSHOPSEI Capitan B10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		7-1	Batteries, Supercapacitors, and Solar Cells I	Palos Verdes A
13-7Track 4 PanelSanta Monica3:15PM-3:30PMTea/Coffee BreakPacific Ballroom Foyer3:30PM-5:00PMTECHNICAL SESSIONSPacific Ballroom Foyer3:30PM-5:00PM5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A13-1Track 1 PanelMalibu13-4Track 8 PanelSanta Monica5:00PM-6:30PMWORKSHOPSVORKSHOPS10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A10-4Professional Development Workshop on CommunicationEl Capitan B6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		8-5	Material Modeling for Automotive Packaging II	Palos Verdes B
3:15PM-3:30PM Tea/Coffee Break Pacific Ballroom Foyer 3:30PM-5:00PM TECHNICAL SESSIONS Huntington A 5-8 Packaging and Thermal Management I Huntington A 6-9 Phase Change Materials Huntington B 6-10 Thermal Interface Materials Huntington C 7-6 Batteries, Supercapacitors, and Solar Cells III Palos Verdes A 13-1 Track 1 Panel Malibu 13-4 Track 8 Panel Santa Monica 5:00PM-6:30PM WORKSHOPS VORKSHOPS 10-1 Introduction to Robotics, Self-Driving Cars, and Al Workshop Avila A 10-5 K-16 Professional Development Workshop on Communication El Capitan B 6:30PM-7:30PM 14-3 InterPACK Meeting (Open) Malibu		13-3	Women in Engineering	Malibu
3:30PM-5:00PMTECHNICAL SESSIONS5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A13-1Track 1 PanelMalibu13-4Track 8 PanelSanta Monica5:00PM-6:30PMWORKSHOPSVORKSHOPS10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A10-4Professional Development Workshop on CommunicationEl Capitan B10-5K-16 Professional Development Workshop on MentoringEl Capitan A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		13-7	Track 4 Panel	Santa Monica
5-8Packaging and Thermal Management IHuntington A6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A13-1Track 1 PanelMalibu13-4Track 8 PanelSanta Monica5:00PM-6:30PMWORKSHOPSVORKSHOPS10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A10-4Professional Development Workshop on CommunicationEl Capitan B10-5K-16 Professional Development Workshop on MentoringEl Capitan A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu	3:15PM-3:30PM		Tea/Coffee Break	Pacific Ballroom Foyer
6-9Phase Change MaterialsHuntington B6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A13-1Track 1 PanelMalibu13-4Track 8 PanelSanta Monica5:00PM-6:30PMWORKSHOPSVerdes Solar Cells III10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A10-4Professional Development Workshop on CommunicationEl Capitan B10-5K-16 Professional Development Workshop on MentoringEl Capitan A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu	3:30PM-5:00PM		TECHNICAL SESSIONS	
6-10Thermal Interface MaterialsHuntington C7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A13-1Track 1 PanelMalibu13-4Track 8 PanelSanta Monica5:00PM-6:30PMWORKSHOPSVORKSHOPS10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A10-4Professional Development Workshop on CommunicationEl Capitan B10-5K-16 Professional Development Workshop on MentoringEl Capitan A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		5-8	Packaging and Thermal Management I	Huntington A
7-6Batteries, Supercapacitors, and Solar Cells IIIPalos Verdes A13-1Track 1 PanelMalibu13-4Track 8 PanelSanta Monica5:00PM-6:30PMWORKSHOPSVORKSHOPS10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A10-4Professional Development Workshop on CommunicationEl Capitan B6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		6-9	Phase Change Materials	Huntington B
13-1Track 1 PanelMalibu13-4Track 8 PanelSanta Monica5:00PM-6:30PMWORKSHOPSVORKSHOPS10-1Introduction to Robotics, Self-Driving Cars, and AI WorkshopAvila A10-4Professional Development Workshop on CommunicationEl Capitan B10-5K-16 Professional Development Workshop on MentoringEl Capitan A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		6-10	Thermal Interface Materials	Huntington C
13-4Track 8 PanelSanta Monica5:00PM-6:30PMWORKSHOPSVORKSHOPS10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A10-4Professional Development Workshop on CommunicationEl Capitan B10-5K-16 Professional Development Workshop on MentoringEl Capitan A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		7-6	Batteries, Supercapacitors, and Solar Cells III	Palos Verdes A
5:00PM-6:30PM WORKSHOPS 10-1 Introduction to Robotics, Self-Driving Cars, and AI Workshop Avila A 10-4 Professional Development Workshop on Communication El Capitan B 10-5 K-16 Professional Development Workshop on Mentoring El Capitan A 6:30PM-7:30PM 14-3 InterPACK Meeting (Open) Malibu 7:30PM-8:00PM 14-4 InterPACK Meeting (Advisory) Santa Monica		13-1	Track 1 Panel	Malibu
10-1Introduction to Robotics, Self-Driving Cars, and Al WorkshopAvila A10-4Professional Development Workshop on CommunicationEl Capitan B10-5K-16 Professional Development Workshop on MentoringEl Capitan A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		13-4	Track 8 Panel	Santa Monica
10-4 Professional Development Workshop on Communication El Capitan B 10-5 K-16 Professional Development Workshop on Mentoring El Capitan A 6:30PM-7:30PM 14-3 InterPACK Meeting (Open) Malibu 7:30PM-8:00PM 14-4 InterPACK Meeting (Advisory) Santa Monica	5:00PM-6:30PM		WORKSHOPS	
10-5K-16 Professional Development Workshop on MentoringEl Capitan A6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		10-1	Introduction to Robotics, Self-Driving Cars, and Al Workshop	Avila A
6:30PM-7:30PM14-3InterPACK Meeting (Open)Malibu7:30PM-8:00PM14-4InterPACK Meeting (Advisory)Santa Monica		10-4	Professional Development Workshop on Communication	El Capitan B
7:30PM-8:00PM 14-4 InterPACK Meeting (Advisory) Santa Monica		10-5	K-16 Professional Development Workshop on Mentoring	El Capitan A
	6:30PM-7:30PM	14-3	InterPACK Meeting (Open)	Malibu
8:00PM-8:30PM 14-5 Journal of Electronic Packaging (JEP) Malibu	7:30PM-8:00PM	14-4	InterPACK Meeting (Advisory)	Santa Monica
	8:00PM-8:30PM	14-5	Journal of Electronic Packaging (JEP)	Malibu

WEDNESDAY, OCTOBER 9

TIME	SESSION #	EVENT	ROOM
7:00AM-7:45AM		Authors' Breakfast	Pacific Ballroom C
8:00AM-9:30AM		TECHNICAL SESSIONS	
	1-2	Thermal Management Applications I	Huntington A
	4-3	Flexible Electronics Packaging & Assembly	Huntington B
	5-9	Packaging and Thermal Management II	Huntington C
	6-5	High-Temperature Electronics Packaging	Palos Verdes B
	6-11	System-Level Thermal Design I	Palos Verdes A
	11-3	Boteler Tutorial	El Capitan A
9:30AM-10:30AM	12-5	Keynote: Ravi Mahajan: Advanced Packaging for Heterogeneous Integration + Ceremony in Honor of Nasser Grayeli	Pacific Ballroom B
9:30AM-10:30AM	12-3	Keynote: John Bowers: High Speed, High Bandwidth Density, High Efficiency Optical Interconnects	Pacific Ballroom A
10:30AM-10:45AM		Tea/Coffee Break	Pacific Ballroom Foyer
10:45AM-12:15PM		TECHNICAL SESSIONS	
	1-8	Thermal Management Applications II	Huntington A
	4-4	Interconnect Reliability in Flexible Systems	Huntington B
	6-12	System-Level Thermal Design II	Huntington C
	7-7	Thermal Characterization	Palos Verdes A
	8-1	ECU-Level Reliability	Palos Verdes B
	13-6	Track 6 Panel	Santa Monica
12:15PM-1:45PM	12-9	Lunch / InterPACK and Nasser Grayeli Poster, EPPD, and JEP Awards	Pacific Ballroom C
1:45PM-3:15PM		TECHNICAL SESSIONS	
	2-7	Immersion Cooling II	Palos Verdes B
	3-1	IoT Applications	Huntington A
	4-5	Process Development and Characterization of Flexible Systems	Huntington B
	6-13	System Integration	Huntington C
	7-8	Thermal Switches and Thermal Metamaterials	Palos Verdes A
3:15PM-3:30PM		Tea/Coffee Break	Pacific Ballroom Foyer
3:30PM-5:00PM		TECHNICAL SESSIONS	
	4-2	Microfluidics for Flexible Electronics	Huntington B
	6-14	Additive Manufacturing	Huntington C
	6-15	Emerging Technologies	Palos Verdes A
	7-10	Batteries, Supercapacitors, and Solar Cells II	Palos Verdes B
	8-7	Reliability of Electronic Components for Harsh Environment	Redondo

PANELS

FANELS
Women in Engineering
Track 1: Progressing or Not Progressing During Two Years of HIR
Track 2: System / Data Center Liquid Cooling
Track 4: Application Challenges in Flexible and Wearable Electronics
Track 6: Transient Thermal Management – Considering Thermal Capacitance and Not Just Thermal Resistance
Track 7: Extreme Fast Charging of Lithium-Ion Batteries
Track 8: Reliability in the Age of Al: Opportunities and Challenges

TUTORIALS

Ephraim Suhir: Failure-Oriented-Accelerated-Testing (FOAT) vs.
Highly-Accelerated-Life-Testing (HALT) in Making a Viable Electron
Device/Package Into a Reliable Product

Ankur Jain and Ankit Verma: Thermo-Electrochemical Coupling and Interactions in Li-Ion Cells

Lauren Boteler: Army Research Laboratory ParaPower Tutorial

Fang Luo: A Review of Advanced Power Module Packaging and Thermal Management in WBG Era

TRACK 1: HETEROGENEOUS INTEGRATION

1-2: THERMAL MANAGEMENT APPLICATIONS I

1-3: MICROFABRICATION

1-4: FUNDAMENTALS OF THERMAL TRANSPORT

1-5: DESIGN AND CHARACTERIZATION I

1-6: MICROSYSTEMS PACKAGING

1-7: DESIGN AND CHARACTERIZATION II

1-8: THERMAL MANAGEMENT APPLICATIONS II

TRACK 2: SERVERS OF THE FUTURE, EDGE AND CLOUD COMPUTING

2-1: DATA CENTER COOLING I

2-2: TWO PHASE COOLING I

2-3: TWO PHASE COOLING II

2-4: FUNDAMENTAL COOLING TECHNOLOGIES

2-5: DATA CENTER COOLING II

2-6: IMMERSION COOLING I

2-7: IMMERSION COOLING II

TRACK 3: INTERNET OF THINGS

3-1: IOT APPLICATIONS

TRACK 4: FLEXIBLE AND WEARABLE ELECTRONICS

4-1: DESIGN & MODELING FOR FLEXIBLE ELECTRONICS

4-2: MICROFLUIDICS FOR FLEXIBLE ELECTRONICS

4-3: FLEXIBLE ELECTRONICS PACKAGING & ASSEMBLY

4-4: INTERCONNECT RELIABILITY IN FLEXIBLE SYSTEMS

4-5: PROCESS DEVELOPMENT AND CHARACTERIZATION OF FLEXIBLE SYSTEMS

4-6: FHE DESIGN & MODELING DEMONSTRATIONS

TRACK 5: PHOTONICS AND OPTICS

5-1: DUV-LED I

5-2: DUV-LED II

5-3: INTEGRATED PHOTONICS AND WIDE BANDGAP PHOTONICS

5-4: NANOSTRUCTURE/FLEXIBLE MATERIALS & DEVICES

5-5: VISIBLE LED AND ITS APPLICATION

5-6: LED & OLED & PHOTO DEVICE

5-7: ORGANIC MATERIALS AND DEVICES

5-8: PACKAGING AND THERMAL MANAGEMENT I

5-9: PACKAGING AND THERMAL MANAGEMENT II

TRACK 6: POWER ELECTRONICS

6-1: WIDE BANDGAP MATERIALS, DEVICES, AND CIRCUITS

6-2: ULTRA-WIDE BANDGAP GALLIUM OXIDE ELECTRONICS

6-3: DEVICE THERMAL MANAGEMENT AND RELIABILITY

6-4: METROLOGY TECHNIQUES

6-5: HIGH-TEMPERATURE ELECTRONICS PACKAGING

6-6: POWER ELECTRONICS PACKAGING RELIABILITY

6-7: TWO-PHASE COOLING

6-8: MICROCHANNEL HEAT SINKS

6-9' PHASE CHANGE MATERIALS

6-10: THERMAL INTERFACE MATERIALS

6-11: SYSTEM-LEVEL THERMAL DESIGN I

6-12: SYSTEM-LEVEL THERMAL DESIGN II

6-13: SYSTEM INTEGRATION

6-14: ADDITIVE MANUFACTURING

6-15: EMERGING TECHNOLOGIES

TRACK 7: ENERGY CONVERSION AND STORAGE

7-1: BATTERIES, SUPERCAPACITORS, AND SOLAR CELLS I

7-2: THERMAL MANAGEMENT OPTIMIZATION STRATEGIES

7-3: PHASE-CHANGE COOLING

7-4: SOLID-STATE COOLING

7-6: BATTERIES, SUPERCAPACITORS, AND SOLAR CELLS III

7-7: THERMAL CHARACTERIZATION

7-8: THERMAL SWITCHES AND THERMAL METAMATERIALS

7-9: CHALLENGES AND OPPORTUNITIES IN THERMAL MANAGEMENT OF COMPONENTS AND SYSTEMS

7-10: BATTERIES, SUPERCAPACITORS, AND SOLAR CELLS II

TRACK 8: AUTONOMOUS, HYBRID, AND ELECTRIC VEHICLES 8-1: ECU-LEVEL RELIABILITY

8-2: ELECTRIC/HYBRID CARS

8-4: MATERIAL MODELING FOR AUTOMOTIVE PACKAGING I

8-5: MATERIAL MODELING FOR AUTOMOTIVE PACKAGING II

8-6: PROGNOSTICS AND HEALTH MANAGEMENT OF AUTOMOTIVE ELECTRONICS

8-7: RELIABILITY OF ELECTRONIC COMPONENTS FOR HARSH ENVIRONMENT

General Information

REGISTRATION HOURS AND LOCATION

Registration will be located at the Pacific Registration desk, Ballroom Level, on the Second Floor of the hotel.

The hours are as follows:

Sunday

October 6	4:00PM-6:00PM
Monday October 7	7:00AM-5:00PM
Tuesday October 8	7:00AM-5:00PM
Wednesday October 9	7:00AM-4:00PM

Exhibit Hours and Location

Pacific Ballroom Foyer, Ballroom Level, Second Floor

Monday–Wednesday

October 7–9 7:00AM-5:00PM

AUDIOVISUAL EQUIPMENT IN SESSION ROOMS

All technical sessions rooms are equipped with an LCD projector and screen. Laptops will NOT be provided in the sessions. Presenters MUST arrange to have their presentations transferred to the Session Chairs' laptop/mobile computers.

BADGE REQUIRED FOR ADMISSION

All conference attendees must wear the official ASME 2019 InterPACK badge at all times in order to gain admission to technical sessions, exhibits, and other conference events. Without a badge, you will NOT be allowed to attend any conference activities. Your badge also provides a helpful introduction to other attendees.

CONFERENCE AUTHOR BREAKFASTS

Monday–Wednesday, October 7–9 7:00AM–7:45AM Pacific Ballroom C, Ballroom Level, Second Floor

Meet your session chairs and fellow presenters each morning prior to your presentation! Look for your session number on the day you present. On the days you are not presenting, non-session specific tables will also be available.

InterPACK ACHIEVEMENT AWARDS LUNCHEON

Monday, October 7 12:15PM–1:45PM Pacific Ballroom C, Ballroom Level, Second Floor

ALLAN KRAUS THERMAL MANAGEMENT MEDAL AWARD LUNCHEON

Tuesday, October 8 12:15PM–1:45PM Pacific Ballroom C, Ballroom Level, Second Floor

InterPACK and Nasser Grayeli Poster Awards, Electronic and Photonic Packgaging Division (EPPD) and Journal Electronic Packaging (JEP) AWARDS LUNCHEON

Wednesday, October 9 12:15PM–1:45PM Pacific Ballroom C, Ballroom Level, Second Floor

General Information

CONFERENCE NETWORKING BREAKS

Morning and afternoon breaks will be provided in the Pacific Ballroom foyer, located on the Ballroom Level, Second Floor. Join your fellow attendees for a few minutes of networking and discussion. The schedule is as follows:

Monday–Wednesday, October 7–9

10:30AM-10:45AM and 3:15PM-3:30PM

CONFERENCE AWARDS LUNCHEON

The Awards Luncheon will take place on October 7, 8 and 9, from 12:15PM to 1:45PM in Pacific Ballroom C, Ballroom Level, Second Floor to recognize and celebrate a select group of individuals for their contributions and achievements in research and engineering. All meals are included for full conference registrants.

CONFERENCE PROCEEDINGS

Each attendee will be provided with an individual link to the online papers via email. In the event you do not receive the email, send a request to toolboxhelp@asme.org. Access to all of the papers accepted for presentation at the conference will be found online with this link. The official conference archival proceedings will be published after the conference and will not include accepted papers that were not presented at the conference. The official conference proceedings is registered with the Library of Congress and are submitted for abstracting and indexing. The proceedings is published on the ASME Digital Library.

REGISTRANTS WITH DISABILITIES

Whenever possible, we are pleased to make arrangements for registrants with disabilities. Advance notice may be required for certain requests. For on-site assistance, please visit the conference registration area and ask to speak with a conference representative.

ABOUT ANAHEIM, CALIFORNIA – 5 FUN FACTS

Fact 1

Anaheim is located in the far southwest side of the state of California. It is the oldest city in the Orange County, California.

Fact 2

The city was founded by wine makers and grape farmers. After grape crops failed, oranges became the largest crop of the city.

Fact 3

Anaheim literally translates to home by the river. It got its name "Ana" because of its proximity to the Santa Ana River, and "heim" is a German word for "home."

Fact 4

Prior to the opening of Disneyland in 1955, the city was one large rural community.

Fact 5

Gwen Stefani, the lead singer, songwriter, and front woman of No Doubt, is from Anaheim.

HOTEL

Located across the street from the Anaheim Convention Center, and just one mile from the Disneyland® Resort, the hotel is the perfect choice when visiting sunny Orange County. Inside the hotel, visit the Disney® Desk, where cast members will offer expert advice, provide tickets, and organize a shuttle service to the world-class attractions. Comfortable rooms and suites, fantastic dining, and first-class facilities for business and recreation all combine to ensure you have an unforgettable stay in Anaheim, California.

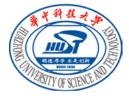
Hilton Anaheim 777 W Convention Way Anaheim, CA 92802 Phone Number: 714-750-4321

QUESTIONS ABOUT THE MEETING

If you have any questions or need assistance, an ASME representative will be located at the conference registration area.

It is with great appreciation that we acknowledge this year's sponsors! Their support, generosity, and collaboration allow this conference to maintain its high standards of excellence.

This year we would like to introduce a special sponsorship and would like to thank the family of Nasser Grayeli for their sponsorship and contribution to the newly created "Nasser Grayeli Best Student Poster Awards."


GOLD SPONSORS

ASE GROUP

Alongside a broad portfolio of established technologies, ASE is also delivering innovative advanced packaging and System-in-Package solutions to meet growth momentum across a broad range of end markets. For more about our advances in SiP, WLP, Fan Out, MEMS, Flip Chip, and, 2.5D, 3D & TSV technologies, all ultimately geared towards applications to improve lifestyle and efficiency, please visit: aseglobal.com. To follow ASE on Twitter: @asegroup_global

For more information please visit our website: www.aseglobal.com

HUST

Thermal Packaging Laboratory (TPL) is affiliated to the School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) in Wuhan city of China. HUST is a top ten university in China. TPL has rich experience in solving thermal and fluid issues in electronics packaging and works on industrial and academic projects which relate to thermal management, manufacturing materials and processes of electronic systems. This lab has designed and commercialized the hydrodynamically levitated micro-pump and liquid cooling garment.

For more information please visit our website: http://TPL.energy.hust.edu.cn

Intel invents at the boundaries of technology to make amazing experiences possible for business and society, and for every person on Earth. Harnessing the capability of the cloud, the ubiquity of the Internet of Things, the latest advances in memory and programmable solutions, and the promise of always-on 5G connectivity, Intel is disrupting industries and solving global challenges. Leading on policy, diversity, inclusion, education and sustainability, we create value for our stockholders, customers, and society.

For more information please visit the website: Intel.com/California or https://www.intel.com/content/www/us/en/ corporate-responsibility/intel-in-california.html

The S3IP

The S3IP, comprising five constituent research centers and two laboratories (available for industry use), brings to bear faculty expertise, applied and fundamental academic research results and capability in electronics packaging. Its staff has decades of industrial experience to solve practical problems for electronics industry partners. An industrial member-driven research portfolio and project base in thermal management, manufacturing materials, failure analysis, reliability improvement, and energy efficiency for electronic systems underpins improvements in the manufacturing of microelectronic products, commercialization of flexible printed electronic technology, development of advanced batteries and energy harvesting devices, and improvements in the energy efficiency of data centers.

For more information please visit our website: www.binghamton.edu/s3ip/

MICROSANJ

Microsanj is a leading provider of high-resolution transient thermal imaging solutions & services for commercial and research applications. The systems are based on optical thermoreflectance characterization, digital signal processing, and advanced software algorithms to support: electronic and optoelectronic components measurement, thermal design validation of ICs, defects, and failure analysis.

Visit us at: www.microsanj.com

SILVER SPONSORS

GOOGLE

For more information please visit our website: www.google.com

CALCE

The Center for Advanced Life Cycle Engineering (CALCE), the largest electronic products and systems research center focused on electronics reliability, is dedicated to providing a knowledge and resource base to support the development of competitive electronic components, products and systems.

The Center for Advanced Life Cycle Engineering is recognized as a founder and driving force behind the development and implementation of physics-of-failure (PoF) approaches to reliability, as well as a world leader in accelerated testing, electronic parts selection and management, and supply-chain management. CALCE is at the forefront of international standards development for critical electronic systems, having chaired the development of several reliability and part selection standards. CALCE is staffed by more than 100 faculty, staff, and students and, in 1999, became the first academic research facility in the world to be ISO 9001 certified. Collectively, CALCE researchers have authored over 35 internationally acclaimed textbooks and well over 1000 research publications relevant to electronics reliability. Over the last 15 years, CALCE has invested over \$75 million in developing methodologies, models, and tools that address the design, manufacture, analysis, and management of electronic systems.

For more information please visit our website at: www.calce.umd.edu

NOVARK

Novark Technologies, Inc. spans three factories and leverages over a decade of experience and expertise in thermal management solutions. Its product lines include various heat pipe, heat sink, and cold plate configurations used in a variety of industries ranging from automotive to LED to CPU cooling to industrial power systems and more. Routine support of academic research at various institutions combines with constant exploration of new thermal management solutions to push the company's capabilities forward every year.

For more information, please visit our website: https://www.novarktechnologies.com/

National Renewable Energy Laboratory

NREL's Advanced Power Electronics & Electric Machines (APEEM) team is comprised of a staff of researchers with expertise in thermal, electrothermal, mechanical, and reliability aspects of power electronics and electric machines for electric-drive vehicles (EDVs) as well as other energy efficiency and renewable energy applications. In collaboration with research and industry partners, NREL's APEEM team is developing novel thermal management technologies to improve performance, cost, and reliability, and reduce the volume/size of power electronics and electric machines. APEEM researchers work in five labs/facilities that feature a wide range of equipment and investigate three primary areas: 1) Electric motor thermal management, 2) Power electronics thermal management, 3) Power electronics packaging reliability and prognostics.

For more information please visit our website: https://www.nrel.gov/transportation/peem.html

INFINEUM

Infineum is one of the world leaders in the formulation, manufacturing and marketing of petroleum additives for lubricants and fuels. Drawing on nearly 80 years' experience and supported by a powerful research and development capability, Infineum is a truly global operation with production facilities worldwide.

Infineum transmission fluid technology is used in more than 70 % of electrified vehicles with proven cooling performance and compatibility with e-motors. Current research is focused on delivering lower viscosity transmission and dielectric cooling fluids with enhanced heat transfer capability for cooling e-motors, power electronics, and batteries.

Visit us at:

https://www.infineuminsight.com/articles/transmissions/

Laird Performance Materials enables high-performance electronics. We create advanced protection solutions for electronic components and systems. World-leading technology brands rely on us for improved protection, higher performance and reliability, custom structural designs and faster time-to-market. We solve design issues through innovative products such as EMI suppression or absorption materials, thermal interface materials, structural and precision metals and multi-functional solutions.

Visit us at: www.laird.com

JOURNAL OF ELECTRONIC PACKAGING

The Journal of Electronic Packaging (JEP) publishes papers that use experimental and theoretical techniques to address and solve various thermal, mechanical, materials, and reliability problems encountered in the design, manufacturing, testing, and operation of electronic and photonics components and systems. The journal publishes high quality research and review articles to cover hot, emerging, and fundamental topics. JEP is recognized as one of the leading journals in microsystem packaging and integration with its impact factors improved from 0.645 in 2013 to 2.21 in 2017 and 1.99 in 2018

To find out more about the Journal of Electronic Packaging, please visit: https://electronicpackaging.org/

THE UNIVERSITY OF ARKANSAS/POETS

The University of Arkansas College of Engineering is the largest engineering program in the state of Arkansas. Over the past decade, the college has experienced unprecedented growth. Undergraduate enrollment has doubled since 2007, and total enrollment in the college is now over 4,000 students. The College of Engineering offers graduate and undergraduate degrees in nine engineering fields, as well as incorporating distance learning and interdisciplinary programs. Faculty in the college conduct research in many key areas, including electronics, energy, biomedical and healthcare engineering, materials science, transportation and logistics.

The University of Arkansas provides an internationally competitive education for undergraduate and graduate students in more than 200 academic programs. The university contributes new knowledge, economic development, basic and applied research, and creative activity while also providing service to academic and professional disciplines. The Carnegie Foundation classifies the University of Arkansas among fewer than 2.7 percent of universities in America that have the highest level of research activity. U.S. News & World Report ranks the University of Arkansas among its top American public research universities. Founded in 1871, the University of Arkansas comprises 10 colleges and schools and maintains a low student-to-faculty ratio that promotes personal attention and close mentoring.

For more information go to: https://uapower.group/

STANFORD

To find out more about Stanford University, please visit: https://www.stanford.edu/

ΤΟΥΟΤΑ

ΤΟΥΟΤΑ

The Toyota Research Institute of North America (TRINA) was founded over 10 years ago to conduct basic and applied research on new technology to support Toyota's future business in Mobility. The specific research topics of interest cover a wide area including, advanced batteries, catalysts, fuel cell materials, thermal management, power electronics, vehicle sensors, human-machine interfaces, smart materials, informatics, and sociotechnical systems. TRINA is the recipient of 7 R&D100 Awards.

To find out more about Toyota, please visit: https://global.toyota/

We would like to acknowledge that Track 2, Servers of the Future, Edge and Cloud Computing: with Papers Honoring Michael Ellsworth for Contributions and Service to ASME InterPACK, the Electronic and Photonic Packaging Division, and Leadership in Liquid Cooling of Server Systems.

UNIVERSITY OF TEXAS AT ARLINGTON

About UTA

The University of Texas at Arlington is a Carnegie Research Institution (High Research Activity) whose mission is the advancement of knowledge and the pursuit of excellence in research, teaching, and service to the community. The mission statement affirms UT Arlington's commitment to expanding academic research; to attracting and retaining high quality faculty scholars who actively engage students; to providing a well-rounded academic experience that promotes student involvement, service learning, and free discourse; to employing alternative access venues to meet students' needs; and to developing public and private partnerships.

College of Engineering

The University of Texas at Arlington's College of Engineering has emerged as one of the most comprehensive engineering programs in North Texas and the nation. It offers 11 baccalaureate, 14 master's, and nine doctoral degree programs, and its programs are ranked by U.S. News and World Report as among the best in the nation. With more than 7,500 students and more than 34,000 alumni, the College of Engineering is the fourth-largest in Texas, providing the local, regional, and national workforce with motivated and highly skilled graduates. The College boasts seven buildings, including the Science and Engineering Innovation and Research (SEIR) Building, which opened in Fall 2018. UTA is classified as a Research 1 University.

Electronics, MEMS and Nanoelectronics Systems Packaging Center

National Academy of Engineering, the Electronics, MEMS and Nanotechnology Systems Packaging Center is a first class research center that will meet the needs of industry, and in particular, the state of Texas and the North Texas region's "Electronic, MEMS and Nanoelectronics Packaging Industry". This includes research, education and training. EMNSPC will target the needs of the Microelectronics, MEMS and Nanoelectronics (with a special emphasis on thermo-mechanical issues) as a fundamental research area as these technologies have and will continue to overlap. The EMNSPC is a partner in the NSF I/UCRC Center for Energy-Smart Electronic Systems, working with government, industry and academia to develop systematic methodologies for efficiently operating electronic systems.

More information at: https://blog.uta.edu/emnspc/

UNIVERSITY OF TORONTO

The Faculty of Applied Science & Engineering at the University of Toronto is Canada's #1 engineering school and among the world's best. Our diverse community includes more than 5,200 undergraduates, 2,500 graduate students, 345 staff, 266 faculty and over 50,000 alumni. Located at the heart of one of the world's most innovative cities, diversity is our strength: our vibrant U of T Engineering community includes students, professors and faculty members from more than 100 countries. Through transformative innovations in immersive engineering education and multidisciplinary research, we prepare the next generation of global engineering leaders to address the world's most pressing challenges.

The Faculty website is: www.engineering.utoronto.ca

For the Graduate Studies website go to: gradstudies.engineering.utoronto.ca

🐺 Washington University in St.Louis

JAMES MCKELVEY SCHOOL OF ENGINEERING

THE UNIVERSITY OF WASHINGTON IN ST. LOUIS

Founded in 1854, the James McKelvey School of Engineering at Washington University in St. Louis is a research institution with emphasis on crossdisciplinary technologies in the areas of alternative energy, environmental engineering & sustainable technology, biotechnology, information technology, and nanotechnology/materials science. The mission of the McKelvey School is to promote independent inquiry in engineering research and education with an emphasis on scientific excellence, innovation and collaboration without boundaries.

WashU Engineers produce new knowledge that changes the world, and our faculty are educating students to explore and create in a world we cannot yet imagine. Through research and education, we are making a positive impact on the local community, the country and the world.

The IMSE was established in 2013 with the overarching mission of creating and sustaining a culture of interdisciplinary materials science research and education at Washington University. The IMSE brings together more than 50 faculty and student researchers from engineering, the physical and natural sciences, and the medical school to discover new materials, understand how they behave, and envision innovative applications. The IMSE conducts research in Nanomaterials and glasses, thin film and 2D materials, biomedical and bio-inspired materials and applications, materials for sensors and imaging and other areas of research. The IMSE supports extensive shared user facilities for micro/nanofabrication and materials characterization, and is home to an interdisciplinary, cross-school PhD program in Materials Science and Engineering.

For more information please visit our website at : https://imse.wustl.edu/about-us

BRONZE SPONSORS

WORLD SCIENTIFIC PUBLISHING

World Scientific Publishing is a leading international independent publisher of books and journals for the scholarly, research and professional communities. World Scientific collaborates with prestigious organisations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. The company publishes about 600 books annually and 135 journals in various fields.

To find out more about World Scientific, please visit: www.worldscientific.com

MECHANICAL ENGINEERING

PENN STATE COLLEGE OF ENGINEERING/MECHANICAL ENGINEERING

At the Department of Mechanical Engineering at Penn State, we serve more than 750 undergraduate students and more than 330 graduate students. The department's faculty members are actively involved in providing a hands-on education at the undergraduate and graduate levels.

Our faculty and students engage in cutting-edge research with support from industry and federal agencies. Annual research expenditures are more than \$500K per faculty member, per year. Our research programs are especially strong in areas such as energy, homeland security, biomedical devices, and transportation systems.

Our mechanical engineering program continues to be one of the most popular at Penn State. In 2018, U.S. News and World Report ranked Penn State's mechanical engineering undergraduate program 17th in the country. In 2019, the graduate program was ranked 14th among the 181 ranked mechanical engineering programs in the U.S.

Find us at: www.engr.psu.edu

GENERAL SPONSORS

GEORGIA TECH

The Woodruff School of Mechanical Engineering is one of the largest mechanical engineering programs in the United States with over 2800 students and 95 faculty, and annual research awards exceeding \$45M. The Woodruff School's research is focused on addressing global challenges which require expertise in areas such as manufacturing, energy systems, robotics and controls, advanced manufacturing, design, and advanced electronics. The goal is to bring innovative solutions to the challenges that face society today and those that will emerge tomorrow. Woodruff School faculty members and students are known for their collaborative and interdisciplinary approach to research and leverage resources across multiple disciplines to create these advanced solutions.

The Woodruff School is proud to sponsor ASME InterPACK. We have strong research activities in electronics packaging, thermal management, and reliability. Our faculty are working on new technologies in printed electronics and flexible, Si-based electronics, neuromorphic computing, and wide bandgap power and rf-electronics. We encourage you to visit our website as well as our faculty and students during InterPACK to learn more about our activities

You may find more information on the Woodruff School at: www.me.gatech.edu

Track Keynotes

12-1: SUSTAINABILITY OF COMMERCIAL PRINTERS MONDAY, OCTOBER 7 9:30AM–10:30AM ROOM: PACIFIC BALLROOM A, BALLROOM LEVEL, SECOND FLOOR

Masumi Sato

Corporate Associate Vice President Deputy General Manager of Commercial Printing Business Group Ricoh

Abstract: Ricoh has consistently provided innovative products and services with the fundamental concept of "Ease of Use and Energy Saving." We offer innovative energy-efficient technologies for business needs. For example, we have worked on developing QSU (Quick Start-Up) technology for office printer to provide customers with energy-saving mode stress-free operation. In this presentation, innovative technologies for commercial and industrial printers will be explained, and future printers that enable individuals to work smarter will be mentioned.

Biography: Masumi Sato received his MA in applied physics from the University of Nagoya and joined Ricoh Company Ltd. in 1989. Since then he has been working in the research and development section at Ricoh. From 2006, he has been engaging in Commercial Printing (CP) and now he is managing both development and business of CP.

12-4: SOFT ELECTRONIC AND MICROFLUIDIC SYSTEMS FOR THE SKIN

MONDAY, OCTOBER 7 9:30AM–10:30AM ROOM: PACIFIC BALLROOM B, BALLROOM LEVEL, SECOND FLOOR

John Rogers

Louis Simpson and Kimberly Querrey Professor of Materials Science and Engineering Biomedical Engineering and Medicine at Northwestern University

Abstract: Recent advances in materials, mechanics and manufacturing establish the foundations for high performance classes of electronics and other microsystems technologies that have physical properties precisely matched to those of the human epidermis. The resulting devices can integrate with the skin in a physically imperceptible fashion, to provide continuous, clinical-quality information on physiological status. This talk summarizes the key ideas and presents specific examples in wireless monitoring for neonatal intensive care, and in capture, storage and biomarker analysis of sweat.

Biography: Professor John A. Rogers is the Louis Simpson and Kimberly Querrey Professor of Materials Science and Engineering, Biomedical Engineering and Medicine at Northwestern University, with affiliate appointments in Mechanical Engineering, Electrical and Computer Engineering and Chemistry, where he is also Director of the newly endowed Center for Bio-Integrated Electronics. He has published more than 650 papers, is a co-inventor on more than 100 patents, and he has co-founded several successful technology companies. His research has been recognized by many awards, including a MacArthur Fellowship (2009), the Lemelson-MIT Prize (2011), and the Smithsonian Award for American Ingenuity in the Physical Sciences (2013) – and most recently the Benjamin Franklin Medal from the Franklin Institute (2019). He is a member of the National Academy of Engineering, the National Academy of Sciences, the National Academy of Inventors, and the American Academy of Arts and Sciences.

Track Keynotes

12-2: WIRED AND WIRELESS CHARGING: STATUS, CHALLENGES, AND OPPORTUNITIES

TUESDAY, OCTOBER 8 9:30AM–10:30AM ROOM: PACIFIC BALLROOM A, BALLROOM LEVEL, SECOND FLOOR

Burak Ozpineci Group Leader Oak Ridge National Laboratory

12-6: BUILDING TRUST IN AI SYSTEMS

TUESDAY, OCTOBER 8 9:30AM–10:30AM ROOM: PACIFIC BALLROOM B, BALLROOM LEVEL, SECOND FLOOR

Mohak Shah Vice President of AI and Machine Learning LG Electronics

Abstract: With the recent demand for faster charging electric vehicles to rival the refill time of conventional vehicles, the interest in high power wired and wireless charging is increasing. While recent industry demonstrations have shown 450 kW wired charging, Oak Ridge National Laboratory (ORNL) has recently demonstrated a 120 kW static wireless charging system using a single power conversion system and a single transmitter/receiver coil pair. Now the focus switches to more than 300 kW wireless charging and dynamic wireless charging. This presentation will talk about current status in wired and wireless charging, the associated challenges with a focus on packaging, and the opportunities in this area.

Biography: Burak Ozpineci received the M.S. and Ph.D. degrees in electrical engineering from the University of Tennessee, Knoxville, TN, in 1998 and 2002, respectively. He joined the Post-Master's Program with the Power Electronics and Electric Machinery Research Center, Oak Ridge National Laboratory (ORNL), Knoxville, TN, in 2001 and became a Full-Time Research and Development Staff Member in 2002 and Group Leader of the Power and Energy Systems Group in 2008. He is currently leading the Power Electronics and Electric Machinery Group and managing the Electric Drive Technologies Program at ORNL. He also serves as a Joint Faculty Associate Professor with The Bredesen Center at The University of Tennessee, Knoxville. Abstract: Artificial Intelligence (AI) and data-driven decision-making capabilities are becoming ubiquitous. These algorithms become part of increasingly sophisticated systems that impact not just safety-critical products but also social interactions, discourse, and institutions. It is important that the practitioner community accept and adopt a broader role in ascertaining the behavior of these systems going beyond just algorithm-level evaluation. The implications of these systems need to be well understood - not just as isolated technical components but as part of overall systems, their interaction with the intended users and the environment. While global efforts have been initiated to develop guidelines for AI, ranging from ethics to procurement, they are not yet actionable. This talk will highlight how vulnerabilities can become systemic in AI systems and can have unintended, but serious, consequences. It will also cover how the practitioners can get more involved in understanding the system-level interactions and educate the adoption process to be cognizant of technology's limitations.

Biography: Mohak Shah is a technology leader and technologist with an established history of leading high-impact initiatives in AI, IoT, digital transformation, and building data-driven businesses and strategies. He is deeply passionate about responsible development, introduction, adoption, and integration of AI capabilities in industry and society at large. His experience in leading technology initiatives spans a broad range - including autonomous driving, automotive, aviation, energy, and healthcare. He is leading diverse teams from research, software, and businesses. As a machine learning and AI scientist, Mohak has developed novel technologies with high-impact business applications. He is the author of "Evaluating Learning Algorithms: A Classification Perspective" (Cambridge), and has published more than 45 research articles, in top conferences and journals in the analytics space, and patented technologies. Mohak regularly contributes to the community through participation in scientific panels, organizing committees, review committees, and social impact programs. He was the General Chair of ACM SIGKDD 2016 conference. He also holds an adjunct faculty position with the University of Illinois (Chicago).

Track Keynotes

12-3: HIGH SPEED, HIGH BANDWIDTH DENSITY, HIGH EFFICIENCY OPTICAL INTERCONNECTS

WEDNESDAY, OCTOBER 9 9:30AM–10:30AM ROOM: PACIFIC BALLROOM A, BALLROOM LEVEL, SECOND FLOOR

Abstract: Photonics can reduce energy consumption in information processing and communications while simultaneously increasing the interconnect bandwidth density. The energy consumption in data centers is shifting from logic operations to interconnect energies. Without the prospect of substantial reduction in energy per bit communicated, the exponential growth of our use of information is limited. The use of optical interconnects fundamentally addresses both interconnect energy and bandwidth density, and is the only scalable solution to this problem. With the use of photonic integration and fiber optics, and the elimination of electrical line charging dissipation, we can save power by transmitting data from 1 mm to 1 km with the same energy (20 fJ/bit) and simplicity as local electrical wires on chip. A focus of our research is on using quantum dot (QD) lasers and integration on silicon for lower threshold and higher efficiency sources, higher temperature operation, isolator free operation, and superior mode locking capability. A recent example includes a 4.1 Tbps, 60 wavelength, 32 Gbaud PAM-4 transmitter using a single mode locked quantum dot laser.

Biography: John Bowers is Director of the Institute for Energy Efficiency and a professor in the Departments of Electrical and Computer Engineering and Materials at the University of California, Santa Barbara. His research interests are primarily concerned with silicon photonics, optoelectronic devices, optical switching and transparent optical networks and quantum dot lasers. Bowers received the M.S. and Ph.D. degrees from Stanford University and then worked for AT&T Bell Laboratories before joining UCSB. Bowers is a fellow of the IEEE, OSA, and the American Physical Society, and a recipient of the IEEE Photonics Award, OSA/IEEE Tyndall Award, the IEEE LEOS William Streifer Award, and the South Coast Business and Technology Entrepreneur of the Year Award. He is a member of the National Academy of Engineering and the National Academy of Inventors.

12-5: ADVANCED PACKAGING FOR HETEROGENEOUS INTEGRATION + CEREMONY IN HONOR OF NASSER GRAYELI

WEDNESDAY, OCTOBER 9 9:30AM–10:30AM ROOM: PACIFIC BALLROOM B, BALLROOM LEVEL, SECOND FLOOR

> Ravi Mahajan Intel Fellow and Co-director Pathfinding and Assembly and Packaging Technologies

Abstract: Heterogeneous Integration (HI) of disparate computing and communications functions is a key performance enabler in micro-electronic systems. HI is crucially enabled by advanced packaging since packages offer compact, power efficient platforms for HI. This talk will describe the role of advanced 2D and 3D packaging in enabling HI and will focus on the evolution of packaging to provide increased interconnect density. Key high-end technologies such as EMIB, the Silicon Interposer, and Foveros will be discussed in this context. The talk will also touch on the evolving future challenges in interconnect density scaling. In addition to interconnect scaling, challenges and opportunities in key areas such as power management, high speed IO, thermal management, and test will be briefly discussed.

Biography: Ravi Mahajan is an Intel Fellow and the Co-director of Pathfinding and Assembly and Packaging technologies for future silicon nodes. Ravi also represents Intel in academia through research advisory boards, conference leadership, and participation in various student initiatives. Ravi has led efforts to define directions for package architecture, technologies, and assembly processes at Intel since 2000, spanning 90 nm, 65 nm, 45 nm, 32 nm, 22 nm, and 7 nm silicon. Earlier in his Intel career, he spent five years as group manager for thermal mechanical tools and analysis. In that role, Ravi oversaw a Thermal-Mechanical Lab chartered with delivering detailed thermal and mechanical characterization of Intel's packaging solutions for current and future processors. A prolific inventor and recognized expert in microelectronics packaging technologies, Ravi holds more than 40 patents, including the original patent for a silicon bridge that became the foundation for Intel's EMIB technology. His early insights also led to high-performance, cost-effective cooling solutions for high-end microprocessors and the proliferation of photo-mechanics techniques used for thermo-mechanical stress model validation. Ravi has written several book chapters and more than 30 papers on topics related to his area of expertise. Ravi joined Intel in 1992 after earning a bachelor's degree from Bombay University, a master's degree from the University of Houston, and a Ph.D. from Lehigh University, all in mechanical engineering. His contributions during his Intel career have earned him numerous industry honors, including the SRC's 2015 Mahboob Khan Outstanding Industry Liaison Award, the 2016 THERMI Award from SEMITHERM, the 2016 Allan Kraus Thermal Management Medal from the ASME and the 2018 InterPACK Achievement award. He has been nominated as an IEEE EPS Distinguished Lecturer. He is one of the founding editors for the Intel Assembly and Test Technology Journal (IATTJ) and currently VP of Publications & Managing Editor-in-Chief of the IEEE Transactions of the CPMT. Additionally, he has been long associated with ASME's InterPACK conference and was Conference Co-Chair of the 2017 Conference. Ravi is a Fellow of two leading societies, ASME, and IEEE. He was named an Intel Fellow in 2017.

Award Luncheon Speakers

INTERPACK ACHIEVEMENT AWARD LUNCHEON SPEAKER 12-8: DEVELOPING RELIABLE MICROSYSTEMS IN THE ERA OF HETEROGENEOUS INTEGRATION

MONDAY, OCTOBER 7 12:15PM–1:45PM ROOM: PACIFIC BALLROOM C, BALLROOM LEVEL, SECOND FLOOR

The prestigious InterPACK Achievement Award is presented to a single individual once every year at the ASME InterPACK Conference. Awardees have demonstrated excellence and international recognition in research and development related to electronic packaging, as well as service to the technical community at large.

Abhijit Dasgupta

Jeong H. Kim Professor Center for Advanced Life Cycle Engineering (CALCE) Mechanical Engineering Department University of Maryland, College Park

Abstract: Heterogeneous integration (HI) was conceived as a work-around for the semiconductor industry to get beyond the end of the economic and technological scalability of Moore's Law. However, the resulting developments in system-in-package (SiP) multi-scale architectures have also unleashed a powerful collateral multi-physics revolution in the microsystems industry. System developers see HI as the next-generation platform for integrating many diverse functionalities, such as logic, memory, power, photonics, MEMS, energy storage, sensing, and actuation, all into a single package. HI offers the potential to catalyze this convergence of technology and demand and to create a powerful inflexion in multi-functional technologies that will enable the world of intelligent, autonomous systems and Internet of Things (IoT).

Successful development of complex and reliable HI systems requires transformative changes in the ecosystem, to enable truly concurrent integration of heterogeneous development functions, such as design, manufacture, testing, qualification, and life-cycle management. The newly compiled pan-industry Heterogeneous Integration Roadmap (HIR) identifies Reliability as one of the cornerstones of this new domain and cautions that methods and tools for assuring higher performance will have to dovetail concurrently with those for assuring reliability, manufacturability, testability, sustainability, availability, affordability, and resilience. Assurance of these attributes can no longer be sequential tasks if we have to bring such complex products to the marketplace in a timely manner. Methods and algorithms lack sufficient sophistication and will have to be based partly on the underlying fundamental multi-physics principles, and partly on machine-learning methods that exploit the massive availability of big-data.

This presentation will begin with a discussion of the current state of the art in multiscale, multiphysics approaches, and big-data approaches, for developing highly reliable microsystems. Technology gaps, for timely development of complex next-generation HI systems, will be identified and critical shortfalls in current approaches will be discussed. Finally, potential roadmaps for new break-through approaches will be presented.

Biography: Abhijit Dasgupta is Jeong H. Kim Professor of Mechanical Engineering at the University of Maryland (UMD), with research experience in the microscale and nanoscale mechanics and reliability physics of engineered materials used in conventional and additively manufactured 3D flexible electronic packaging and intelligent microsystems. He holds a Ph.D. in Theoretical and Applied Mechanics from the University of Illinois at Urbana-Champaign (UIUC) and has been a principal investigator at the Center for Advanced Life Cycle Engineering (CALCE) at UMD for the past 30 years, conducting research in reliability physics, design for reliability, accelerated stress testing, and real-time health management. He has published over 300 articles and conference papers, served on editorial boards of two international archival journals, presented over 40 workshops and short courses, helped form research and educational roadmaps for the electronics industry, and provided consulting services to numerous industry leaders. He has presented multiple keynote talks at international conferences, received six bestpaper awards and received eight major awards in recognition of his research and educational contributions. He is an ASME Fellow, past Chair of the ASME Electronic and Photonic Packaging Division (EPPD), current member of the ASME Design, Manufacturing and Materials Segment Leadership Team (DMM-SLT) and Reliability Topic Lead in the multi-society Heterogeneous Integration Roadmap (HIR) Team.

ALLAN KRAUS THERMAL MANAGEMENT MEDAL LUNCHEON SPEAKER

12-7: WHAT ARE PULSATING HEAT PIPES (PHPs) AND ARE PHPs READY FOR COOLING OF ELECTRONICS?

TUESDAY, OCTOBER 8 12:15PM–1:45PM ROOM: PACIFIC BALLROOM C, BALLROOM LEVEL, SECOND FLOOR

The Allan Kraus Thermal Management Medal recognizes an individual who has demonstrated outstanding achievements in thermal management of electronic systems and his or her commitment to the field of thermal science and engineering. The nominee for the award should have: Significant contributions in thermal management of electronic systems demonstrated by successful product development, seminal papers, filed

patents and/or leadership of research and development programs. The Thermal Management Award was established in 1994 by the Electronic and Photonic Packaging Division and operated as a divisional award until 2009, when it was elevated to a Society Award and renamed the Allan Kraus Thermal Management Medal.

John R. Thome

Professor-Emeritus, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland Technical Director, JJ Cooling Innovation, Lausanne, Switzerland

Award Luncheon Speakers

Abstract: Pulsating heat pipes were first described in the literature about 30 years ago and in recent years have seen a huge interest by the research community. A pulsating heat pipe (PHP) is a long single channel formed into a serpentine path with its evaporator at its hot end (to cool electronics) and its condenser end cooled by air or water. In effect, the two-phase flow created by nucleation, bubble growth and the back-andforth movement of the liquid slugs and elongated bubbles creates a "pulsating" motion. As such, a PHP operates without any wick, and fluid movement is only due to the pulsations self-created by the flow itself, which stems from the bubble nucleation process and bidirectional growth of confined bubbles in the small channels. Studies show that significant flow rates can be obtained, giving rise to good thermal performance up to potentially moderately high heat fluxes. Working fluids tested in laboratories are usually water, ethanol, dielectric fluids and refrigerants. A PHP can work vertically, inclined, horizontally and in some cases even against gravity. The physical phenomena are quite complex because of the unsteady reversing flow. In the talk today, I will describe some PHP configurations, their experimental thermal performance studies and some flow visualizations of the pulsating flow, then discuss the leading heat transfer mechanisms, and finally describe our 1-dimension PHP transient thermal/hydraulic simulation code (including simulation videos of the pulsating flow) to try to give a "flavor" of how PHPs actually work. The objective today is to stimulate discussion about the pros and cons of industrial application of PHPs.

Biography: John R. Thome is Professor-Emeritus of Heat and Mass Transfer at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, having set up and run the LTCM lab from 1998 to 2018 with more than a dozen of his PhDs and post-docs going on to professorships themselves. He is currently Technical Director of JJ Cooling Innovation in Lausanne, a two-phase electronics cooling consulting/software firm he co-founded in 2014, now with four employees. He obtained his Ph.D. at Oxford University in 1978. He is also an Honorary Professor at the University of Edinburgh and a Visiting Professor at Brunel University in London...keeping his "feet wet" in research while still supervising MS student theses at the EPFL. He has authored five books on two-phase flow/heat transfer and has over 245 journal papers on macroscale and microscale two-phase flow, developed numerous new flow visualization techniques, extensively studied boiling and condensation heat transfer in microchannels and macrochannels, created the first flow pattern-based models, micro-two-phase cooling systems for electronics cooling together with thermosyphon simulation codes, developed 3D-inverse heat transfer methods for reducing multi-microchannel evaporator data, developed a transient 1-d numerical simulation tool for simulating the thermal performance of pulsating heat pipes, published 3D numerical work on bubbly and slug flows in microchannels with inhouse, OpenFoam and modified commercial codes. He has completed numerous sponsored projects with IBM, ABB, Nokia Bell Labs, Carl Zeiss, CERN, and the European Space Agency. He received the 2017 Nusselt-Reynolds Prize, the IEEE Richard Chu ITHERM Award in 2019, the ASME Heat Transfer Division's Journal of Heat Transfer Best Paper Award in 1998, the United Kingdom's Institute of Refrigeration J.E. Hall Gold Medal in 2008, the 2010 ASME Heat Transfer Memorial Award, the ICEPT-HDP 2012 Best Paper Award on a 3D-IC prototype with interlayer cooling (13,000 TVS's and 260 microchannels inside), the ASME Journal of Electronics Packaging Best Paper Award in 2014, and the Outstanding Paper Award at InterPACK2017. He is editor-in-chief of the 16-volume Encyclopedia of Two-Phase Heat

Transfer and Flow (2016–2018). He founded the *Virtual International Research Institute of Two-Phase Flow and Heat Transfer* in 2014, now with 30+ participating universities to promote research collaboration, share experimental and numerical data, and organize Ph.D. summer school courses. According to Google Scholar, he has an h-index of 70 with over 23,300 citations.

12-9: INTERPACK AND NASSER GRAYELI POSTER, EPPD, K-16 AND JEP AWARDS

WEDNESDAY, OCTOBER 9 12:15PM–1:45PM ROOM: PACIFIC BALLROOM C, BALLROOM LEVEL, SECOND FLOOR

During the Luncheon ceremony on October 9, the InterPACK Awards including the Nasser Grayeli Poster Awards, the Electronic and Photonic Packaging and K-16 Awards, and the ASME Journal of Electronic Packaging Awards will be given out.

Tutorials

11-1: FAILURE-ORIENTED-ACCELERATED-TESTING (FOAT) VERSUS HIGHLY-ACCELERATED-LIFE-TESTING (HALT) IN MAKING A VIABLE ELECTRON DEVICE/PACKAGE INTO A RELIABLE PRODUCT

MONDAY, OCTOBER 7 8:00AM–9:30AM ROOM: EL CAPITAN A, CONCOURSE LEVEL, FOURTH FLOOR

Ephraim Suhir Portland State University, Portland, OR

Abstract: The almost 40 years old HALT is currently widely employed, in different modifications, with an intent to determine an electronic product's reliability weaknesses, assess the reliability limits, ruggedize the product by applying elevated stresses (not necessarily mechanical and not necessarily limited to the anticipated field stresses) that could cause field failures, and provide large (although, actually, unknown) safety margins over expected in-use conditions. HALT is as a "discovery" test that tries to "kill many unknown birds with one big stone." HALT has demonstrated over the years its ability to improve product robustness through a "test-fail-fix" process, in which the applied stresses ("stimuli") are somewhat above the specified operating limits. By doing that, HALT is able to precipitate and identify failures of different origins, ruggedize the product and to assess the reliability limits. Its end point is defined by the predetermined number or percent of failures and its follow up activity is failure (root cause) analysis. An ideal HALT is when no failures occur in a long time.

FOAT, on the other hand, is aimed at understanding the physics of failure, confirm the use of a particular predictive model and assess the probability of failure. Its end point is also defined by the predetermined number or percent (typically 50%) of failures. The follow-up activity is failure analysis and probabilistic analyses of the test data. An ideal FOAT is the one that is able to generate numerous failures in a short time. A highly focused and highly cost-effective FOAT is the "heart" of the probabilistic-design-for-reliability (PDfR) concept. FOAT should be geared to an established predictive model. The recently suggested multi-parametric Boltzmann-Arrhenius-Zhurkov (BAZ) model can be employed as such a model.

The FOAT/PDfR/BAZ approach could be viewed as a "quantified and reliability physics oriented" HALT. FOAT should be implemented, whenever feasible and appropriate, in addition to HALT. In some cases, FOAT could be conducted even instead of HALT, especially for new materials and products, whose operational reliability is unclear and for which no experience is accumulated and no best practices exist.

Biography: Ephraim Suhir is on the faculty of the Portland State University, Portland, OR, Technical University, Vienna, Austria and James Cook University, Queensland, Australia. He is also CEO of a Small Business Innovative Research (SBIR) ERS Co. in Los Altos, CA, is Foreign Full Member (Academician) of the National Academy of Engineering, Ukraine (he was born in that country); Life Fellow of the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), the Society of Optical Engineers (SPIE), and the International Microelectronics and Packaging Society (IMAPS); Fellow of the American Physical Society (APS), the Institute of Physics (IoP), UK, and

the Society of Plastics Engineers (SPE); and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA). Ephraim has authored 400+ publications (patents, technical papers, book chapters, books), presented numerous keynote and invited talks worldwide, and received many professional awards, including 1996 Bell Laboratories Distinguished Member of Technical Staff (DMTS) Award (for developing effective methods for predicting the reliability of complex structures used in AT&T and Lucent Technologies products), and 2004 ASME Worcester Read Warner Medal (for outstanding contributions to the permanent literature of engineering and laying the foundation of a new discipline "Structural Analysis of Electronic Systems"). Ephraim is the third "Russian American," after S. Timoshenko and I. Sikorsky, who received this prestigious award. This year he received the 2019 IEEE Electronic Packaging Society (EPS) Field award for seminal contributions to mechanical reliability engineering and modeling of electronic and photonic packages and systems.

11-2: THERMO-ELECTROCHEMICAL COUPLING AND INTERACTIONS IN LI-ION CELLS

TUESDAY, OCTOBER 8 8:00AM–9:30AM ROOM: EL CAPITAN A, CONCOURSE LEVEL FOURTH FLOOR

Ankur Jain University of Texas, Arlington, TX

Ankit Verma Purdue University, West Lafayette, IN

Abstract: Li-ion cells are used extensively for energy storage in a broad variety of engineering applications. A fundamental understanding of coupled thermal and electrochemical transport in Li-ion cells is very important for optimizing performance and ensuring safety. This tutorial will present the fundamentals of heat transfer and electrochemical mechanisms in a Li-ion cell. Heat generation and dissipation within the cell will be discussed. A variety of thermal management approaches investigated in the recent past will be presented. Safety of Li-ion cells in the context of thermal runaway will be presented. Fundamentals of electrochemical characterization of a Li-ion cell will be presented. The intricate coupling between thermal and electrochemical transport phenomena will be highlighted. Material presented in this tutorial may help attendees gain a fundamental understanding of Li-ion cells and various aspects related to performance and safety.

Biography: Ankur Jain is an Associate Professor in the Mechanical and Aerospace Engineering Department at the University of Texas, Arlington,

Tutorials

TX. He directs the Microscale Thermophysics Laboratory (www.uta.edu/ mtl), which carries out experimental and theoretical research on heat transfer and energy conversion in Li-ion batteries, microscale thermal transport, bioheat transfer, microelectromechanical systems, etc. He received the Lockheed Martin Excellence in Teaching Award (2018), UTA College of Engineering Outstanding Early Career Award (2017), NSF CAREER Award (2016), and the ASME EPP Division Young Engineer of the Year Award (2013). Dr. Jain was among a small group of U.S.-based researchers invited by the U.S. National Academy of Sciences to participate in the 5th Arab-American Frontiers of Science, Engineering, and Medicine Symposium in 2017. He received his Ph.D. (2007) and M.S. (2003) in Mechanical Engineering from Stanford University, where he received the Stanford Graduate Fellowship (SGF) and his B.Tech. (2001) in Mechanical Engineering from the Indian Institute of Technology (IIT), Delhi with the highest GPA among the class of Mechanical Engineering. He has published 53 high quality journal articles on topics related to energy conversion and heat transfer in batteries, microelectronics and biological systems. His research has been supported by National Science Foundation, Department of Energy, Office of Naval Research, Indo-US Science & Technology Forum, etc.

Biography: Ankit Verma is a doctoral candidate at Purdue University under the tutelage of Prof. Partha Mukherjee. He is working on multimodal degradation mechanisms and interactions in lithium intercalation and metal batteries. He has authored more than ten publications in battery energy storage.

11-3: ARL PARAPOWER TUTORIAL

WEDNESDAY, OCTOBER 9 8:00AM-9:30AM ROOM: EL CAPITAN A, CONCOURSE LEVEL, FOURTH FLOOR

Lauren Boteler U.S. Army Research Laboratory (ARL) Washington, DC

Abstract: This tutorial will demonstrate the open-sourced ARL ParaPower tool, which has been designed to aid in design space analysis. After defining the problem, the typical process includes back-of-the-envelope calculations, which are limited in their accuracy, ability to understand large parametric spaces, and ability to address multiple domains. Therefore, the ARL ParaPower tool has been developed to address this critical capability gap. ARL ParaPower is capable of quickly, holistically, and parametrically exploring a large design space to aid in assessing the impact of layout, dimension, and material choices. This tutorial will introduce the governing equations of the tool, demonstrate how to use the MATLAB based GUI, and demonstrate its use in a few applications. It has been shown to be useful for the following applications: (1) quick "What if?" calculations, (2) parametric sweeps, (3) teaching tool, (4) proposal review, and (5) integration with other tools for system-of-systems analysis. ARL ParaPower can do steady-state, transient, and solid-liquid phase change analysis of a wide variety of rectilinear geometries

Biography: Lauren Boteler leads the thermal and packaging research programs as part of the Advanced Power Electronics group at the U.S. Army Research Laboratory (ARL). She received her Ph.D. degree in mechanical engineering from the University of Maryland. Her work at ARL, beginning in 2005, has included electronics packaging and thermal management solutions for a wide range of Army applications. Her research programs focus on design tool development and package integrated thermal solutions including 3D chip stacking, power electronics, laser diodes, double side cooling, and phase change materials. More recently, she has initiated a research program in Advanced Power Electronics Packaging and Thermal Management that defines the four main challenges of power electronics packaging: co-engineering/ co-design, transient thermal mitigation, additive manufacturing, and high-voltage packaging. She is an adjunct professor at Johns Hopkins University and was awarded the 2018 ASME EPPD Woman Engineer of the Year award for her contributions to the electronics packaging community.

Tutorials

11-4: A REVIEW OF ADVANCED POWER MODULE PACKAGING AND THERMAL MANAGEMENT IN WBG ERA

WEDNESDAY, OCTOBER 9 1:45PM–3:15PM ROOM: EL CAPITAN A, CONCOURSE LEVEL, FOURTH FLOOR

Fang Luo University of Arkansas, Fayetteville, AR

Abstract: Wide bandwidth (WBG) devices with superior performance over traditional silicon power devices have become the prime candidates for future high-performance power electronics energy conversion. Traditional device packaging starts turning into a limiting factor in fully realizing the benefits offered by WBG power devices, and thus, improved and advanced packaging structures are required to bridge the gap between WBG devices and their applications. This talk provides a review of the state-of-art advanced module packaging technologies for SiC and GaN devices with the focuses on module layout, packaging material system, and module integration trend, and potential thermal management solutions in these WBG power electronics systems.

Biography: Fang Luo is Assistant Professor in the Electrical Engineering Department at the University of Arkansas. His research interests include high power-density converter design, high-density EMI filter design and integration, and power module packaging/integration for wide band-gap devices. His current projects include high-voltage SiC packaging, turbo-electric propulsion for aircraft systems, cryogenic power converters, and active EMI filters for power electronics systems.

Prior to joining Arkansas, Dr. Luo was a research assistant professor at The Ohio State University. Dr. Luo got his Bachelor's and Ph.D. degrees from Huazhong University of Science and Technology in 2003 and 2010, respectively, and jointly with Virginia Tech. He was a visiting Ph.D. student from 2007 to 2010 and then Postdoctoral researcher from 2010 to 2014, both at Virginia Tech.

Dr. Luo is a senior member of IEEE and member of AIAA and ASME. He holds two U.S. patents and has authored/co-authored more than 20 journal papers and more than 50 peer-reviewed conference papers. He is Associate Editor of *IEEE Transactions on Power Electronics* and *International Transactions on Electrical Energy Systems*. He is a recipient of the NSF CAREER Award.

10-2: PROFESSIONAL DEVELOPMENT WORKSHOP: ENTREPRENEURSHIP

MONDAY, OCTOBER 7 5:00PM-6:30PM ROOM: EL CAPITAN A, CONCOURSE LEVEL, FOURTH FLOOR

Jimil Shah 3M Company

InterPACK 2019 is organizing a panel for science and engineering students and recent graduates who are interested in developing entrepreneurial skills. Participants will be introduced to the process of innovation, generation and protection of intellectual property, technology transfer and the commercialization of ideas and inventions. They will benefit also from the international perspectives and insights of leading experts in the field. The panelists will be from both academia and industry who will help and encourage students to start a successful technologybased venture. This panel will also address how academia and industry can go hand in hand to support post graduate students to be a "technopreneur."

Biography: Jimil M. Shah is an Application Development Engineer for the Server Immersion Cooling of Data Centers in the EMSD Fluids Lab at 3M Company. Jimil received his Ph.D. in Mechanical Engineering from UT at Arlington in August of 2018 under the guidance of Professor Agonafer. He then worked as a Post-Doctoral Research Associate again in Professor Agonafer's group prior to joining 3M. His research is in the area of data center cooling with a focus on immersion cooling as well as mitigation of contamination related to airside economization. He also has interest in the general area of electronic packaging and the internet of things.

Dr. Shah is a professional member of ASME and ASHRAE. In InterPACK 2018, he received the ASME Electronics and Photonic Packaging Division (EPPD) Student Engineer of The Year Award. He is the recipient of the 2018 UTA College of Engineering Summer Dean's Dissertation Fellowship and spring 2018 UTA I-Engage Mentoring Program Scholarship. He has also received the Best Student Abstract Award at IMAPS 2015, Los Gatos, CA. Dr. Shah has published 18 journal and conference papers with five additional journal papers under review.

10-3: PROFESSIONAL DEVELOPMENT WORKSHOP: INTELLECTUAL PROPERTY AND PATENTING FOR ENGINEERS

MONDAY, OCTOBER 7 5:00PM-6:30PM ROOM: EL CAPITAN B, CONCOURSE LEVEL, FOURTH FLOOR

David Risley Thomas Horstemeyer Intellectual Property Attorneys

Development and protection of intellectual property (IP) is a critical aspect of the engineering profession. Even in academia, IP plays a key role in addition to fundamental research. In this session, Dave Risley, an attorney with Thomas Horstemeyer, will provide an introduction to IP and patenting for engineers. He will discuss what intellectual property means, when it makes sense to file a patent, as well as well as the logistical details of the patenting process. He will specifically focus on the synergy between patenting and fundamental research.

Biography: David Risley is an attorney in the Los Angeles offices of Thomas Horstemeyer. He received his J.D. from Columbus School of Law, The Catholic University of America in 1995. He began his intellectual property career at the U.S. Patent and Trademark Office and has been with Thomas Horstemeyer since 1997.

Workshops

10-7: HETEROGENEOUS INTEGRATION ROADMAP (HIR) WORKSHOP

MONDAY, OCTOBER 7 3:30PM-6:30PM ROOM: MALIBU, CONCOURSE LEVEL, FOURTH FLOOR

Bill Bottoms Co-chair of HIR (3 MTs)

Ravi Mahajan Intel Corporation

Bahgat Sammakia Binghamton University

Amr Helmy University of Toronto

Heterogeneous Integration (HI) of disparate computing and communications functions is a key performance enabler in microelectronic systems. HI is crucially enabled by advanced packaging since packages offer compact, power efficient platforms for HI. This talk will describe the role of advanced 2D and 3D packaging in enabling HI and will focus on the evolution of packaging to provide increased interconnect density. This workshop shares an update of HIR and progresses of HIR in recent years to a wide audience.

Biography: Bill Bottoms received a B.S. degree in Physics from Huntington College in Montgomery, Alabama in 1965, and a Ph.D. in Solid State from Tulane University in New Orleans in 1969, and is currently Chairman of Third Millennium Test Solutions. He has worked as a faculty member in the department of electrical engineering at Princeton University, manager of Research and Development at Varian Associates, founding President of the Semiconductor Equipment Group of Varian Associates, and general Partner of Patricof & Co. Ventures. Dr. Bottoms has served as Chairman and CEO of many companies, both public and private.

Biography: Ravi Mahajan is an Intel Fellow and the Co-director of Pathfinding and Assembly and Packaging technologies for future silicon nodes. Ravi also represents Intel in academia through research advisory boards, conference leadership, and participation in various student initiatives. Ravi has led efforts to define directions for package architecture, technologies, and assembly processes at Intel since 2000, spanning 90 nm, 65 nm, 45 nm, 32 nm, 22 nm, and 7 nm silicon. Earlier in

his Intel career, he spent five years as group manager for thermal mechanical tools and analysis. In that role, Ravi oversaw a Thermal-Mechanical Lab chartered with delivering detailed thermal and mechanical characterization of Intel's packaging solutions for current and future processors. A prolific inventor and recognized expert in microelectronics packaging technologies, Ravi holds more than 40 patents, including the original patent for a silicon bridge that became the foundation for Intel's EMIB technology. His early insights also led to high-performance, cost-effective cooling solutions for high-end microprocessors and the proliferation of photo-mechanics techniques used for thermo-mechanical stress model validation. Ravi has written several book chapters and more than 30 papers on topics related to his area of expertise. Ravi joined Intel in 1992 after earning a bachelor's degree from Bombay University, a master's degree from the University of Houston, and a Ph.D. from Lehigh University, all in mechanical engineering. His contributions during his Intel career have earned him numerous industry honors, including the SRC's 2015 Mahboob Khan Outstanding Industry Liaison Award, the 2016 THERMI Award from SEMITHERM, the 2016 Allan Kraus Thermal Management Medal from the ASME, and the 2018 InterPACK Achievement award. He has been nominated as an IEEE EPS Distinguished Lecturer. He is one of the founding editors for the Intel Assembly and Test Technology Journal (IATTJ) and currently VP of Publications & Managing Editor-in-Chief of the IEEE Transactions of the CPMT. Additionally, he has been long associated with ASME's InterPACK conference and was Conference Co-Chair of the 2017 Conference. Ravi is a Fellow of two leading societies, ASME and IEEE. He was named an Intel Fellow in 2017.

Biography: Bahgat Sammakia, a SUNY distinguished professor of mechanical engineering, is the Vice President for Research at Binghamton University. He is the founding director of the Small Scale Systems Integration and Packaging Center, a New York State Center of Excellence, and is the director of the Energy Efficient Electronic Systems Center, an NSF IUCRC founded in 2011 with a focus on reducing the energy consumed by data centers around the world. Sammakia served as the interim president of SUNY Polytechnic Institute from December 2016 to June 2018. He is a fellow of the American Society of Mechanical Engineers, the National Academy of inventors, and the IEEE. Sammakia holds 21 U.S. patents and has published more than 250 peer-reviewed technical papers. Sammakia, who received the SUNY Chancellor's Award for Excellence in Scholarship and Creative Activities in 2010, was honored with the 2010 ITherm Achievement Award for his contributions to the field of semiconductor thermal management. Sammakia earned his bachelor's degree from the University of Alexandria in Egypt and his master's and doctoral degrees from the University at Buffalo. A former IBM senior technical staff member, Sammakia joined Binghamton's faculty in 1998.

Biography: Amr Helmy is a Professor in the department of electrical and computer engineering at the University of Toronto. Prior to his academic career, he held a position at Agilent Technologies, R&D division, in the UK between 2000 and 2004. At Agilent, his responsibilities included developing InP-based photonic semiconductor integrated circuits and high-powered submarine-class 980 nm pump lasers. He received his Ph.D. and M.Sc. from the University of Glasgow with a focus on photonic devices and fabrication technologies, in 1999 and 1995, respectively. He received his B.Sc. from Cairo University in 1993, in electronics and telecommunications engineering science. His research interests include photonic device physics and characterization techniques, with emphasis on nonlinear optics in III-V semiconductors; applied optical spectroscopy in III-V optoelectronic devices and materials; III-V fabrication and

monolithic integration techniques. Amr has served the community in numerous roles. He has served as Vice President Membership for the IEEE Photonics Society (2008–2010). He is currently the CLEO Program Chair (2018–2020), where he previously served as the chair for the Semiconductor Lasers committee. He also serves as the Technical Program Chair for IPC 2016–2018, where he previously served as the chair for the committees on Semiconductor Lasers, Optical Materials, and Metamaterials as well as the committees on Photonic Integration and Packaging. He has served as an associate editor for the *Photonics Journal* and is currently an associate editor for *Optics Express*.

10-1: INTRODUCTION TO ROBOTICS, SELF-DRIVING CARS, AND AI WORKSHOP

TUESDAY, OCTOBER 8 5:00PM-6:30PM ROOM: AVILA A, CONCOURSE LEVEL, FOURTH FLOOR

Anna Prakash Co-chair of HIR (3 MTs)

Oliver Chen Co-chair of HIR (3 MTs)

Shih-to Fei Co-chair of HIR (3 MTs)

Priyanka Dobriyal Intel Corporation, Chandler, AZ

Elaina Ashton Arizona College Prep Chandler, AZ

experience in programing robots and understanding AI and help you set up after-school STEM-Robotics clubs for your local community children. The hands-on lessons are taught by award winning teams from Education Empowers Inc. (501 (c) non-profit) as well as Intel Industry professionals (Intel).

Biography: Anna Prakash received her Ph.D from Arizona State University in Chemistry under the guidance of Prof. Dr. Karl Booksh. She began her engineering career at Three-Five Systems Inc., an electronic display manufacturer, working on Liquid Crystal Displays, HDTVs, and handheld communication devices. She joined Intel Corporation in 2004 as a Packaging Research & Development Engineer and is currently a Senior Materials Engineer. In addition to being a key contributor for over 20+ technical publications, Anna is also a prolific inventor with over 20+ patents (granted/filed) covering sensors, displays, optoelectronics, and semiconductor packaging materials and process. Outside of work, Anna is passionate about promoting STEM, robotics, and sustainability education for local children. Along with her daughter Elaina, she co-founded Education Empowers Inc. (www.educationempowers.org), a non-profit promoting STEM education for children. She mentors junior engineers, girls, underserved and underrepresented children in STEM through her non-profit organization. Anna is the recipient of the Society of Women Engineers "Prism Award" and the IEEE STEM outreach award for her contribution to technology and the community.

Biography: Elaina Ashton is a Senior at Arizona College Prep-Erie High School in Chandler, Arizona. She is the President of her High School VEX robotics club and also the President of the SiSePeude FRC all-girls robotics club. She spends her weekends promoting robotics for girls and underserved children living in the Phoenix, Arizona community. For her dedication to STEM outreach, she received the Cox connect2STEM award and the Chandler Mayor's Youth of the Year award.

Biography: Oliver Chen is a Technical Marketing Engineer supporting AI in the Sales and Marketing Group at Intel Corporation. He is passionate about the intersection of leading-edge technology and new business opportunities. He thrives in expanding the STEAM pipeline by making AI and Maker content easier to consume.

Biography: Priyanka Dobriyal is a Product Engineer in Datacenter group at Intel Corporation. She has a Ph.D. in Chemistry from University of Massachusetts, Amherst and M.S. from Indian Institute of Technology, Roorkee, India. She is passionate about leading STEM outreach related activities.

Biography: Alex (Shih-to) Fei is a Project Manager and Engineer perfecting cutting-edge 14 nm and 10 nm technology at Intel LTD. He also functions as Community Lead and Project Manager at Intel Makers Oregon, organizing events in collaboration with IOTG and Outreach Programs. Alex joined Intel after receiving Ph.D. degree at Penn State in 2010.

Have fun as you learn about robotics and program self-driving cars with this introductory course. From understanding sensors to programming EV3 robots for missions, this course will equip you with hands-on

Workshops

10-4: PROFESSIONAL DEVELOPMENT WORKSHOP: TECHNICAL COMMUNICATION

TUESDAY, OCTOBER 8 5:00PM-6:30PM ROOM: EL CAPITAN B, CONCOURSE LEVEL, FOURTH FLOOR

Ankur Jain University of Texas at Arlington

Milena Vujosevic TDK-Sensor Systems Business Company

Effective technical communication through oral and written means is extremely important for engineers and researchers. This workshop will focus on the oral communication. Two presenters – one from academia and one from industry – will discuss key do's and don'ts of oral technical communication. They will share their experiences and offer advice about designing effective oral communication tools.

Biography: Ankur Jain is an Associate Professor in the Mechanical and Aerospace Engineering Department at the University of Texas, Arlington. His research interests include heat transfer and energy conversion in Li-ion batteries, additive manufacturing, and microscale thermal transport. He received the Lockheed Martin Excellence in Teaching Award (2018), UTA College of Engineering Outstanding Early Career Award (2017), NSF CAREER Award (2016), and the ASME EPP Division Young Engineer of the Year Award (2013).

Biography: Milena Vujosevic is a Senior Director of Advanced Packaging in TDK where she is responsible for MEMS sensors package technology development and new product introduction. She has been in semiconductor industry for more than 20 years and prior to TDK she worked at Intel and Motorola. She has a Ph.D. in Mechanical Engineering. Milena is the current Chair of ASME Electronic and Photonic Packaging Division.

10-5: PROFESSIONAL DEVELOPMENT WORKSHOP: MENTORING

TUESDAY, OCTOBER 8 5:00PM-6:30PM ROOM: EL CAPITAN A, CONCOURSE LEVEL, FOURTH FLOOR

Ron Warzoha United States Naval Academy

This workshop, sponsored by the ASME Heat Transfer Division K16 Committee on Heat Transfer in Electronic Equipment is intended to connect junior and senior members of industry, academia, and government laboratories in a formal mentorship program through the ASME K-16 committee. The workshop itself will detail best practices for mentors and establish accountability standards for mentees that are designed to be at critical inflection points in one's career. The program lifecycle is planned such that early-career members of industry, academia and government laboratories serve as mentors to Ph.D. students in their last two years of study, master's students in their final year of study or undergraduates in their final year of study, while senior members in these fields will serve as mentors to early-career scientists. Emphasis will be placed on diversity in mentorship pairings and pairs will be identified in advance of the program.

Biography: Ron Warzoha is an Assistant Professor in the Mechanical Engineering Department at the United States Naval Academy. He received his Ph.D. (2014) from Villanova University. His research interests include thermal energy storage, micro-/nanoscale energy conversion and transport, and thermal management of electronics.

13-5: TRACK 2 PANEL: SYSTEM/DATA CENTER LIQUID COOLING MONDAY, OCTOBER 7 1:45PM–3:15PM ROOM: MALIBU, CONCOURSE LEVEL, FOURTH FLOOR

Panel Focus: The development of liquid cooling of computer systems and data centers has provided a path to improve both cooling energy efficiency and thermal performance compared to conventional air cooling technology. Liquid cooling technology has been deployed in commercial systems including water cooled supercomputers and data centers. The development of liquid cooling has included a range of scale from macroscopic rack level heat exchangers to microscale fluidic structures in chip embedded cooling. The panel will discuss the different coolants deployed including water to dielectric fluids and the many technology approaches used to implement liquid cooling for thermal management of computer systems.

Moderator: Saket Karajgikar, Facebook Panelists: Veerendra Mulay, Facebook, Timothy Chainer, IBM, Jin Yang, Intel, Jimil Shah, 3M, Chris Malone, Google

13-2: TRACK 7 PANEL: EXTREME FAST CHARGING OF LITHIUM-ION BATTERIES TUESDAY, OCTOBER 8 10:45AM–12:15PM ROOM: SANTA MONICA, CONCOURSE LEVEL, FOURTH FLOOR

Panel Focus: Extreme fast charging capability of lithium-ion batteries is desired for various applications ranging from smart electronics to electric vehicles. However, major challenges still exist, such as lithium plating and rapid heat generation within batteries, power and thermal management design of vehicles/devices and charging infrastructure. Both lithium plating and heat generation could significantly reduce battery life and increase safety failure risks. This panel will explore the challenges and opportunities in extreme fast charging of lithium-ion batteries from the perspectives of lithium plating, thermal management, materials, and vehicles/devices.

Moderators: Guangsheng Zhang, University of Alabama Huntsville, Partha Mukherjee, Purdue University

Panelists: Corey T. Love, Naval Research Laboratory, Tanvir R. Tanim, Idaho National Laboratory, Xiao-Guang Yang, Pennsylvania State University, Aron Saxon, National Renewable Energy Laboratory

13-3: PANEL: WOMEN IN ENGINEERING PANEL TUESDAY, OCTOBER 8 1:45PM-3:15PM ROOM: MALIBU, CONCOURSE LEVEL, FOURTH FLOOR

Panel Focus: Discussion on women's role and contribution in engineering disciplines. Panelists will share their own experiences in engineering exercise, including teaching, research, and progression exercise.

Moderator: Leila Choobineh, SUNY Polytechnic Institute Panelists: Borca Tasciuc, Diana Andra, Rensselaer Polytechnic Institute, Tannaz Harirchian, Intel, Yoonjin Won, University of California, Irvine, Amy Spencer Fleischer, California Polytechnic State University, Amanie Abdelmessih, California Baptist University, Ghazal Mohsenian, Binghamton University, Rahima Mohammed, Intel Corporation, Valerie Marty, Connected Micro Inc.

13-7: TRACK 4 PANEL: APPLICATION CHALLENGES IN FLEXIBLE AND WEARABLE ELECTRONICS

TUESDAY, OCTOBER 8 1:45PM–3:15PM ROOM: SANTA MONICA, CONCOURSE LEVEL, FOURTH FLOOR

Panel Focus: Applications across multiple markets are driving development of flexible and wearable electronics use cases. The panelists will share their insights regarding these opportunities as well as the corresponding technical challenges given their industry and government research experience. There will be plenty of time for an interactive conversation with the audience after the panel introductions.

Moderator: Valerie Marty, Connected Micro LLC Panelists: Stephanie Harvey, SEMI, James Chew, Cadence, Benjamin Leever, NextFlex, Janos Veres, PARC Research

13-1: TRACK 1 PANEL: PROGRESSING OR NOT PROGRESSING DURING TWO YEARS OF HIR TUESDAY, OCTOBER 8

3:30PM-5:00PM ROOM: MALIBU, CONCOURSE LEVEL, FOURTH FLOOR

Panel Focus: Heterogeneous Integration (HI) of disparate computing and communications functions is a key performance enabler in micro-electronic systems. HI is crucially enabled by advanced packaging since packages offer compact, power efficient platforms for HI. This talk will describe the role of advanced 2D and 3D packaging in enabling HI and will focus on the evolution of packaging to provide increased interconnect density. Heterogeneous integration roadmap (HIR) panel to review progresses made during last years and future work in later years.

Moderators: Gamal Refai-Ahmad, Xilinx, Leila Choobineh, SUNY Polytechnic Institute

Panelists: Bill Bottoms, 3MTS, Ravi Mahajan, Intel, Bahgat Sammakia, Binghamton University, Amr Helmy, University of Toronto

13-8: TRACK 8 PANEL: RELIABILITY IN THE AGE OF AI: OPPORTUNITIES AND CHALLENGES TUESDAY, OCTOBER 8

3:30PM-5:00PM ROOM: SANTA MONICA, CONCOURSE LEVEL, FOURTH FLOOR

Panel Focus: Increased functionality of everyday use machines – ranging from washers to highly automated vehicles – has been made possible through employment of more sensing, more actuation, and more processing capabilities. At the same time, the increased complexity introduces more ways in which a machine can breakdown. The incredible advancement in our sensing capabilities, coupled with connectivity, offers unprecedented insights into a wide variety of processes and operations. The operating conditions of machines can be mapped with greater

Panel Sessions

accuracy while carrying out performance monitoring and predicting failures. The envelope of reliability can essentially be stretched and redefined. While the opportunities abound, tremendous challenges exist towards properly housing the data, cataloging it, cleaning it, labeling it, and creating the right models to extract actionable insights through use of Artificial Intelligence and Machine Learning. This panel will explore the challenges and opportunities posed by our ability to collect data from machines and components during their manufacturing and operation, and identify roadblocks that must be overcome to extract value from it to help machines last longer, and fail gracefully towards the end of life.

Moderator: Azeem Sarwar, General Motors

Panelist: Mohak Shah, LG Electronics, Ercan Dede, Toyota, Przemysław Gromala, Bosch, Anna Prakash, Intel, Pradeep Lall, Auburn University

13-6: TRACK 6 PANEL: TRANSIENT THERMAL MANAGEMENT: CONSIDERING THERMAL CAPACITANCE AND NOT JUST THERMAL RESISTANCE

WEDNESDAY, OCTOBER 9 10:45AM–12:15PM ROOM: SANTA MONICA, CONCOURSE LEVEL, FOURTH FLOOR

Panel Focus: There are many applications throughout the military and commercial industries whose thermal profiles are dominated by intermittent and/or periodic pulsed thermal loads. Typical thermal solutions are steady-state heat sinks that provide enough continuous cooling capacity to address the peak thermal load as if it were a steady-state condition. Such a conservative approach guarantees satisfying the thermal challenge, but it can result in significant cooling overdesign. This panel will investigate improving system size and weight without sacrificing platform performance by considering transient thermal mitigation methods.

Moderator: Sukwon Choi, Pennsylvania State University Panelists: Lauren Boteler, US Army Research Laboratory, Peter DeBock, General Electric, Patrick Shamberger, Texas A&M University, Nicholas Niedbalski, US Air Force Research Laboratory, David Huitink, University of Arkansas

14-1 - K-16 COMMITTEE MEETING (OPEN) MONDAY, OCTOBER 7 6:30PM–7:30PM MALIBU, CONCOURSE LEVEL, FOURTH FLOOR

14-2 - ELECTRONIC AND PHOTONIC PACKAGING DIVISION (EPPD) EXECUTIVE COMMITTEE MEETING (BY INVITATION ONLY) MONDAY, OCTOBER 7 7:30PM-8:30PM EXECUTIVE BOARDROOM, CONCOURSE LEVEL, FOURTH FLOOR

14-3 - INTERPACK 2020 MEETING (OPEN) TUESDAY, OCTOBER 8 6:30PM–7:30PM MALIBU, CONCOURSE LEVEL, FOURTH FLOOR

14-4 - INTERPACK ADVISORY MEETING (BY INVITATION ONLY) TUESDAY, OCTOBER 8 7:30PM–8:00PM SANTA MONICA, CONCOURSE LEVEL, FOURTH FLOOR

14-5 - JOURNAL OF ELECTRONIC PACKAGING (JEP) MEETING (OPEN) TUESDAY, OCTOBER 8 8:00PM-8:30PM MALIBU, CONCOURSE LEVEL, FOURTH FLOOR

Poster Session

POSTER SESSIONS/STUDENT COMPETITION

MONDAY, OCTOBER 7 6:30 PM –8:30 PM ROOM: LAGUNA, CONCOURSE LEVEL, FOURTH FLOOR

On behalf of the 2019 InterPACK organizing committee, we are pleased to announce that a student poster competition will be held during the 2019 InterPACK (October 7–9, Hilton Anaheim, Anaheim, CA).

The Industry, Academia and National Lab Poster Session during InterPACK is open to all students. It will provide a great opportunity for student attendees to showcase their research and collect feedback from professionals and experts in the area of electronics and photonics packaging in an interactive way. This is also a networking opportunity for the students who have an interest in distributing their resumes and connecting with professionals from industry, academia, and national labs. Students are encouraged to submit their resume to ipakres@asme.org.These resumes will be provided by ASME to all institutions that are interested in potentially hiring these students.

Each student poster in this competition will be judged by experts in the area of electronics and photonics packaging on the following aspects: originality, technical quality, completeness, clarity, and communications and interactions during the poster session. The top three student poster presenters will be awarded the **Nasser Grayeli Best Student Poster Awards** – first, second, and third place. The first, second, and third-place students will receive cash awards of \$500, \$300, and \$200, respectively, and will also have their registration fees reimbursed. The awards will be presented at the 2019 InterPACK Awards Luncheon. In addition, based on the review process, the lead student author for another top-17 posters will have their registration fees reimbursed after the conference.

Monday, October 7, 6:30PM-8:30PM

TRACK 9: INDUSTRY, ACADEMIA, AND NATIONAL LAB POSTERS

Track Organizer: **Kyle Gluesenkamp,** Oak Ridge National Laboratory, Knoxville, TN, United States Track Co-Organizer: **Yoonjin Won,** University of California, Irvine, Irvine, CA, United States

9-1: INDUSTRY, ACADEMIA, AND NATIONAL LAB POSTERS Concourse Level, Fourth Floor, Laguna

Session Organizer: Kyle Gluesenkamp, Oak Ridge National Laboratory, Knoxville, TN, United States Session Co-Organizer: Yoonjin Won, University of California, Irvine, Irvine, CA, United States

High-Speed Visible Laser Light Communication (VLLC) Enabled Using RGB Laser Module for Gbps Li-Fi Links

6739 Chao Shen, SaNoor Technologies, Thuwal, Saudi Arabia, Hala H. Al-Hashim, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, Jie Hu, SaNoor Technologies, Thuwal, Saudi Arabia, Boon S. Ooi, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

> Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design

6742 Mahsa Montazeri, John Harris, David Huitink, Adithya Venkatanarayanan, Simon Ang, University of Arkansas, Fayette-ville, AR, United States

Continuously Tunable Thermal Switch Based on Compressible Graphene Foams

6743 Luis Delgado, Purdue University, West Lafayette, IN, United States, Tingting Du, Shandong University, Purdue University, Jinan, China, Amy Marconnet, Xiulin Ruan, Purdue University, West Lafayette, IN, United States

Folding Reliability Assessment of Flexible Electronics in Wearable

Hyesoo Jang, Pradeep Lall, Yunli Zhang, Auburn University, Auburn, AL, United States

Room: Laguna, Concourse Level, Fourth Floor

6749 Samuel Kim Chao Yuan Samuel Graham Georgia Inst

Samuel Kim, Chao Yuan, Samuel Graham, Georgia Institute of Technology, Atlanta, GA, United States

NREL Energy Storage Thermal Management

6368 Aron Saxon, Matt Keyser, National Renewable Energy Laboratory, Golden, CO, United States

Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components

Jeho Kim, Georgia Institute of Technology, Atlanta, GA, United States, J. Michael Brown, Manufacturing Resources

6758 International, Alpharetta, GA, United States, Yogendra Joshi, Georgia Institute of Technology, Atlanta, GA, United States, Kevin O'Connor, Marcos Diaz, Manufacturing Resources International, Alpharetta, GA, United States, Zhuomin Zhang, Peiyan Yang, Georgia Institute of Technology, Atlanta, GA, United States

Analysis of the Relation Between Grain Size of Tin and Wettability in View Point of Strength of Material

6404 **Takuya Takeda,** Tokyo Denki University, Higashihirayama, Hino, Japan, **Hiroyuki Saito,** Tokyo Denki University, Asahicho, Japan

6744

Design of Nanostructured Copper Surfaces for Thin Film Evaporation

6467 Jessica Lee, Kimia Montazeri, Yoonjin Won, University of California, Irvine, Irvine, CA, United States, Michael Barako, Northrop Grumman Aerospace Systems, Irvine, CA, United States

> Thermal-Switch-Enabled Power Electronics Isothermalization

6761 *Tianyu Yang,* University of Illinois at Urbana-Champaign, Urbana, IL, United States, *Fei Diao, Alan Mantooth, Yue Zhao,* University of Arkansas, Fayetteville, AR, United States, *William P. King, Nenad Miljkovic,* University of Illinois at Urbana-Champaign, Urbana, IL, United States

6763

6529

Moving Boundary Model for Dynamic Control of Two Microchannel Evaporator Cooling System

Qi Jin, John T. Wen, Shankar Narayanan, Rensselaer Polytechnic Institute, Troy, NY, United States

Review of US Patents on Mechanical Failures in Foldable Smartphones

6350 Ali Nematollahisarvestani, University of Colorado Boulder, Boulder, CO, United States, **Ryan Lewis,** Kelvin Thermal Technologies, Lafayette, CO, United States, **Yung-Cheng Lee,** University of Colorado Boulder, Boulder, CO, United States

Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics

James Spencer Lundh, Pennsylvania State University, University Park, PA, United States, Bikramjit Chatterjee, Pennsylvania State University, State College, PA, United States, Albert
 G. Baca, Robert J. Kaplar, Andrew M. Armstrong, Andrew
 A. Allerman, Sandia National Laboratories, Albuquerque, NM, United States, Hyungtak Kim, Hongik University, Seoul, Korea (Republic), Sukwon Choi, Pennsylvania State University, University Park, PA, United States

Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature

Daniel Shoemaker, Pennsylvania State University, University Park, PA, United States, **Bikramjit Chatterjee**, Pennsylvania State University, State College, PA, United States, **James** Spencer Lundh, Pennsylvania State University, University

Park, PA, United States, Joon Seop Kwak, Sunchon National University, Sunchon, Jeonnam, Korea (Republic), Jaehee Cho, Chonbuk National University, Jeonju, Chonbuk, Korea (Republic), Sukwon Choi, Pennsylvania State University, University Park, PA, United States

Radiation effects on the self-heating of AlGaN/GaN HEMTs

Bikramjit Chatterjee, Yiwen Song, Pennsylvania State University, State College, PA, United States, Brian Foley, Azaree Lintereur, Pennsylvania State University, University Park, PA, United States, Hyungtak Kim, Hongik University, Seoul, Korea (Republic), Sukwon Choi, Pennsylvania State University, University Park, PA, United States

The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques

6538	Yiwen Song, Bikramjit Chatterjee, Pennsylvania State University, State College, PA, United States, Weijie Wang, Uni- versity of Houston, Houston, TX, United States, Jacob Leach, Kyma Technologies, Inc., Raleigh, NC, United States, Srabanti Chowdhury, Stanford University, Stanford, CA, United States, Brian Foley, Pennsylvania State University, University Park, PA, United States, Jae-Hyun Ryou, University of Houston, Houston, TX, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States
	Thermal Behavior of Phase Change Materials (PCMs) Em- bedded in Gradient Porous Metal Foams

6593 Ali Ghahremannezhad, University of California, Riverside, Riverside, CA, United States Realizing Enhanced CPU and GPU Performance With **Directed Cooling on Scalable Coatings** 6766 Thomas Foulkes, Douglas Petrik, Peter Sokalski, Kevin Uvodich, Xinhe Chen, Patrick Deroche, Nenad Miljkovic, University of Illinois at Urbana-Champaign, Urbana, IL, United States Nucleate Boiling Heat Transfer Using Well-Ordered Microporous Patterns for Controlled Bubble Dynamics 6618 Quang Pham, Youngjoon Suh, Yoonjin Won, University of California, Irvine, Irvine, CA, United States The Critical Role of Dynamic Surface Wettability on Bubble **Dynamics and Boiling Performance** 6622 Taylor Allred, Justin Weibel, Purdue University, West Lafayette, IN, United States, Suresh Garimella, University of Vermont, Burlington, VT, United States Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads 6613 Travis Dale, Yuvraj Singh, Ian Bernander, Ganesh Subbarayan, Carol Handwerker, Purdue University, West Lafayette, IN, United States, Peng Su, Bernard Glasauer, Juniper Networks, Sunnyvale, CA, United States Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger with **Extreme Power Density**

 Thomas Foulkes, Yashraj Gurumukhi, Geroge Popovic,
 Stephen Bosch, Ahmet Gunay, University of Illinois at Urbana-Champaign, Urbana, IL, United States, Zitao Liao, Derek Chou, Kelly Fernandez, Robert Pilawa-Podgurski, University of California, Berkeley, Berkeley, CA, United States, Nenad Miljkovic, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Mechanical Behavior of SAC Solder Joints Under Thermal Cycling Loading

6641

Abdullah Fahim, S.M. Kamrul Hasan, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States

Poster Session

6644	Evolution of Cyclic Stress-Strain Behavior of Lead Free Solders Subjected to Different Test Temperature and Prior Aging Mohammad Ashraful Haq, Mohd Aminul Hoque, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United	6649	Effects of Aging on the Damage Accumulation in Lead Free Solders Subjected to Cyclic Loading Md. Mahmudur Chowdhury, Mohd Aminul Hoque, Jeffrey Suhling, Sa'd Hamasha, Pradeep Lall, Auburn University, Auburn, AL, United States
6645	States Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solders Subjected to Shear Cycling Mohd Aminul Hoque, Md. Mahmudur Chowdhury, Jeffrey Suhling, Sa'd Hamasha, Pradeep Lall, Auburn University, Auburn, AL, United States	6650	 Characterization of a Topside Cooled Epoxy-Resin Composite Dielectric (ERCD) Package for Bi-Directional Power Switch Tzu-Hsuan Cheng, Bo Gao, North Carolina State University, Raleigh, NC, United States, Kenji Nishiguchi, Risho Kogyo Co., Ltd., Tokyo, Japan, Douglas Hopkins, North Carolina
6647	The Poisson's Ratio of Lead Free Solder: The Often Forgot- ten but Important Material PropertyK.M. Rafidh Hassan, Mohammad S. Alam, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United StatesStress-Induced Electric Resistance Change of Flexible Displays With Multiple-Laminations Architecture Enabled by Experimental Measurement and Simulation	6651	 State University, Raleigh, NC, United States Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling Dhruvkumar Gandhi, Uschas Chowdhury, Tushar Chauhan, Pratik Bansode, Pardeep Shahi, Jimil M. Shah, Dereje Agonafer, University of Texas at Arlington, Arlington, TX, United States
6635	Chi-Wei Wang, Pei-Chen Huang, Chang-Chun Lee, National Tsing Hua University, Hsinchu City, Taiwan		Foldable Thermal Ground Plane for Cooling of Foldable Smartphones
6636	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints Subjected to Shear Cycling Mohd Aminul Hoque, Md. Mahmudur Chowdhury, Jeffrey Suhling, Sa'd Hamasha, Pradeep Lall, Auburn University,	6652	Ali Nematollahisarvestani, University of Colorado Boulder, Boulder, CO, United States, Ryan Lewis, Kelvin Thermal Technologies, Lafayette, CO, United States, Yung-Cheng Lee, University of Colorado Boulder, Boulder, CO, United States
6639	Au-burn, AL, United States Characterization and FEA Modeling of Underfilled Flip Chip Package Assemblies Using Both Viscoelastic and Elastic Material Properties	6653	Artificial Neural Network Based Prediction of Control Strategies for Multiple Air Cooling Units in a Raised Floor Data Center <i>Vibin Shalom Simon, Ashwin Siddarth, Dereje Agonafer,</i> University of Texas at Arlington, Arlington, TX, United States
6640	 Promod Chowdhury, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States Evolution of the Mechanical Behavior of Lead Free Solders Exposed to Thermal Cyclic Loading 	6654	Water Immersion Cooling of High Power Density ElectronicsTarek Gebrael, University of Illinois at Urbana-Champaign, Champaign, IL, United States
6642	S.M. Kamrul Hasan, Abdullah Fahim, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States Microstructural Evolution in SAC+X Solders Subjected to Aging	6655	Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry Youngjoon Suh, Cheng-Hui Lin, Hamsa N. Gowda, Yoonjin Won, University of California, Irvine, Irvine, CA, United States
6643	Jing Wu, Mohammad S. Alam, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States A Study on the Impact of Four-Degree Off-Axis Wafers on 4H-SiC Stress Sensors Jun Chen, Richard Jaeger, Jeffrey Suhling, Auburn Universi-	6657	Characterizing Dynamic Response of Phase Change Mate- rials Alison Hoe, Texas A&M University, College Station, TX, United States, Michael Barako, Northrop Grumman, Manhattan Beach, CA, United States, Patrick Shamberger, Texas A&M
6646	ty, Auburn, AL, United States On Temperature Discontinuity at an Evaporating Liquid-Va- por Interface Hadi Ghasemi, Parham Jafari, University of Houston, Hous- ton, TX, United States	6662	University, College Station, TX, United States Light-Weight Hybrid Cold Plates for Isothermalization of Electronics Muhammad Jahidul Hoque, Nithin Vinod Upot, Nenad Miljkovic, University of Illinois at Urbana-Champaign, Urbana,
6648	Local Airflow Delivery in Data Centers Using Air Dampers Ghazal Mohsenian, Sadeah Khalili, Bahaat Sammakia,		IL, United States

Binghamton University, Binghamton, NY, United States

32

Modular Heat Sinks for Localized Thermal Management of High Gravimetric Power Density Electronics

	Muhammad Jahidul Hoque, Andrew Stillwell, Yashraj
6663	Gurumukhi, University of Illinois at Urbana Champaign, Ur-
	bana, IL, United States, Robert Pilawa-Podgurski, University
	of California, Berkeley, Berkeley, CA, United States, Nenad
	Miljkovic, University of Illinois at Urbana-Champaign, Urbana,
	IL, United States

Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles

Yashraj Gurumukhi, Muhammad Jahidul Hoque, University of Illinois at Urbana-Champaign, Urbana, IL, United States, Hansen Qiao, Stanford University, Stanford, CA, United

6661 Finiseri Grad, stanfold oniversity, stanfold, CA, onited States, Myung Ki Sung, Xi Lu, Ted Fillipi, Ford Motor Company, Dearborn, MI, United States, Andrew Alleyne, University of Illinois, Urbana, IL, United States, Kenneth Goodson, Mehdi Asheghi, Stanford University, Stanford, CA, United States, Nenad Miljkovic, University of Illinois at Urbana-Champaign, Urbana, IL, United States

6666

6684

6670

6682

Demonstration of a Compliant Micro-Spring Array as a Thermal Interface Material for Pluggable Optoelectronic Transceiver Modules

Justin Weibel, Liang Pan, Jin Cui, Purdue University, West Lafayette, IN, United States

Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling

6671 Pravin Shinde, Pratik Bansode, Pardeep Shahi, Rajesh Kasukurthy, Tushar Chauhan, Jimil M. Shah, Dereje Agonafer, University of Texas at Arlington, Arlington, TX, United States

Thermal Destratification of Air Streams to Improve the Cooling Provisioning of Air-Cooled Data Centers

Anto Joseph Barigala Charles Paulraj, University of Texas At Arlington, Arlington, TX, United States

Development and Optimization of Control Strategy for Dynamic Cooling Technology to Save Pumping Power

Amrutha Valli Rachakonda, Rajesh Kasukurthy, University of Texas at Arlington, Arlington, TX, United States

Effect of Squeezing on Thermal Conductivity of Thermal Interface Materials

6689 Rajath Kantharaj, Jackson Santana, Carl Wassgren, Aaron Morris, Amy Marconnet, Purdue University, West Lafayette, IN, United States

> Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties

6697 Huanyu Liao, Sukshitha Achar Puttur Lakshminarayana, Ganesh Subbarayan, Purdue University, West Lafayette, IN, United States

Numerical/Experimental Hybrid Approach to Predict Warpage of Thin Substrates

Sukrut Prashant Phansalkar, Bongtae Han, University of Maryland, College Park, College Park, MD, United States Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R245fa

6399 Ki Wook Jung, Stanford University, Stanford, CA, United States, Feng Zhou, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States, Mehdi Asheghi, Kenneth Goodson, Stanford University, Stanford, CA, United States

Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation

6667 Xiao Lin, Abhijit Dasgupta, University of Maryland, College Park, College Park, MD, United States, Washington De Lima, Honeywell, Kansas City, MO, United States

> Novel Post-Process Cleaning Technique for Perfect Laser Debris Removal

6672 Sougata Hazra, Ki Wook Jung, Mehdi Asheghi, Kenneth Goodson, Stanford University, Stanford, CA, United States, Madhusudan Iyengar, Google LLC, Mountain View, CA, United States

> Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures

6762 Cheng-Hui Lin, University of California, Irvine, Irvine, CA, United States

> Condensation Heat Transfer on Superhydrophobic Hierarchical Copper Inverse Opals

6674 Jonggyu Lee, Baiheng Li, Yoonjin Won, University of California, Irvine, Irvine, CA, United States

> Replication of Hairy Surface Nanostructures on Elastomer Films for Flexible Pressure Sensors

6675 *Kwanoh Kim, Eunju Yeo, Yeong-Eun Yoo, Jeong Hwan Kim, Doo-Sun Choi, Jae Sung Yoon, Korea Institute of Machinery Materials, Daejeon, Korea (Republic)*

> Study of Hybrid Cooled Servers Using Warm Water Cooling and Comparing Distributed Pumping System With and Without Controlling Pumps

Pardeep Shahi, Rajesh Kasukurthy, Dereje Agonafer, University of Texas at Arlington, Arlington, TX, United States

Reliability Evaluation of Bonded Interfaces for High-Temperature Power Electronics Packages

6678 Paul Paret, National Renewable Energy Laboratory, Golden, CO, United States, Joshua Major, National Renewable Energy Laboratory, Denver, CO, United States, Douglas DeVoto, Sreekant Narumanchi, National Renewable Energy Laboratory, Golden, CO, United States

> In-Situ Service Load Monitoring of Automotive Electronic Systems Using Silicon-Based Piezoresistive Stress Sensor

6681

6677

Yu-Hsiang Yang, Bongtae Han, University of Maryland, College Park, MD, United States

Solder Alloys Through Metal Cutting Experiments Arrays 6686 Wordj Singh, Anjrudh Udup, Sinhivssen Chendresker, Genes Bubberogen, Purtue University, West Lidoytee, NJ, University Sondact CA, Unived Sines, Madhuaudan Jerngen, Weight Polyethylene Fabrics: Fabrication and Metrology Other Mathematics Senses Drawsong Man, Deeyoung Kong, Lunho Che, Chung-Ang University Sondact CA, Unived Sines, Madhuaudan Jerngen, Market Magnatics, Fabrication and Metrology 6688 Angly Conduction, Mily Modie, Jack Burke, Justin Wei- bel, Jang Marconner, Furtue University, West Lidoycels, NJ, United Sters 6706 Astudy on Fabrication of Moles for Microbens Array Using Arrangement of Microparticles in a Liquid Droplet 6692 Experimental Investigation of Capillary Rising in Micro Pin Booston, Study on Chambers 6706 Astudy on Fabrication of Moles for Microbens Array Using Arrangement of Microparticles in a Liquid Droplet 6692 Experimental Investigation of Capillary Rising in Micro Pin Booston, Study on Chambers 6706 Jee Sung Yoon, Eurify New Keen Comparison in Alumi- num Interconnects at Different Ambient Temperatures Sing Alejount, Pudue University, West Lotoyette, NJ. United Starse 6669 Forotham America, Jan Alaoy Mi, United Starse Forod Man, Alaopart, Linkong Markata, Jeense Microbart, Jeense Microbart, Starse 6693 Foroder Starse Foroder Starse Foroder Microbart Microbart Heart Starse 6693 Foroder Starse Foroder Microbart Microbart Hear		Medium to High Strain-Rate Characterization of Lead Free		Flow Boiling Heat Transfer in Embedded Micro Pin Fin	
Wurdy Singh, Anruch Udupd, Similvison Chendrasker, Genes Subbarryn, Pudola University, West Lottyrene, M. United States Deevenog Jung, Deevenog Ju	6696	-		-	
Weight Polyethylene Fabrics: Fabrication and Metrology sbj; Stonford, CA, United States, Anguard Polyethylene Fabrication and Metrology G688 Acditya Canddoli, Emily Medler, Jack Burke, Justin Weibel, United States sbj; Stonford, CA, United States, States, Housenshy, West Lafoyette, N, United States G693 Experimental Investigation of Capillary Rising in Micro Pin Fin Structures Sougata Hazro, Farid Scroush, Mehdi Asheghi, Kenneth Goodson, Stanford University, Stonford, CA, United States G693 Demonstration of Two-Layer Wicks for High-Hear-Flux Displant in Napor Chambers Sougata Hazro, Farid Scroush, Mehdi Asheghi, Kenneth Goodson, Stanford University, Stonford, CA, United States G695 Sirvathsan Sudhokar, Justin Weibel, Purdue University, West Lofoyette, NJ, United States, Suresh Gerimella, University of Vermont, Builington, VT. United States, Suresh Gerimella, University of Vermont, Builington, VT. United States, Suresh Gerimella, University of Vermont, Builington, VT. United States, Suresh Gerimella, University of Vermont, Builington, VT. United States, Suresh Gerimella, University, Vest Lofoyette, NJ. G696 Sukshitha Achar Puttur Lakshminoroyana, Huanyu Liao, Ganesh Subbarryan, Purchae University, Vest Lofoyette, NJ. G697 Time-Dependent Ghaviors of Epoxy Molding Compound Subjects to Hydroxing, Charles Charles, Kenneth Goodson, Stanford University, Cabus, Michael States, Michael Depene, Fried Molox, Baendorn, ML, United States G698 Time-Dependent Ghaviors of Epoxy Molding Compound Subjects to Hydroxing, Characterization and Its Effect of Cooling Archibecture a	0080	Ganesh Subbarayan, Purdue University, West Lafayette, IN,	6705	University, Seoul, Korea (Republic), Ki Wook Jung, Stanford University, Stanford, CA, United States, Madhusudan Iyengar,	
Addiys Candedol, Emily Nacie, Jack Burke, Justin Wei- bel, Any Marconnet, Provade University, West Lafoyette, N. Bigen Provide University, West Lafoyette, N. Bigen Provide University, Standard, CA, United States Bigen Provide Exclusion of No-Lagorithms for Achieving University Standard, Ca, United States Bigen Provide Evolution of Acceleration of Cooling Views States Bigen Provide Provide Diversity, West Lafoyette, N. Bigen Provide Provide Diversity, West Lafoyette, N. Bigen Provide Diversity, West Lafoyette, N. Bigen Provide Provide Diversity, West Lafoyette, N. Bigen Provide Diversity, West Lafoyette, N. Bigen Provide Diversity, West Lafoyette, N. Bigen Provide D	cc00			States, Mehdi Asheghi, Kenneth Goodson, Stanford Univer- sity, Stanford, CA, United States, Hyoungsoon Lee, Chung-	
Experimental Investigation of Capillary Rising in Micro Pin Functures Description Control Capillary Rising in Micro Pin Description Charlowski, Stanford University, Stanford, CA, United States 6693 Sougata Haza, Farid Soroush, Mehdi Asheghi, Kenneth Goodson, Stanford University, Stanford, CA, United States 6694 Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers 6695 Srivathsan Sudhakar, Justin Weibel, Purdue University, West Lafoyette, IV, United States, Feng Zhou, Ercon Dede, Toyota Research Institute of Notch America, An Arbor, MJ, United States 6696 Srivathsan Sudhakar, Justin Weibel, Purdue University, West Lafoyette, IV, United States, Feng Zhou, Ercon Dede, Toyota Research Institute of Notch America, An Arbor, MJ, United States 6696 Sutshift a Achar Puttur Lakshminarayana, Huanyu Lico, Granesh Subbarayan, Purdue University, West Lafoyette, IN, United States 6698 Sutshift a Achar Puttur Lakshminarayana, Huanyu Lico, Granesh Subbarayan, Purdue University, West Lafoyette, IN, United States 6699 Filte-to n Reliability Assessment 6699 Effect of Osoling Architecture and PCB Layout Co-design on the Concurrent Thermal and Electrical Performance of an One-Baard Electrical Performance of an Charlewish, Joandra Charled States 6710 Onimitary Graves, Stanford University, Stanford, CA, United States 6710 One-Baard Electrical Performance of an Charlewish, Joandra Carles and PCB Layout Co-design on the Concurrent Thermal and Electrical Performance of an Charlewish, Joandra J, United States 6710 One-Baard Electrical Per	0088	bel, Amy Marconnet, Purdue University, West Lafayette, IN,			
Goodson, Stanford University, Stanford, CA, United States Full-Field Thermal Imaging of Electronigration in Alumi- num Interconnects at Different Ambient Temperatures 6695 Srivathsan Sudhakar, Justin Weibel, Purdue University, West Lofoyette, IN, United States, Fore Zhou, Ercan Dede, Toyoto Research Institute of North America, Ann Alton, MJ, United States Sami Alajiouni, Purdue University, West Lafayette, IN, United States 6695 Srivathsan Sudhakar, Justin Weibel, Purdue University, West Lofoyette, IN, United States, Suresh Gorimelia, University, West Lafayette, IN, United States, Suresh Gorimelia, University, Or Vermont, Burlington, VT, United States Parametric Study of Silicon-Based Embedded Microchan- nels With 3D Manifold Coolers (EMMC) for High Heat FloortX (> 1 W/Core JIM, Man Plower Electronics Cooling University, Stanford, CA, United States, Alshe Plazza, Stan- ford Nonheat Lob, Stanford, CA, United States, Stanford, CA, University, Stanford, CA, United States, Edward Jth, Man Prachash Gupta, Ford Motors, Deerborn, MI, United States, Michael Degner, Ford Motors, Deerborn, MI, United States, Michael Degner, Ford Motors, Deerborn, MI, United States, Michael Degner, Ford Motors, Deerborn, MI, United States 6699 Time-Dependent Behavior of Epoxy Moling Compound Subjected to Hydrostatic Loading: Characterization and Its Fifects of Cooling Architecture and PCB Layout Co-design on Dn-Board Electric Vehicle Charger 6714 Sony Thomas, Pradeep Loli, Vikas Yaday, Jaesh Naran- geparambil, Wei Liu, Auburn University, Auburn, AL, United States, States 6700 Effects of Cooling Architecture and PCB Layout Co-design on Dn-Board Electric Vehicle Charger Fried of Process Parameters on Aeerosal Jeff Printing of Multi-Layer Circuitry 6710	6692		6706	Doo-Sun Choi, Korea Institute of Machinery and Materials,	
Bernorstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers 6708 Sami Alafjauni, Purdue University, West Lofayette, IN, United States 6695 Srivathsan Sudhakar, Justin Welbel, Purdue University, West Lofayette, IN, United States, Freng Zhou, Ercan Dede, Toyoto Research Institute of North America, Ann Athor, MJ, United States Parametric Study of Silicon-Based Embedded Microchan- nels With 3D Manifold Coolers (EMMC) for High Heat Flort Va Childed States 6696 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior 6712 Ri Wook Jung, Sougata Hazra, Heungdong Kwon, Stonford University, Stanford, CA, United States, Alishe Plazza, Ston- trad Nanoheet Lab, Stanford, CA, United States, Michael Degree, Ford Motors, Dearboam, MI, United States, Mehdi Asheghi, Stanford University, Stonford, CA, United States, Kenneth Godson, Stanford University, Ston- ture, CA, United States 6698 Time-Dependent Behavior of Epoxy Molding Compound Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment Hyun, University of Maryland, College Park, MD, University of Toronto, Toronto, ON, College Park, MD, University of Toronto, Toronto, ON, Collede States 6714 Forther States 6710 Congrig Wu, Stanford University, Reid Atso, CA, University of Toronto, Toronto, ON, Collede States Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry 6710 Ciaznes, Chizbang, Sougate Hazra, Mehdi Asheghi, Ken- net Goodson, Stanford University, Roth Ato, CA, University of Toronto, Toronto, ON, Conada <td></td> <td></td> <td></td> <td></td>					
6995 Lofayette, N. United States, Feng Zhou, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, M. United States, Suresh Garimelia, University of Vermont, Burlington, VT, United States Parametric Study of Silicon-Based Embedded Microchan- nels With 3D Manifold Coolers (EMMC) for High Heat FloorUX [>1 kW/cm?] Power Electronics Cooling 6696 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior FloorUX [>1 kW/cm?] Power Electronics Cooling 6696 Sukshitha Achar Puttur Lakshminarayana, Huanyu Liao, Ganesh Subbarayan, Purdue University, West Lafayette, IN, United States Ki Wook Jung, Sougata Hazra, Heungdong Kwon, Stanford University, Stanford, CA, United States, States, Science Thermal Greases: Microstructural Models and Effect on Reliability Assessment Fried Nonhoeta Lab, Stanford, CA, United States, Stanford University, Stanford, CA, United States, Michael Degner, Ford Mators, Deorborn, MI, United States, States, Mehl Asheghi, Stanford University, Stanford CA, United States, States, Mehl Asheghi, Stanford University, Stanford CA, United States, States, Mehl Asheghi, Stanford University, Stanford CA, United States, States, Mehl Asheghi, United States File 6698 Time-Dependent Behavior of Epoxy Molding Compound Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment File File 6700 Effects of Cooling Architecture and PCB Layout Co-design on On-Board Electric Vehicle Charger File File File File File		· · ·	6708	Sami Alajlouni, Purdue University, West Lafayette, IN, United	
Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior 6712 University, Stanford, CA, United States, Edisar Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States, Edisard Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States, Edisard Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States, Edisard Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States, Edisard Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States, Edisard Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States, Edisard Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States, Edisard Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States, Edisard Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States, Edisard Piezza, Stan- ford Nanoheat Lab, Stanford, CA, United States 6698 Time-Dependent Behavior of Epoxy Molding Compound States Effect on Reliability Assessment Hyun Seop Lee, Sukrut Prashant Phansalkar, Bongtae Han, University of Maryland, College Park, MD, United States 6714 Tony Thomas, Pradeep Lall, Vikas Yadav, Jinesh Naran- gaparambil, Wei Liu, Aubum University, Aubum, AL, United States 6700 Effects of Cooling Architecture and PCB Layout Co-design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger Ford High Strain Rate Mechanical Properties of SAC-Q With Constant High Temperature Storage at 100°C Vishal Metha, Pradeep Lall, United States, David Locker, U.S. Army RDECOM, Redstone Assend, AL, United States 6700 Oinri Tayyara, Kshitij Guyta, Carlos Da Silva, Miad Nasr, Amir Assedi, Olivier Trescases, Cristina H. Amon, University, of Toronto, Toronto, ON	6695	Lafayette, IN, United States, Feng Zhou, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States, Suresh Garimella, University of Vermont, Burlington,		nels With 3D Manifold Coolers (EMMC) for High Heat	
Multic Dependence Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment 6698 Hyun Seop Lee, Sukrut Prashant Phansalkar, Bongtae Han, University of Maryland, College Park, MD, United States 6714 Tony Thomas, Pradeep Lall, Vikas Yadav, Jinesh Naran-gaparambil, Wei Liu, Auburn University, Auburn, AL, United States 6700 Effects of Cooling Architecture and PCB Layout Co-design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger High Strain Rate Mechanical Properties of SAC-Q With Constant High Temperature Storage at 100°C 6700 Omri Tayyara, Kshitij Gupta, Carlos Da Silva, Miad Nasr, Amir Assadi, Olivier Trescases, Cristina H. Amon, University of Toronto, Toronto, ON, Canada Feffect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry 6701 Gianying Wu, Stanford University, Palo Alto, CA, United States 6716 Kartik Goyal, Pradeep Lall, Nakul Kothari, Auburn University Auburn, AL, United States, Scott Miller, NextFlex, San Jose, CA, United States, Scott Miller, NextFlex, San Jose, CA, United States 6710 Gianying Wu, Stanford University, Stanford, CA, United States Flexure and Twist Test Reliability Study of Flexible Electronics 6711 Gianying Wu, Stanford University, Stanford, CA, United States Flexure and Twist Test Reliability Study of Flexible Electroncics	6696	Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior Sukshitha Achar Puttur Lakshminarayana, Huanyu Liao, Ganesh Subbarayan, Purdue University, West Lafayette, IN,	6712	University, Stanford, CA, United States, Alisha Piazza , Stan- ford Nanoheat Lab, Stanford, CA, United States, Edward Jih, Man Prakash Gupta, Ford Motors, Dearborn, MI, United States, Mehdi Asheghi, Stanford University, Stanford, CA, United States, Michael Degner, Ford Motors, Dearborn, MI, United States, Kenneth Goodson, Stanford University, Stan-	
Han, University of Maryland, College Park, MD, United States States States States Han, University of Maryland, College Park, MD, United States States Effects of Cooling Architecture and PCB Layout Co-design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger High Strain Rate Mechanical Properties of SAC-Q With Constant High Temperature Storage at 100°C Omri Tayyara, Kshitij Gupta, Carlos Da Silva, Miad Nasr, Amir Assadi, Olivier Trescases, Cristina H. Amon, University of Toronto, Toronto, ON, Canada Fifect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry 6701 Oianying Wu, Stanford University, Palo Alto, CA, United States Fifect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry 6716 Kartik Goyal, Pradeep Lall, Nakul Kothari, Auburn Universi- ty, Auburn, AL, United States, Benjamin Leever, Air Force Re- search Laboratory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States, Scott Miller, NextFlex, San Jose, CA, United States Flexure and Twist Test Reliability Study of Flexible Elec- tronics Flexure and Twist Test Reliability Study of Flexible Elec- tronics	6698	Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment	6714	Substrates From Human Motion Measurements Tony Thomas, Pradeep Lall, Vikas Yadav, Jinesh Naran-	
on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle ChargerConstant High Temperature Storage at 100°C6700Omri Tayyara, Kshitij Gupta, Carlos Da Silva, Miad Nasr, Amir Assadi, Olivier Trescases, Cristina H. Amon, University of Toronto, Toronto, ON, Canada6715Vishal Mehta, Pradeep Lall, Jeffrey Suhling, Auburn Uni- versity, Auburn, AL, United States, David Locker, U.S. Army RDECOM, Redstone Arsenal, AL, United States6701Exploring the Limits of Cooling for Extreme Heat Flux ApplicationsEffect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry6701Gianying Wu, Stanford University, Palo Alto, CA, United States6716Kartik Goyal, Pradeep Lall, Nakul Kothari, Auburn Universi- ty, Auburn, AL, United States, Benjamin Leever, Air Force Re- search Laboratory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States6715Flexure and Twist Test Reliability Study of Flexible Elec- tronics					
 6700 Omri Tayyara, Kshitij Gupta, Carlos Da Silva, Miad Nasr, Amir Assadi, Olivier Trescases, Cristina H. Amon, University of Toronto, Toronto, ON, Canada Exploring the Limits of Cooling for Extreme Heat Flux Applications 6701 Qianying Wu, Stanford University, Palo Alto, CA, United States, Chi Zhang, Sougata Hazra, Mehdi Asheghi, Ken- neth Goodson, Stanford University, Stanford, CA, United States Enhanced Evaporative Cooling Using Electro-Spray of DI Oris Vishal Mehta, Pradeep Lall, Jeffrey Suhling, Auburn Uni- versity, Auburn, AL, United States, David Locker, U.S. Army RDECOM, Redstone Arsenal, AL, United States Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry 6716 Kartik Goyal, Pradeep Lall, Nakul Kothari, Auburn Universi- ty, Auburn, AL, United States, Benjamin Leever, Air Force Re- search Laboratory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States Flexure and Twist Test Reliability Study of Flexible Elec- tronics 		on the Concurrent Thermal and Electrical Performance of			
Exploring the Limits of Cooling for Extreme Heat Flux Applications Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry 6701 Qianying Wu, Stanford University, Palo Alto, CA, United States, Chi Zhang, Sougata Hazra, Mehdi Asheghi, Ken- neth Goodson, Stanford University, Stanford, CA, United States 6716 Kartik Goyal, Pradeep Lall, Nakul Kothari, Auburn Universi- ty, Auburn, AL, United States, Benjamin Leever, Air Force Re- search Laboratory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States Enhanced Evaporative Cooling Using Electro-Spray of DI Flexure and Twist Test Reliability Study of Flexible Elec- tronics	6700	Omri Tayyara, Kshitij Gupta, Carlos Da Silva, Miad Nasr, Amir Assadi, Olivier Trescases, Cristina H. Amon, University	6715	versity, Auburn, AL, United States, David Locker, U.S. Army	
 6701 Qianying Wu, Stanford University, Palo Alto, CA, United States, Chi Zhang, Sougata Hazra, Mehdi Asheghi, Kenneth Goodson, Stanford University, Stanford, CA, United States 6716 Kartik Goyal, Pradeep Lall, Nakul Kothari, Auburn University, Auburn, AL, United States, Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States Flexure and Twist Test Reliability Study of Flexible Electronics 		Exploring the Limits of Cooling for Extreme Heat Flux			
Flexure and Twist Test Reliability Study of Flexible Elec- Enhanced Evaporative Cooling Using Electro-Spray of DI tronics	6701	Qianying Wu, Stanford University, Palo Alto, CA, United States, Chi Zhang, Sougata Hazra, Mehdi Asheghi, Ken- neth Goodson, Stanford University, Stanford, CA, United	6716	ty, Auburn, AL, United States, Benjamin Leever, Air Force Re- search Laboratory, Wright Patterson AFB, OH, United States,	
AAD CI	6704				
6717 Jinesh Narangaparambil, Pradeep Lall, Auburn University,		Sangwoo Jung, Yunseo Kim, Soyeon Kim, Minsung Kim, Hyoungsoon Lee, Chung-Ang University, Seoul, Korea (Re-	6717	Auburn, AL, United States, Benjamin Leever, Air Force Re- search Laboratory, Wright Patterson AFB, OH, United States,	

6718	Low Cycle Flexure Fatigue Life Prediction of Epoxy Potted PCB Interfaces Under Three Point Bending		Pressure and Temperature in Simulations of Large-Foot- print Manifold-Microchannel Cooling Devices	
0718	Kalyan Dornala, Pradeep Lall, Auburn University, Auburn, AL, United States	6729	Alisha Piazza, Stanford Nanoheat Lab, Stanford, CA, United States, Sougata Hazra, Ki Wook Jung, Mehdi Asheghi, Ken-neth Goodson, Stanford University, Stanford, CA, United	
	Evolution of Anand Parameters for Thermally Aged SAC Leadfree Solder Alloys		States	
6719	Vikas Yadav, Pradeep Lall, Jeffrey Suhling, Auburn Uni- versity, Auburn, AL, United States, David Locker, U.S. Army RDECOM, Redstone Arsenal, AL, United States	6730	System-level Thermal Management and Reliability of Au- tomotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles	
	Thermo-Mechanical Degradation of Thermal Interface Materials: Accelerated Test Development and Reliability		Bakhtiyar Mohammad Nafis, Ange-Christian Iradukun- da, Imam Al Razi, David Huitink, Yarui Peng, University of Arkansas, Fayetteville, AR, United States	
6720	Analysis Hayden Carlton, Dustin Pense, David Huitink, University of Arkansas, Fayetteville, AR, United States		Capillary Evaporation in Graphene Coated Nanochannels Masoumeh Nazari, University of Houston, Houston, TX, United States	
	Packaging Environmental Sensors for an Internet-of-Things Solution for Urban-Microclimate Studies		Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro-Channel Heat Sinks	
6721	Shuv Dey, Yogendra Joshi, Georgia Institute of Technology, Atlanta, GA, United States, J. Michael Brown, Manufacturing Resources International, Alpharetta, GA, United States	6741	Yaser Hadad, Bahgat Sammakia, Bharath Ramakrishnan, Binghamton University, Binghamton, NY, United States, Paul R. Chiarot, State University of New York at Binghamton, Bing-	
	A Numerical Investigation of Additive Manufactured Foam Structures for Single Phase Hotspot Thermal Management		hamton, NY, United States	
6722	Justin Broughton, Yogendra Joshi, Georgia Institute of Tech- nology, Atlanta, GA, United States		Advanced Packaging and Thermal Management of High-Power DC-DC Converters	
6723	Comparative CFD Analysis of the Effect of Air and Liquid Cooling on the Form Factor of Gpu Server	6753	Sevket Umut Yuruker, Raphael Mandel, Patrick McCluskey, Michael Ohadi, Shiladri Chakraborty, Yongwan Park, He Yun, Alireza Khaligh, University of Maryland, College Park, College Park, MD, United States, Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States,	
	Ankit Sutaria, Uschas Chowdhury, Rajesh Kasukurthy, Dereje Agonafer, University of Texas at Arlington, Arlington, TX, United States		Miguel Hinojosa, U.S. Army Research Laboratory, Adelphi, MD, United States	
6724	Comparative Rack Level CFD Analysis of Air to Hybrid Cooling		Power Delivery and Thermal Management for the Silicon Interconnect Fabric	
	Jay Parekh, Uschas Chowdhury, Dereje Agonafer, Universi- ty of Texas at Arlington, Arlington, TX, United States	6754	Ujash Shah, Timothy Fisher, Umesha Mogera, Boris Vais- band, Pranav Ambhore, Subramanian lyer, University of California, Los Angeles, Los Angeles, CA, United States	
6726	Simplified Fabrication and Integration of Optical Fiber Sensor for Bio-Reactor Monitoring		Effect of Shallow Charging on Flexible Lithium Ion Battery Capacity Subjected to Differing C-Rates and Various	
	Shubhodeep Goswami, Baokai Cheng, W.A. Challener, General Electric Company, Niskayuna, NY, United States	6736	Tem-peratures Ved Soni, Pradeep Lall, Auburn University, Auburn, AL, Unit-	
6727	Effect of Inclination of Drop on Surface Mount Electronics Under High G Shock Conditions		ed States, Benjamin Leever , Air Force Research Laboratory, Wright Patterson AFB, OH, United States, Scott Miller , Next- Flex, San Jose, CA, United States	
	Aathi Raja Ram Pandurangan, Venkata Kalyan Reddy Dornala, Pradeep Lall, Jeffrey Suhling, Auburn University, Auburn, AL, United States, John Deep, Air Force Research Laboratory, Eglin AFB, AL, United States, Ryan Lowe, ARA Associates, Littleton, CO, United States	6707	High Brightness White Laser Module Enabling Gbps Li-Fi Link for High-Speed Visible Light Communications Chao Shen, SaNoor Technologies, Thuwal, Saudi Arabia,	
6732	Evaluation of Thermal and Electrical Properties of Nano-En- hanced PCM for Usage in High-Voltage Systems	6737	Hala H. Al-Hashim, Imam Abdulrahman Bin Faisal Univer- sity, Dammam, Saudi Arabia, Jie Hu, SaNoor Technologies, Thuwal, Saudi Arabia, Boon S. Ooi, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia	
	Ange-Christian Iradukunda, Josh Kasitz, Fernando More- no, David Huitink, University of Arkansas, Fayetteville, AR, United States			

Technical Sessions

MONDAY, OCTOBER 7

	8:00AM	8:20AM	8:40AM	9:00AM
1-7: Design and Characterization II Fourth Floor, Huntington A Session Organizers: Shankar Narayanan, Rensselaer Polytechnic Institute, Shima Hajimirza, Texas A&M University	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads (6507) Paper Publication Travis Dale, Yuvraj Singh, Ian Bernander, Ganesh Subbarayan, Carol Handwerker, Purdue University, Peng Su, Bernard Glasauer, Juniper Networks	Strain Distribution in a Small Solder Specimen With Few Crystal Grains (6546) Presentation Only Toru Ikeda, Takumi Sasaki, Atushi Yanase, Kagoshima University, Dai Okumura, Nagoya University, Yoshiharu Kariya, Shibaura Institute of Technology, Masaaki Koganemaru, Kagoshima University	Medium to High Strain-Rate Characterization of Lead-Free Solder Alloys Through Metal Cutting Experiments (6510) Paper Publication Yuvraj Singh, Anirudh Udupa, Srinivasan Chandrasekar, Ganesh Subbarayan, Purdue University	
2-1: Data Center Cooling I Fourth Floor, Huntington B Session Organizers: Cheng Chen, Prakriti Choudhary, Facebook, Brent Goren, Eaton	Dynamic Control of Airflow Balance in Data Centers (6304) Paper Publication Stephen Linder, Jim VanGilder, Yan Zhang, Schneider-Electric, Enda Barrett, National University of Ireland Galway	Thermal Profiling of a Small Operational Data Center (6309) Paper Publication Ismail Turkmen, Cem Ahmet Mercan, Hamza Salih Erden, Istanbul Techni- cal University	Feedback Control System for Airflow Management in Data Centers Using Active Air Dampers (6430) Presentation Only Ghazal Mohsenian, Sadegh Khalili, Bahgat Sammakia, <i>Binghamton</i> University	Thermal Challenges in Servers (6532) Presentation Only Timothy Chainer, Mark Schultz, Pritish Parida, <i>IBM</i>
5-1: DUV-LED I Fourth Floor, Huntington C Session Organizers: Yuji Zhao, Arizona State University, Jonathan Klamkin, University of California, Santa Barbara	AlGaN Nanowire Light Emitting Diodes on Metal Substrates (6322) Presentation Only Haiding Sun, University of Science and Technology of China	Large Roll Hexagonal BN Monolayer: Synthesis, Modu- lation Doping, and 2D Emitter (6326) Presentation Only Duanjun Cai, Guozhen Liu, Yuejin Wang, Xiamen University	Polarization Engineering of III-Nitride Photonic Devices (6370) Presentation Only Cheng Liu, Jing Zhang, Rochester Institute of Technology	Recent Progress on the De- velopment of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes (6310) Presentation Only Zi-Hui Zhang, Yonghui Zhang, Kang- kai Tian, Chunshuang Chu, Jiamang Che, Hua Shao, Jianquan Kou, Xu Hou, Hebei University of Technology
6-1: Wide Bandgap Materials, Devices, and Circuits Fourth Floor, Palos Verdes A Session Organizers: Jae-Hyun Ryou, University of Houston, Richard Thom- as, U.S. Army Research Laboratory, Anil Yuksel, IBM	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs (6438) Presentation Only Bikramjit Chatterjee, Yiwen Song, Brian Foley, Pennsylvania State University, Hyungtak Kim, Hongik University, Sukwon Choi, Pennsylva- nia State University	Piezoresistive Theory for 4H Silicon Carbide Stress Sensors on Four-Degree Off-Axis Wafers (6461) Paper Publication Jun Chen, Richard Jaeger, Jeffrey Suhling, Auburn University	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques (6528) Presentation Only Yiwen Song, Bikramjit Chatterjee, Pennsylvania State University, Brian Foley, Pennsylvania State University, Weijie Wang, Jae-Hyun Ryou, Uni- versity of Houston, Sukwon Chol, Pennsylvania State University, Jacob Leach, Kyma Technologies, Srabanti Chowdhury, Stanford University	Design, Analysis, and Com- parison of Insulated Metal Substrates for High Power Wide-Bandgap Power Modules (6436) Paper Publication Emre Gurpinar, Burak Ozpineci, Shajjad Chodhury, Oak Ridge Nation- al Laboratory
8-2: Electric/Hybrid Cars Fourth Floor, Palos Verdes B Session Organizers: Azeem Sarwar, General Motors, Przemysław Jakub Gromala, Bosch	System-level Thermal Man- agement and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles (6429)Paper Publication Bakhtiyar Mohammad Nafis, David Huitink, Ange-Christian Iradukunda, Yarui Peng, Imam Al Razi, University of Arkansas	Experimentation and Simula- tion of Jet Impingement Cool- ing of Electric Machines With Automatic Transmission Fluid (6445) Presentation Only Xuhui Feng, Kevin Bennion, J. Emily Cousineau, Gilberto Moreno, Bidzina Kekelia, Sreekant Narumanchi, Jeff Tomerlin, National Renewable Energy Laboratory	Thermal Management of Fast Charging Systems for Electri- fied Vehicles (6660) Presentation Only Yashraj Gurumukhi, Muhammad Jahidul Hoque, University of Illinois at Urbana-Champaign, Hansen Qiao, Stanford University, Myung Ki Sung, Xi Lu, Ted Fillipi, Ford Motor Company, Andrew Alleyne, University of Illinois, Kenneth Goodson, Mehdi Asheghi, Stanford University, Nenad Miljkovic, University of Illinois at Urbana-Champaign	Surface Temperature Effect on Convective Heat Transfer Co- efficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid (6457) Paper Publication Bidzina Kekelia, Kevin Bennion, Xuhui Feng, Gilberto Moreno, J. Emi- ly Cousineau, Sreekant Narumanchi, Jeff Tomerlin, National Renewable Energy Laboratory

MONDAY, OCTOBER 7

	10:45AM	11:05AM	11:25AM	11:45AM
1-3: Microfabrication Fourth Floor, Huntington A Session Organizers: Tuhin Sinha, <i>BM</i> , Shima Hajimirza , <i>Texas A&M</i> University	CFD Analysis of Molten Solder Flow Behavior and Bridging Mechanism During Solder Bump Formation (6395) Paper Publication Risa Miyazawa, Keishi Okamoto, Hiroyuki Mori, <i>IBM</i>	Numerical/Experimental Hybrid Approach to Predict Warpage of Thin Substrates (6420) Presentation Only Sukrut Prashant Phansalkar, Bongtae Han, University of Mary- land, Jongkeun Moon, Samsung Electronics	Addressing the Challenges in Laser Micro-Machining and Bonding of Silicon Microchan- nel Cold-Plate and 3D-Manifold for Embedded Cooling Applica- tions: Perfect Debris Removal (6539) Paper Publication Sougata Hazra, Ki Wook Jung, Stan- ford University, Madhusudan Iyengar, Chris Malone, Google, LLC, Mehdi Asheghi, Kenneth Goodson, Stanford University	
2-2: Two Phase Cooling I Fourth Floor, Huntington B Session Organizers: Emad A. Posh- tan, Bosch, Mark Schultz, IBM	An Experimental Investigation on Phase Cooled Rack Under Steady (6463) Paper Publication Sadegh Khalili, State University of New arajan, Bahgat Sammakia, Binghamton Technologies	y and Transient IT Load York at Binghamton, Srikanth Rang-	Design of Passive Two-Phase Th (6386) Paper Publication Raffaele L. Amalfi, Nokia Bell Labs, Jac vation, John R. Thome, Ecole Polytechr. Cataldo, Provides Metalmeccanica S.r.l.	kson B. Marcinichen, JJ Cooling Inno iique Federale de Lausanne, Filippo F.
5-2: DUV-LED II Fourth Floor, Huntington C Session Organizers: Zi-Hui Zhang, Hebei University of Technology, Haiding Sun, University of Science and Technology of China	III-Nitride UV-Visible Integrated Photonics for Quantum and Biomedical Applications (6323) Presentation Only Yuji Zhao, Arizona State University	Improvement of DUV LEDs Light Extraction Efficiency by Novel Microstructures (6340) Presentation Only Changqing Chen, Shuang Zhang, Shuai Wang, Jun Zhang, Hanling Long, Qian Chen, Jiangnan Dai, Huazhong University of Science and Technology	Strain Effect on AlGaN Aniso- tropic Ultraviolet Light Emitting Characteristic (6341) Presentation Only Hanling Long, Linlin Xu, Jiangnan Dai, Changqing Chen, Huazhong University of Science and Technology	Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain and Polarization (6357) Presentation Only Shiqiang Lu, Wei Lin, Shuping Li, Junyong Kang, Duanjun Cai, Xiamen University
6-2: Ultra-Wide Bandgap Galli- um Oxide Electronics Fourth Floor, Palos Verdes A Session Organizers: Jungwan Cho, Kyunghee University, Mandar Kulkar- ni, Amazon	Electrothermal Modeling and Analysis of Gallium Oxide Power Switching Devices (6453) Paper Publication Ramchandra Kotecha, Andriy Zaku- tayev, Wyatt Metzger, Paul Paret, Gil- bert Moreno, Bidzina Kekelia, Kevin Bennion, Barry Mather, Sreekant Narumanchi, National Renewable Energy Laboratory, Samuel Kim, Sam- uel Graham, Georgia Tech	Thermal Management of Beta– Ga ₂ O ₃ Transistors (6728) Presentation Only Samuel Kim, Chao Yuan, Jingjing Shi, Samuel Graham, <i>Georgia Tech</i>	Thermal Management of Galli- um Oxide Electronics via Hete- ro-Integration on High Thermal Conductivity Substrates (6439) Presentation Only Bikramjit Chatterjee, Pennsylvania State University, Craig McGray, Mod- ern Microsystems, Inc., Jacob Leach, Kyma Technologies, Inc., Yiwen Song, Zahabul Islam, Aman Haque, Brian Foley, Sukwon Choi, Pennsylvania State University	Surface-Pretreatment-Depen- dent High Thermal Boundary Conductance Across Heteroge- neous Atomic-Layer-Deposited Ga ₂ O ₃ -Diamond Interfaces (6608) Presentation Only Zhe Cheng, Georgia Institute of Technology, Virginia Wheeler, Marko Tadjer, Karl Hobart, U.S. Naval Research Laboratory, Jingjing Shi, Georgia Institute of Technology, Tingyu Bai, University of California, Los Angeles, Luke Yates, Georgia Institute of Technology, Mark Goorsky, University of California, Los Angeles, Samuel Graham, Georgia Institute of Technology
7-9: Challenges and Opportuni- ties in Thermal Management of Components and Systems Fourth Floor, Palos Verdes B Session Organizers: Aritra Sur, United Technologies Research Center, Ayyoub Momem, Oak Ridge National Laboratory	Challenges and Opportunities in ed Energy Systems (6625) Technical Presentation Only Avram Bar-Cohen, <i>DARPA</i> , Terry G. Dul	- /	Measuring Junction Temperature of LEDs: Challenges and Oppor tunities (6776) Technical Presentation Only Mehmet Arik, Ozyegin University	
8-4: Material Modeling for Automotive Packaging I Fourth Floor, Redondo Session Organizers: Xuhui Feng, Na- tional Renewable Energy Laboratory, Klas Brinkfeldt, RISE IVF	Study of Thermal Aging Behavior of Epoxy Molding Compound for Applications in Harsh Environments (6506) Presentation Only Przemyslaw Jakub Gromala, Adwait Inamdar, Alexandru Prisacaru, Bosch, Bongtae Han, University of Maryland	Fatigue Delamination Crack Growth of Potting Compounds in PCB/Epoxy Interfaces Under Flexure Loading (6572) Paper Publication Pradeep Lall, Kalyan Dornala, Jeffrey Suhling, Auburn University, John Deep, U.S. Air Force Research Labo- ratory, Ryan Lowe, ARA Associates	Moisture Transport Through Housing Materials Enclosing Critical Automotive Electronics (6621) Presentation Only Artur Roman, Bongtae Han, Universi- ty of Maryland	Evolution of the Microstructure of Lead Free Solders Subjected to Both Aging and Cyclic Loading (6560) Paper Publication Md. Mahmudur Chowdhury, Mohd Aminul Hoque, Jeffrey Suhling, Sa'd Hamasha, Pradeep Lall, Auburn University

MONDAY, OCTOBER 7

	1:45PM	2:05PM	2:25PM	2:45PM
1-4: Fundamentals of Thermal Transport Fourth Floor, Huntington A Session Organizers: Nirup Nagaban- di, Incendium Technologies, Yuling Niu, Binghamton University	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings (6307) Paper Publication Quang Pham, Youngjoon Suh, Bowen Shao, Yoonjin Won, University of California, Irvine	Effect of Inclined Angle of Heat Sink on Natural Convective Heat Dissipation Performance (6313) Paper Publication Tengfei Ma, Wen Wang, Shanghai Jiao Tong University	Ultrahigh Thermal Boundary Conductance Across GaN-SiC Heterogeneous Interfaces by Surface Activated Bonding (6607) Presentation Only Zhe Cheng, Georgia Institute of Technology, Fengwen Mu, Tadatomo Suga, University of Tokyo, Samuel Graham, Georgia Institute of Tech- nology	Demonstration of 150-micron Ultrathin Vapor Chambers for 5G Smartphones (6683) Presentation Only Ryan Lewis, Kelvin Thermal Technol- ogies, Yung Cheng Lee, University of Colorado, Boulder
2-3: Two Phase Cooling II Fourth Floor, Huntington B Session Organizers: Emad Poshtan, Bosch, Mark Schultz, IBM	The Critical Role of Dynamic Surface Wettability on Bubble Dynamics and Boiling Perfor- mance (6308) Presentation Only Taylor Allred, Justin Weibel, Purdue University, Suresh Garimella, Univer- sity of Vermont	On Temperature Discontinuity at an Evaporating Liquid-Vapor Interface (6346) Presentation Only Parham Jafari, Hadi Ghasemi, Uni- versity of Houston	Capillary Evaporation in Graphene-Coated Nanochan- nels (6428) Presentation Only Hadi Ghasemi, Masoumeh Nazari, University of Houston	Enabling Thermal Manage- ment of High-Powered Server Processors Using Passive Thermosiphon Heat Sink (6530) Paper Publication Devdatta Kulkarni, Priyanka Tunuguntla, Guixiang Tan, Casey Carte, Intel
5-3: Integrated Photonics and Wide Bandgap Photonics Fourth Floor, Huntington C Session Organizers: Jing Zhang, Rochester Institute of Technology, Bin Liu, Nanjing University	On-Chip Detection From Di- rectly Modulated Quantum Dot Microring Lasers on Si (6352) Presentation Only Yating Wan, University of California, Santa Barbara	High-Gain Solid-State Photo- multiplier Based on Periodic GaN/AIN Hetero-Structures (6371) Presentation Only Lai Wang, Xingzhao Wu, Tsinghua University, Julien Brault, Mohamed AI Khalfioui, Maud Nemoz, CNRS, Zhib- iao Hao, Yi Luo, Changzheng Sun, Bing Xiong, Yanjun Han, Jian Wang, Hongtao Li, Tsinghua University	Laser Integration Technologies for Silicon Photonics (6610) Presentation Only Jonathan Klamkin, University of California, Santa Barbara	Improving Performance and Reliability of GaN-Based Flip- Chip Light Emitting Diodes by Reflective Bonding Pads (6337) Presentation Only Linlin Xu, Hanling Long, Jiangnan Dai, Changqing Chen, Huazhong University of Science and Technology
6-3: Device Thermal Manage- ment and Reliability Fourth Floor, Palos Verdes A Session Organizers: Shubhodeep Goswami, General Electric, Lauren Kegley, Cree Wolfspeed	Degradation Modeling and Reliability Assessment of Capacitors (6456) Paper Publication Anunay Gupta, Om Prakash Yadav, Arighna Roy, North Dakota State University, Douglas DeVoto, Joshua Major, National Renewable Energy Laboratory	Thermal Assessment and In-Si- tu Monitoring of Insulated Gate Bipolar Transistors in Power Electronic Modules (6470) Paper Publication Erick Gutierrez, Kevin Lin, University of Maryland, Douglas DeVoto, Na- tional Renewable Energy Laboratory, Patrick McCluskey, University of Maryland	The Effect of Anisotropy on Thermal Boundary Conduc- tance at Metal-Semiconductor Interface (6748) Presentation Only Jingjing Shi, Zhe Cheng, Chao Yuan, Samuel Graham, Georgia Tech	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics (6440) Paper Publication James Spencer Lundh, Yiwen Song, Bikramjit Chatterjee, Pennsylvaria State University, Albert G. Baca, Rob- ert J. Kaplar, Andrew M. Armstrong, Andrew A. Allerman, Sandia National Laboratories, Hyungtak Kim, Hongik University, Sukwon Choi, Pennsylva- nia State University
8-6: Prognostics and Health Management of Automotive Electronics Fourth Floor, Palos Verdes B Session Organizers: Przemysław Jakub Gromala, Bosch, Bongtae Han, University of Maryland	Silicon-Based Piezoresistive Stress Sensor as a Load Count- er for Automotive Electronic Systems (6419) Presentation Only Yu-Hsiang Yang, Bongtae Han, University of Maryland	Data-Driven Approaches for Fault Prognosis of SiC MOSFETS (6524) Presentation Only Weiqiang Chen, Lingyi Zhang, Ali Bazzi, Krishna Pattipati, University of Connecticut, Shalesh Joshi, Ercan Dede, Toyota	Prognostication of Failure in Packaged Power Devices for Automotive Applications (6487) Presentation Only Andreas Lövberg, Klas Brinkfeldt, Jerry Börjesson, Dag Andersson, <i>RISE IVF</i>	Stator Diagnosis in Permanent Magnet Synchronous Motor (6423) Paper Publication Madi Zholbaryssov, University of Illinois at Urbana-Champaign, Azeem Sarwar, General Motors

Technical Sessions MONDAY, OCTOBER 7

	3:30PM	3:50PM	4:10PM	4:30PM
1-5: Design and Characteriza- tion I Fourth Floor, Huntington A Session Organizers: Sandeep Mallampati, <i>Global Foundries</i> , Fabian Welschinger, <i>Bosch</i>	The Assembly Solutions for Heterogeneous Integration Packaging Technology for High Performance Computing (6450) Presentation Only Bo-Hao Ma, Chich Sheng Lin, Nich- olas Kao, Daniel Ng, Yu Po Wang, Siliconware Precision Industries	Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation (6369) Presentation Only Abhijit Dasgupta, University of Maryland	Time-Dependent Behavior of Epoxy Molding Compound Sub- jected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment (6441) Presentation Only Hyun Seop Lee, Sukrut Prashant Phansalkar, Bongtae Han, University of Maryland	Design-for-Reliability of Solder Joint Interconnections in Aero- space Electronics (6318) Presentation Only Ephraim Suhir, Portland State University
2-4: Fundamental Cooling Technologies Fourth Floor, Huntington B Session Organizers: Jimil M. Shah, University of Texas at Arlington, Pavan Rajmane, Qualcomm, Sterve Moon, 3M	Demonstration of a Compli- ant Micro-Spring Array as a Thermal Interface Material for Pluggable Optoelectronic Transceiver Modules (6389) Paper Publication Jin Cui, Liang Pan, Justin Weibel, Purdue University	Investigation Regarding Tran- sient Compact Thermal Model for Microprocessor Packages (6390) Paper Publication Koji Nishi, Japan/Ashikaga University	Thermal and Mechanical De- sign of the Fastest Supercom- puter of the World in Cognitive Systems: IBM POWER AC 922 (6444) Paper Publication Anil Yuksel, Vic Mahaney, Chris Marroquin, Shurong Tian, Mark Hoff- meyer, Mark Schultz, Todd Takken, IBM Corportation	Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior (6501) Paper Publication Sukshitha Achar Puttur Lakshm- inarayana, Huanyu Liao, Ganesh Subbarayan, Purdue University
5-4: Nanostructures/ Flexible Materials and Devices Fourth Floor, Huntington C Session Organizers: Junyou Pan, Guangzhou ChinaRay Optoelectronic Materials, Klaus Müllen, Max-Planck Institute for Polymer Research	Barcode-Like Security Labels Based on Flexible and Ultra-Lightweight Polymer Membrane Lasers (6431) Presentation Only Malte Gather, University of St. Andrews	Near-Field Infrared Imaging of Hot Electrons in Nano-Devices (6330) Presentation Only Zhenghua An, Fudan University	Design of Diffractive Beam Splitters by Indirect Construc- tion of Diffraction Pattern Based on Sampling Theory (6338) Presentation Only Hui Xiong, Hubei University	Direct Ink Printing of Cavities in DPC Ceramic Substrates With Kaolin Pastes for Hermetic Packaging (6616) Paper Publication Ginglei Sun, Yang Peng, Hwo Cheng, Yun Mou, Mingxiang Chen, Huazhong University of Science and Technology
6-7: Two-Phase Cooling Fourth Floor, Palos Verdes B Session Organizers: Ruander Carde- nas , <i>Intel</i> , Franklin Robinson , <i>NASA</i> <i>Goddard Space Flight Center</i>	Two-Phase Immersion Cooling of a SiC on-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers (6494) Presentation Only Tsuji Rikako, Kazuhisa Yuki, Kio Takai, Risako Kibushi, Noriyuki Unno, Sanyo-Onoda City University, Takuya Ide Tetsuro Ogushi, Masaaki Murakami, Tomiyuki Numata, Lotus Thermal Solution, Hikaru Nomura, Osaka University	Gravity Effects in Two-Phase Microgap Flow (6745) Presentation Only Franklin Robinson, NASA Goddard Space Flight Center, Avram Bar-Co- hen, University of Maryland	Moving Boundary Model for Dynamic Control of Two Micro- channel Evaporator Cooling System (6760) Presentation Only Gi Jin, John T. Wen, Shankar Narayanan, Rensselaer Polytechnic Institute	Assessing the Performance of Advanced Cooling Techniques on Thermal Management of Next-Generation Power Electronics (6311) Paper Publication Palash Acharya, Vaibhav Bahadur, Robert Hebner, Abdelhamid Ouroua, Shannon Strank, University of Texas at Austin
7-4: Solid-State Cooling Fourth Floor, Palos Verdes A Session Organizers: Michael Bene- dict, Palo Alto Research Center, Aritra Sur, United Technologies Research Center	Performance of an Electrocaloric (6558) Presentation Only Subramanyaravi Annapragada, Aritra United Technologies Research Center		Magnetocaloric Refrigeration (6623) Presentation Only Ayyoub Momem, Oak Ridge National L	1 aboratory

TUESDAY, OCTOBER 8

	8:00AM	8:20AM	8:40AM	9:00AM
2-5: Data Center Cooling II Fourth Floor, Huntington A Session Organizers: Prakriti Choud- hary, Cheng Chen, Facebook, Brent Goren, Eaton	Optimal Design and Modeling of Server Cabinets With In-Row Coolers and Air Conditioning Units in a Modular Data Center (6522) Paper Publication Uschas Chowdhury, University of Tex- as at Arlington, Mark Hendrix, Thom- as Craft, Willis James, CommScope Inc., Ankit Sutaria, Dereje Agonafer, University of Texas at Arlington	Comparison of Data Driven Modeling Approaches for Temperature Prediction in Data Centers (6565) Presentation Only Jayati Athavale, <i>Facebook</i> , Yogendra Joshi, Minami Yoda, <i>Georgia Tech</i>	Data Center Thermal Efficiency Improvement by Cooling Flow Vectoring Using Synthetic Jets (6585) Paper Publication Eduardo Sepúlveda Jiménez, Jean Paul D'alençon, Luis Silva-Llanca, Universidad de La Serena	Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determina- tion of the Operating Relative Humidity of a Data Center (6601) Paper Publication Jimil M. Shah, Roshan Anand, Satyam Saini, Rawhan Cyriac, Dereje Agonafer, University of Texas at Arlington, Prabjit Singh, IBM, Mike Kaler, Mestek
4-1: Design & Modeling for Flexible Electronics Fourth Floor, Huntington B Session Organizers: Philip Buskohl, U.S. Air Force Research Laboratory, Tsung-Ching Jim Huang, Hewlett Packard Labs	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements (6498) Presentation Only Rui Chen, Yi Zhou, Sridhar Sivapu- rapu, Nahid A. Amoli, Mohamed Bellaredj, Justin Chow, Georgia Institute of Technology, Tsung-Ching Jim Huang, Hewlett Packard Labs, Madhavan Swaminathan, Suresh Sitaraman, Georgia Institute of Technology	Design Tools and FHE Mate- rials for Physically Reconfigu- rable RF Platforms (6750) Presentation Only Philip Buskohl, Air Force Research Laboratory	Bounding the Problem (6764) Presentation Only James Chew, Cadence Design Systems	Applying Multi-Physics Analysis and Data Analytics for IIoT Applications With FHE (6755) Invited Presentation Norman Chang, ANSYS
5-5: Visible LED and its Appli- cations Fourth Floor, Huntington C Session Organizers: Changqing Chen, Huazhong University of Science and Technology, Lai Wang, Tsinghua University	Red InGaN LEDs Grown by Micro-Flow Channel MOVPE (6362) Presentation Only Kazuhiro Ohkawa, Daisuke lida, King Abdullah University of Science and Technology	Hybrid Nitride-Based Micro/ Nano-LEDs With Quantum Dots for High Performance RGB/ White Emissions (6406) Presentation Only Bin Liu, Nanjing University	GaN White Lasers and III-Ni- tride Integrated Photonics for Visible Light Communications (6488) Presentation Only Chao Shen, SaNoor Technologies	Making a Viable Electronic or a Photonic Device Into a Reliable Product: Application of the Probabilistic Design for Reliability Concept (6301) Presentation Only Ephraim Suhir, Portland State University
6-6: Power Electronics Packag- ing Reliability Fourth Floor, Palos Verdes A Session Organizers: Fang Luo, Uni- versity of Arkansas, Pedro Quintero, University of Puerto Rico at Mayaguez	Numerical Investigation on Electromigration Oriented Fail- ure of Lead-Free Solder Joints With Aging Effects (6521) Paper Publication Tusher Ahmed, Mohammad Motalab, Bangladesh University of Engineering and Technology, Jeffrey Suhling, Auburn University	Analysis of Thermal Stress in High Temperature Transient Liquid Phase Bonding of Power Electronics (6525) Presentation Only Yanghe Liu, Toyota Research Institute of North America, Shailesh N. Joshi, Toyota Motor North America, Ercan Dede, Toyota Research Institute of North America	A Reliability Study of Silicon Carbide Power Modules Using POL-&W Packaging Technology (6531) Presentation Only Liang Yin, Christopher Kapusta, Arun Gowda, David Esler, Kaustubh Nagarkar, GE Global Research Center, Risto Tuominen, GE Ventures, Richard Eddins, Liqiang Yang, Robert George, GE Aviation	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design (6424) Paper Publication Mahsa Montazeri, John Harris, David Huitink, Adithya Venkatanarayanan, Simon Ang, University of Arkansas
7-2: Thermal Management Optimization Strategies Fourth Floor, Palos Verdes B Session Organizers: Menglong Hao, University of California, Berkeley, Sean Lubner, Lawrence Berkeley National Laboratory	A Statistical Study to Evaluate the Performance of Liquid Cooling Garments Considering Thermal Comfort (6325) Paper Publication Weicheng Shu, Jiawen Wang, Xinfeng Zhang, Xiaobing Luo, Hauzhong University of Science and Technology	Analysis of Channel Layout of a Pulsating Heat Pipe using Topology Optimization (6360) Presentation Only Jonghyun Lim, Sung Jin Kim, Korea Advanced Institute of Science and Technology	Development and Optimiza- tion of Control Strategy for a Dynamic Cold Plate to Save Pumping Power and Increase the Reliability (6536) Presentation Only Rajesh Kasukurthy, Amrutha Valli Rachakonda, Dereje Agonafer, Uni- versity of Texas at Arlington	Thermal Management of a Highly Optimized Power Dense Non-Rare Earth Permanent Magnet Based Electric Traction Motor (6566) Presentation Only Aritra Sur, Zhentao Du, Robert H. Dold, Jagadeesh K. Tangudu, United Technologies Research Center

Technical Sessions TUESDAY, OCTOBER 8

	10:45AM	11:05AM	11:25AM	11:45AM
2-6: Immersion Cooling I Fourth Floor, Huntington A Session Organizers: Nikhil Lakhkar, Emerson Climate Technologies, Steve Moon, 3M	Experimental Analysis for Optimization of Thermal Per- formance of a Server in Single Phase Immersion Cooling (6590) Paper Publication Pravin Shinde, Pratik Bansode, Satyam Saini, Rajesh Kasukurthy, Tushar Chauhan, Jimil M. Shah, Dereje Agonafer, University of Texas at Arlington	CFD Analysis of Thermal Shadowing and Optimization of Heatsinks in Third-Generation Open Compute Server for Sin- gle-Phase Immersion Cooling (6600) Paper Publication Jimil M. Shah, Ravya Dandamudi, Chinmay Bhatt, Pranavi Rachamred- dy, Pratik Bansode, Dereje Agonafer, University of Texas at Arlington	Viability of Two Phase Immer- sion Cooling by Performing Thermal Testing Vehicle Experi- ments Using Enhanced Boilers (6604) Presentation Only Jimil M. Shah, University of Texas at Arlington	
4-6: FHE Design & Modeling Demonstrations Fourth Floor, Huntington B Session Organizers: Tsung-Ching Jim Huang, Hewlett Packard Labs, Philip Buskohl, Air Force Research Laboratory	Flexible Hybrid Electronics Pro- cess Design Kit (FHE-PDK) (6756) Invited Presentation Tsung-Ching Jim Huang, Hewlett Packard Labs	Manufacturing Process Driven Design (MPDD) for Improved Flexible Hybrid Electronic Design (6768) Invited Presentation Kris Hill, International TechneGroup	EDA Design and Analysis Meth- odology for Flexible Circuits (6759) Presentation Only John Carney, James Chew, John Park, Cadence Design Systems	Digital Qualification of Flexible and Wearable Electronics (6767) Invited Presentation Ian Campbell, OnScale
5-6: LED, OLED and Photo Devices Fourth Floor, Huntington C Session Organizers: Zhenghua An, Fudan University, Chao Shen, SaNoor Technologies	Printed OLED Display and Soluble Materials (6374) Presentation Only Junyou Pan, Jiahui Tan, Xi Yang, Yusheng Chen, Guangzhou ChinaRay Optoelectronic Materials	On the Development of Beta-Ga ₂ O ₃ -Based High-Perfor- mance Solar-Blind Photode- tectors (6414) Presentation Only Yunbin He, Oile Wang, Mingkai Li, Hubei University	Correlated Effects of Self-Heat- ing, Light Output, and Effi- ciency of GaN Light-Emitting Diodes on Junction Tempera- ture (6426) Paper Publication Bikramjit Chatterjee, James Spencer Lundh, Daniel Shoemaker, Pennsyl- vania State University, Tae Kyoung Kim, Joon Seop Kwak, Sunchon National University, Jaehee Cho, Chonbuk National University, Sukwon Choi, Pennsylvania State University	High Performance Nonplar M-Plane InGaN Multiple-Quan- tum-Well Solar Cells With Improved Carrier Collection and High Temperature Spectral Response (6335) Presentation Only Xuanqi Huang, Houqiang Fu, Yuji Zhao, Arizona State University
6-4: Metrology Techniques Fourth Floor, Palos Verdes A Session Organizers: Ronald Warzoha, U.S. Naval Academy, Brian Foley, Pennsylvania State University	Evaporation Rate Measurement at Multiple Scales Using Tem- perature-Sensitive Fluores- cence Dyes (6372) Paper Publication Youngjoon Suh, Cheng-Hui Lin, Hamsa Gowda, Yoonjin Won, Univer- sity of California, Irvine	Advances in Nanoscale Thermoreflectance Thermal Imaging Calibration (6425) Presentation Only Kazuaki Yazawa, Dustin Kendig, Microsanj, Ali Shakouri, Purdue University	Application of X-Ray CT Images and Phase-Shifted Sampling Moiré Method to Residual Strain Measurement in Elec- tronic Packages (6486) Presentation Only Masaaki Koganemaru, Sho Nagato, Kagoshima University, Masakazu Uchino, Fukuoka Industrial Technol- ogy Center, Toru Ikeda, Kagoshima University	Thermoreflectance Imaging of Electromigration in Aluminum Interconnects at Different Ambient Temperatures (6413) Paper Publication Sami Alajlouni, Kerry Maize, Peter Bermel, Ali Shakouri, Purdue University
7-3: Phase-Change Cooling Fourth Floor, Palos Verdes B Session Organizers: Marc Dunham, 3M, Kyle Gluesenkamp, Oak Ridge National Laboratory	Mechanical Properties of Poly- ethylene Based Heat Storage Composite Containing Phase Change Material and Copper Sheet (6464) Presentation Only Kohei Fukuchi, Kenichi Ohguchi, Kengo Kurosawa, Yuuki Sugimoto, Akita University, Katsuhiko Sasaki, Hokkaiido University	Characterizing Dynamic Response of Phase Change Materials (6656) Presentation Only Alison Hoe, Texas A&M University, Michael Barako, Northrop Grumman, Patrick Shamberger, Texas A&M University	Evaporation of Microdroplet Suspended on Porous Micro- pillar Structure: The Effect of Micropillar Height on Transport Performance (6465) Presentation Only Junhui Li, Li Shan, Binjian Ma, Runzhi Zhang, Damena Agonafer, Washington University in St. Louis, Baris Dogruoz, Cisco Systems	Molecular Dynamics Simula- tion of Thin-Film Evaporation From Nanocoated Surfaces: The Asymptotic Relationship Between Evaporation Rate and Nanocoating Thickness (6466) Presentation Only Binjian Ma, Rui Zhou, Li Shan, Junhui Li, Washington University in St. Louis, Baris Dogruoz, Cisco Systems Inc., Damena Agonafer, Washington University in St. Louis

TUESDAY, OCTOBER 8

	1:45PM	2:05PM	2:25PM	2:45PM
1-6: Microsystems Packaging Fourth Floor, Huntington A Session Organizers: Subhasis Mukherjee, Apple, Subramanyaravi Annapragada, United Technologies Research Center	Double Side System in Pack- age Development Challenge for Heterogeneous Integration (6354) Paper Publication Feng Kao, Yu Po Wang, Davidion Wang, Jensen Tsai, Mike Tsai, Ryan Chiu, Eric He, Silliconware Precision Industries	Performance Analysis and Shape Optimization of Mani- fold in Liquid-Cooled Parallel Micro-Channel Heat Sinks (6455) Presentation Only Yaser Hadad, Cong Hoang, Srikanth Rangarajan, Binghamton University, Paul R. Chiarot, State University of New York at Binghamton, Bahgat Sammakia, Binghamton University	Minimizing the Effects of On- Chip Hot-Spots Using Multi-Ob- jective Optimization of Flow Distribution in Water-Cooled Parallel Micro-Channel Heat Sinks (6459) Presentation Only Yaser Hadad, Vahideh Radmard, Mahdi Farahikia, Binghamton Univer- sity, Paul R. Chiarot, State University of New York at Binghamton, Bahgat Sammakia, Binghamton University	High Strain Rate Mechanical Properties of SAC-Q With Sus- tained Elevated Temperature Storage at 100°C (6576) Paper Publication Pradeep Lall, Vishal Mehta, Jeffrey Suhling, Auburn University, David Locker, U.S. Army RDECOM
5-7: Organic Materials and Devices Fourth Floor, Huntington B Session Organizers: Malte Gather, University of St. Andrews, Yunbin He, Hubei University	Mechanical Instability in Or- ganic Optoelectronics: Surface Wrinkling and Its Prediction (6355) Presentation Only Yu-Lin Shen, University of New Mexico	Organic Electronics for Neuro- morphic Computing (6375) Presentation Only Yoeri van de Burgt, Eindhoven University of Technology	Double Perovskites as p-Type Conducting Transparent Semi- conductors: A High-Through- put Search (6378) Presentation Only Haichen Wang, Miguel A.L. Marques, Martin-Luther-Universität Halle-Wit- tenberg	Designed Silver Nanowires Transparent Conductive Elec- trodes for Efficient Optoelec- tronic Devices (6380) Presentation Only Bin Hu, Huazhong University of Science and Technology
6-8: Microchannel Heat Sinks Fourth Floor, Huntington C Session Organizers: Hyoungsoon Lee, Chung-Ang University, Bladimir Ramos Alvarado, Pennsylvania State University	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa (6400) Paper Publication Ki Wook Jung, Stanford Universi- ty, Hyoungsoon Lee, Chung-Ang University, Chirag R. Kharangate, Case Western Reserve University, Feng Zhou, Toyota Research Institute North America, Mehdi Asheghi, Stanford University, Ercan Dede, Toyota Research Institute of North America, Kenneth Goodson, Stanford University	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa (6382) Presentation Only Daeyoung Kong, Chung-Ang University, Ki Wook Jung, Stanford University, Sangwoo Jung, Dae- woong Jung, Chung-Ang University, Joseph Schaadt, Villanova University, Madhusudan Iyengar, Chris Malone, Google LLC, Chirag R. Kharangate, Case Western Reserve University, Mehdi Asheghi, Kenneth Goodson, Stanford University, Hyoungsoon Lee, Chung-Ang University	Parametric Study of Sili- con-Based Embedded Micro- channels With 3D Manifold Coolers (EMMC) for High Heat Flux ("1 kW/cm ²) Power Elec- tronics Cooling (6472) Paper Publication Ki Wook Jung, Sougata Hazra, Heu- ngdong Kwon, Stanford University, Stanford, CA, United States, Alisha Piazza, Stanford Nano-heat Lab, Stanford, CA, United States, Edward Jih, Ford Motor Co, Dearborn, MI, United States, Mehdi Asheghi, Stan- ford University, Stanford, CA, United States, Man Prakash Gupta, Michael Degner, Ford Motors, Dearborn, MI, United States, Kenneth Goodson, Stanford University, Stanford, CA, United States	
7-1: Batteries, Supercapacitors, and Solar Cells I Fourth Floor, Palos Verdes A Session Organizers: Amy Marconnet, Purdue University, June Stanley, Sandia National Laboratories	Operando Measurements of the Dominant Thermal Resis- tance in Lithium-Ion Batteries (6658) Presentation Only Sean Lubner, Sumanjeet Kaur, Yanbao Fu, Vince Battaglia, Ravi Prasher, Lawrence Berkeley National Laboratory	Lithium Plating and Dendrites in Li-Ion Batteries Under Ther- mal Gradient (6432) Presentation Only Conner Fear, Aashutosh Mistry, Purdue University, Rachel Carter, Corey T. Love, U.S. Naval Research Laboratory, Partha Mukherjee, Purdue University	Effects of Non-Uniform Tem- perature Distributions on Lithi- um-Ion Battery Degradation (6477) Presentation Only Gabriel M. Cavalheiro, Takuto Iriya- ma, Shan Huang, George Nelson, Guangsheng Zhang, University of Alabama in Huntsville	Effect of Transition Metal Prussian Blue Analogues as Mediators on the Performance of Mediator Supercapacitor (6478) Presentation Only Xiangyang Zhou, University of Miami
8-5: Material Modeling for Automotive Packaging II Fourth Floor, Palos Verdes B Session Organizers: Adam Boros, Bosch, Anna Prakash, Intel	Nanoindentation Testing of SAC305 Solder Joints Subject- ed to Thermal Cycling Loading (6471) Paper Publication Abdullah Fahim, S.M. Kamrul Hasan, Jeffrey Suhling, Pradeep Lall, Auburn University	Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-Based Molding Com- pounds (6409) Presentation Only Fabian Welschinger, Przemyslaw Jakub Gromala, Bosch, Hüsnü Dal, Middle East Technical University in An- Kara, Hyun Seop Lee, Bongtae Han, University of Maryland	Effects of Thermal Cycling on the Mechanical and Micro- structural Evolution of SAC305 Lead-Free Solder (6563) Paper Publication S.M. Kamrul Hasan, Abdullah Fahim, Jeffrey Suhling, Sa'd Hamasha, Pradeep Lall, Auburn University	Investigation of the Effects of High Temperature Aging on Mechanical Behavior and Mi- crostructural Changes in Lead Free Solders (6571) Paper Publication Jing Wu, Mohammad S. Alam, Jeffrey Suhling, Pradeep Lall, Auburn University

TUESDAY, OCTOBER 8

	3:30PM	3:50PM	4:10PM	4:30PM
5-8: Packaging and Thermal Management I Fourth Floor, Huntington A Session Organizers: Firooz Faili, Element Six, Duanjun Cai, Xiamen University	Numerical Analysis of Pulse Laser Assisted Curing Region of Photocurable Resins (6356) Paper Publication Yuta Nakamura, Kazuyoshi Fushino- bu, Asato Tamura, Tokyo Institute of Technology	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components (6391) Paper Publication Jeho Kim, Georgia Institute of Technology. J. Michael Brown, Man- ufacturing Resources International, Yogendra Joshi, Georgia Institute of Technology, Kevin O'Connor, Marcos Diaz, Manufacturing Resources International, Zhuomin Zhang, Peiyan Yang, Georgia Institute of Technology	Topology Optimization of Time-Transient Heat Conduc- tion for Thermo-Optic Devices (6526) Presentation Only Ercan Dede, Toyota Research Institute of North America, Gil Ho Yoon, Ha- nyang University, Paul Schmalenberg, Tsuyoshi Nomura, Toyota Research Institute of North America	Modeling of Light Emitting Device Populations in the Electrical, Thermal, and Optical Domain for Luminaire Design (6547) Paper Publication Gabor Farkas, Marta Rencz, Andras Vass Varnai, Lajos Gaal, Mentor Graphics
6-9: Phase Change Materials Fourth Floor, Huntington B Session Organizers: Michael Fish, U.S. Army Research Laboratory, Jorge Padilla, Google	Evaluation of Thermal and Electrical Properties of Na- no-Enhanced PCM for Usage in High-Voltage Systems (6422) Paper Publication Ange-Christian Iradukunda, Joshua Kasitz, Fernando Moreno, David Huitink, University of Arkansas	Metallic PCMs Microstructural Stability Under Repetitive Melt- ing/Solidification Cycles (6385) Paper Publication Rafael Baez, Luis Gonzalez, Univer- sity of Puerto Rico-Mayaguez, Lauren M. Boteler, U.S. Army Research Lab- oratory, Pedro Quintero, University of Puerto Rico-Mayaguez	Lamellar Phase Change Mate- rial Composites for Power Elec- tronics Thermal Management (6751) Presentation Only Patrick Shamberger, Alison Hoe, Mi- chael Deckard, Achutha Tamraparni, Alaa Elwany, Jonathan Felts, <i>Texas</i> <i>A&M University</i>	Multi-Scale Multi-Fidelity Approaches to Power and Thermal System Engineering Challenges (6772) Invited Presentation Nicholas Niedbalski, U.S. Air Force
6-10: Thermal Interface Ma- terials Fourth Floor, Huntington C Session Organizers: Xuhui Feng , <i>Na- tional Renewable Energy Laboratory</i> , Dinesh P R Thanu , <i>Intel</i>	Evaluation of Contact Thermal Resistance of Metal Material in Low Contact Pressure Region (6543) Presentation Only Yoshiki Hyodo, Tomoyuki Hatakeya- ma, Toyama Prefectural University, Risako Kibushi, Sanyo-Onoda City University, Masaru Ishizuka, Toyama Prefectural University	Thermal Contact Resistance at DBC Interfaces (6609) Presentation Only Lauren Boteler, U.S. Army Research Laboratory, Ronald Warzoha, U.S. Naval Academy	Thermo-Mechanical Degra- dation of Thermal Interface Materials: Accelerated Test Development and Reliability Analysis (6416) Paper Publication Dustin Pense, Hayden Carlton, Da- vid Huitink, University of Arkansas	
7-6: Batteries, Supercapacitors, and Solar Cells III Fourth Floor, Palos Verdes A Session Organizers: Laura Spinella, National Renewable Energy Laborato- ry, Kazuaki Yazawa, Purdue University	Three-Dimensional Modeling of Mediator-Enhanced Solid-State Supercapacitors (6481) Presentation Only Xiangyang Zhou, University of Miami	Application of Electronics Packaging Fundamentals to Photovoltaic Interconnects and Packaging (6520) Paper Publication Laura Spinella, Nick Bosco, National Renewable Energy Laboratory	Development of Structural Supercapacitors With Epoxy Based Adhesive Polymer Electrolyte (6480) Presentation Only Xiangyang Zhou, University of Miami	

WEDNESDAY, OCTOBER 9

	8:00AM	8:20AM	8:40AM	9:00AM
1-2: Thermal Management Applications I Fourth Floor, Huntington A Session Organizers: Srikanth Rangarajan, Binghamton University, Leila Choobineh, SUNY Polytechnic Institute	Thermal Cycle Reliability of Package on Package (PoP) Assemblies (6317) Presentation Only Reza Ghaffarian, NASA Jet Propul- sion Laboratory	Optimal Arrangement of Multi- ple Heat Sources in Vertically Stacked Two-Layer 3D IC Using Genetic Algorithm (6334) Paper Publication Srikanth Rangarajan, Yaser Hadad, Binghamton University, Leila Choo- bineh, SUNY Polytechnic Institute, Bahgat Sammakia, Binghamton University	Thermal-Switch-Enabled Power Electronics Isothermalization (6738) Presentation Only Tianyu Yang, University of Illinois at Urbana-Champaign, Fei Diao, Alan Mantooth, Yue Zhao, University of Arkansas, William P. King, Nenad Miljkovic, University of Illinois at Urbana-Champaign	
4-3: Flexible Electronics Pack- aging & Assembly Fourth Floor, Huntington B Session Organizers: Pradeep Lall, Auburn University, Baris Dogruoz, Cisco Systems	Applying Ultrasonic Dehu- midification Technology for Water Rejection in Wearable Electronics (6387) Paper Publication Priyanka Deo, Samuel Graham, Georgia Tech, Ayyoub Momen, Oak Ridge National Laboratory	Foldable Thermal Ground Plane for Cooling of Foldable Smartphones (6351) Presentation Only Ali Nematollahisarvestani, University of Colorado Boulder, Ryan Lewis, Kelvin Thermal Technologies, Yung- Cheng Lee, University of Colorado Boulder	Stretchable and Wearable Emitters Based on Corrugated Nickel for Personal Thermal Management (6628) Presentation Only Anirudh Krishna, Martí Sala-Casano- vas, Ziqi Yu, Jaeho Lee, University of California, Irvine	How Ultrathin Die Enable Flexi- ble Hybrid Electronics (6769) Invited Presentation Wilfred Bair, NextFlex
5-9: Packaging and Thermal Management II Fourth Floor, Huntington C Session Organizers: Niamh Richard- son, University of Limerick, Ercan Dede, Toyota	Study on the Precise Measure- ment of LED Thermal Resis- tance Based on LEDs With an Internal Sensor Unit (6321) Presentation Only Yugang Zhou, Renbao Tian, Zili Xie, Bin Liu, Rong Zhang, Youdou Zheng, Nanjing University	Prediction and Control Technique of the Paper Media Temperature After Fusing in Electrophotographic Process (6396) Paper Publication Shunsuke Kawasaki, Shinichi Kura- moto, Kazuyoshi Fushinobu, Koichi Kato, Tokyo Institute of Technology, Kimiharu Yamazaki, Kaori Hemmi, Ricoh	Reducing CTE Mismatch and Maximizing Heat Transport on Single Emitter Laser Diodes Using Diamond Heat Spreaders (6599) Presentation Only Firooz Faili, Alex Muhr, Thomas Obeloer, Daniel Twitchen, Element Six Technologies	
6-5: High-Temperature Elec- tronics Packaging Fourth Floor, Palos Verdes B Session Organizers: Douglas DeVoto, National Renewable Energy Laborato- ry, Christina DiMarino, Virginia Tech	Aging Dependent Anand Parameters of SAC305 Lead Free Solder at Extreme High Temperatures (6564) Presentation Only K.M. Rafidh Hassan, Mohammad S. Alam, Jeffrey Suhling, Pradeep Lall, Auburn University	Evaluation of a Lead Glass for Encapsulating High-Tem- perature Power Modules for Aerospace Application (6393) Paper Publication Lanbing Liu, David Nam, Virginia Tech, Ben Guo, United Technologies, Rolando Burgos, Guo-Quan Lu, Virginia Tech	Health Monitoring of PCBs Un- der Mechanical Shock Loads (6578) Paper Publication Pradeep Lall, Tony Thomas, Jeffrey Suhling, Auburn University, Ken Blecker, U.S. Army CCDC-AC	Advances in Organic Substrate Approaches for High Voltage Power Electronics Packaging (6770) Invited Presentation Douglas Hopkins, North Carolina State University
6-11: System-Level Thermal Design I Fourth Floor, Palos Verdes A Session Organizers: Todd Bandhauer, Colorado State University, David Huitink, University of Arkansas	Modular Heat Sinks for En- hanced Thermal Management of Electronics (6665) Presentation Only Muhammad Jahidul Hoque, Ahmet Gunay, Andrew Stillwell, Yashraj Gurumukhi, University of Illinois at Urbana-Champaign, Robert Pila- wa-Podgurski, University of California, Berkeley, Nenad Miljkovic, University of Illinois at Urbana-Champaign	Thermal Analysis of High Effi- ciency High Speed Drives (6534) Paper Publication Yasmin Khakpour, Weilun Warren Chen, Parikshith Channegowda, Matthew R. Pearson, Yongduk Lee, Luis Arndeo, United Technologies Research Center	Evaluation of Low Order Stress Models for Use in Co-Design Analysis of Electronics Pack- aging (6381) Paper Publication Lauren Boteler, U.S. Army Research Laboratory, Steven Miner, U.S. Naval Academy	Multi-Scale Thermal Analysis for Design of SiC-Based Medi- um Voltage Motor Drive (6631) Paper Publication J. Emily Cousineau, Kevin Bennion, National Renewable Energy Labora- tory, Karun Potty, He Li, Risha Na, Longya Xu, Jin Wang, Ohio State University

	10:45AM	11:05AM	11:25AM	11:45AM
1-8: Thermal Management Applications II Fourth Floor, Huntington A Session Organizers: Yuling Niu, Bing- hamton University, Leila Choobineh, SUNY Polytechnic Institute	Thermal Analysis of 3D ICs With TSVs Placement Optimi- zation (6417) Paper Publication Zongqing Ren, Ayed Alqahtani, Nader Bagherzadeh, Jaeho Lee, University of California, Irvine	Fabrication Steps and Thermal Modeling of Three-Dimensional Asynchronous Field Program- mable Gate Array (3D-AFPGA) (6514) Paper Publication Robert Carroll, SUNY Polytechnic Institute, Carlos Gutierrez, Leila Choobineh, SUNY Polytechnic Insti- tute, Robert Geer, SUNY Polytechnic Institute	Power Delivery and Thermal Management for the Silicon Interconnect Fabric (6550) Presentation Only Ujash Shah, Pranav Ambhore, Umesha Mogera, Subramanian Iyer, Timothy Fisher, Boris Vaisband, Uni- versity of California, Los Angeles	Generating Ultra-Packed Ther- mal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties (6669) Presentation Only Huanyu Liao, Sukshitha Achar Puttur Lakshminarayana, Ganesh Subbarayan, Purdue University
4-4: Interconnect Reliability in Flexible Systems Fourth Floor, Huntington B Session Organizers: Vaibhav Agraw- al, Intel, Benjamin Leever, Air Force Research Laboratory	Damage of Flexible Electronic Line Printed With Ag Nanopar- ticle Ink due to High-Current Density (6408) Paper Publication Daiki Saito, Kazuhiko Sasagawa, Takeshi Moriwaki, Kazuhiro Fujisaki, Hirosaki University	Stress Evaluation of Flexible Displays With Multiple-Lami- nations Architecture Enabled by Experimental Measurement and Simulation Based Factorial Design (6541) Paper Publication Chang-Chun Lee, Pei-Chen Huang, Chi-Wei Wang, Oscar Chuang, National Tsing Hua University	Folding-Reliability of Flexible Electronics in Wearable Appli- cations (6584) Paper Publication Pradeep Lall, Hyesoo Jang, Auburn University, Benjamin Leever, Air Force Research Laboratory, Scott Miller, NextFlex	Flexure and Twist Test Reli- ability Assurance of Flexible Electronics (6579) Paper Publication Pradeep Lall, Jinesh Narangaparam- bil, Auburn University, Benjamin Leever, Air Force Research Laborato- ry, Scott Miller, NextFlex
6-12: System-Level Thermal Design II Fourth Floor, Huntington C Session Organizers: Nicholas Nied- balski, U.S. Air Force, Kristen Hines, Johns Hopkins	System Electrothermal Transient Analysis of a High Current (40A) Synchronous Step-Down Converter (6384) Paper Publication Rajen Murugan, Jie Chen, Todd Harrison, Texas Instruments, C.T. Kao, Nathan Ai, Cadence Design Systems	Direct Bonding of Aluminum Foam With AlSiC for Rapid Fabrication of Power Electronic Packages (6733) Presentation Only Darshan Pahinkar, Chidinma Imedi- egwu, Georgia Institute of Technology, Jordon Hoyer, Mississippi State Uni- versity, Brian Kelly, Samuel Graham, Georgia Institute of Technology	Effects of Cooling Architecture and PCB Layout Co-Design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger (6434) Paper Publication Omri Tayyara, Kshitij Gupta, Carlos Da Silva, Miad Nasr, Amir Assadi, Olivier Trescases, Cristina H. Amon, University of Toronto	
7-7: Thermal Characterization Fourth Floor, Palos Verdes A Session Organizers: Ayyoub Momen, Ock Ridge National Laboratory, Aritra Sur, United Technologies Research Center	Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures (6606) Presentation Only Cheng-Hui Lin, Youngjoon Suh, Yoonjin Won, University of California, Irvine	Combined Experimental-Nu- merical Investigation of Microstructure and Thermal Conduction in Dispensed and Squeezed Thermal Interface Materials (6462) Presentation Only Rajath Kantharaj, Jackson Santana, Carl Wassgren, Aaron Morris, Amy Marconnet, Purdue University	Surface Temperature Measure- ments using Infrared Thermom- etry Considering Background Radiation From High-Tempera- ture Environment (6505) Presentation Only Mingeon Kim, Korea Advanced Institute of Science and Technology, Dong Hwan Shin, Jinsub Kim, Jung- ho Lee, Korea Institute of Machinery and Materials, Bong Jae Lee, Korea Advanced Institute of Science and Technology	Experimental Investigation of Asymmetrical Microdroplet Evaporation on Heated Porous Pillar Array Structures (6449) Presentation Only Li Shan, Runzhi Zhang, Xinyu Jiang, Binjian Ma, Washington University in St. Louis, Jorge Padilla, Google LLC, Damena Agonafer, Washington University in St. Louis
8-1: ECU-Level Reliability Fourth Floor, Palos Verdes B Session Organizers: Ercan Dede, Toyota, Hyun Seop Lee, University of Maryland	Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead- Free Solders (6562) Paper Publication Mohammad Ashraful Haq, Mohd Aminul Hoque, Jeffrey Suhling, Pradeep Lall, Auburn University	A Study on Relationship Between Low Cycle Fatigue Strength and Load Conditions for Lead Fee Solder Material (6446) Presentation Only Takashi Kawakami, Takahiro Kinoshi- ta, Yuki Murai, Toyama Prefectural University	The Effect of Low Temperature Conditions on Vibration Dura- bility of SAC105 Interconnects (6509) Presentation Only David Leslie, University of Maryland, College Park, Karsten Meier, Maximil- ian Ochmann, Technische Universität Dresden, Tamara Storz, Hochschule Mannheim - University of Applied Sci- ences, Abhijit Dasgupta, University of Maryland, College Park	Automated Method Using Finite Element Analysis to Iden- tify Plated Through Holes and Microvia Stacks at Failure Risk in Complex PCB Designs (6347) Paper Publication Kourosh Kalayeh, <i>DIR Solutions</i> , Na- talie Hernandez, <i>ANSYS Inc.</i> , Nathan Blattau, Craig Hillman, <i>DIR Solutions</i>

WEDNESDAY, OCTOBER 9

	1:45PM	2:05PM	2:25PM	2:45PM
2-7: Immersion Cooling II Fourth Floor, Palos Verdes B Session Organizers: Nikhil Lakhkar, Emerson Climate Technologies, Steve Moon, 3M	Impact of Immersion Cooling on Thermo-Mechanical Proper- ties of PCBs and Reliability of Electronic Packages (6568) Paper Publication Shrinath Ramdas, Pavan Rajmane, Tushar Chauhan, Abel Misrak, Dereje Agonafer, University of Texas at Arlington	Computational Analysis for Thermal Optimization of Server for Single Phase Immersion Cooling (6587) Paper Publication Dhruvkumar Gandhi, Dereje Agonafer, Tushar Chauhan, Uschas Chowdhury, Satyam Saini, Pratik Bansode, Jimil M. Shah, University of Texas at Arlington	Computational Form Factor Study of a Third-Generation Open Compute Server for Sin- gle-Phase Immersion Cooling (6602) Paper Publication Jimil M. Shah, Chinmay Bhatt, Pra- navi Rachamreddy, Ravya Dandamu- di, Satyam Saini, Dereje Agonafer, University of Texas at Arlington	
3-1: IoT Applications Fourth Floor, Huntington A Session Organizers: Baris Dogruoz, Cisco Systems, Damena Agonafer, Washington University in St. Louis	Thermal Characterization of Composite Ultra-High Molecu- lar Weight Polyethylene Fabrics (6412) Presentation Only Aaditya Candadai, Justin Weibel, Amy Marconnet, Purdue University	Packaging Environmental Sen- sors for an Internet-of-Things Solution for Urban-Microcli- mate Studies (6515) Paper Publication Shuv Dey, Yogendra Joshi, Georgia Tech, J. Michael Brown, Manufactur- ing Resources International	Ultra-Low SWaP CO ₂ Sensing for Demand Control Ventilation (6747) Presentation Only Elif Karatay, Eric Cocker, Kyle Arakaki, David Schwartz, Palo Alto Research Center	An RF-Powered Self-Locating Flexible Building Environment Sensor System (6306) Presentation Only David Schwartz, Shabnam Ladan, Vijay Venkatasubramanian, Clinton Smith, Joseph Lee, Ping Mei, Brent Krusor, Shakthi Gowri, Palo Alto Research Center
4-5: Process Development and Characterization of Flexible Systems Fourth Floor, Huntington B Session Organizers: David Schwartz, Janos Veres, Palo Alto Research Center, Vaibhav Agrawal, Intel	Process Capability of Aero- sol-Jet Additive Processes for Long-Runs up to 10 Hours (6569) Paper Publication Pradeep Lall, Amrit Abrol, Nakul Kothari, Auburn University, Benjamin Leever, Air Force Research Laborato- ry, Scott Miller, NextFlex	Effect of Charge-Discharge Depth and Environment Use Conditions on Flexible Power Sources (6570) Paper Publication Pradeep Lall, Amrit Abrol, Ved Soni, Auburn University, Benjamin Leever, Air Force Research Laboratory, Scott Miller, NextFlex	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry (6574) Paper Publication Pradeep Lall, Kartik Goyal, Nakul Kothari, Auburn University, Benjamin Leever, Air Force Research Laborato- ry, Scott Miller, NextFlex	Acceleration Factors for Flexi- ble Electronics in Wearable Ap- plications From Actual Human Body Measurements (6580) Paper Publication Pradeep Lall, Tony Thomas, Vikas Yadav, Jinesh Narangaparambil, Wei Liu, Auburn University
6-13: System Integration Fourth Floor, Huntington C Session Organizers: Ramchandra Kotecha , <i>National Renewable</i> <i>Energy Laboratory</i> , Sangbeom Cho , <i>Qualcomm</i>	Comparative Study on Power Module Architectures for Mod- ularity and Scalability (6443) Paper Publication Mei-Chien Lu, Monte Rosa Tech- nology	Integration Challenges of SiC Power Module for High Tem- perature and High Frequency Operation (6548) Presentation Only Shohei Suenaga, Shailesh N. Joshi, Toyota	Parametric and Sensitivity Analysis of Power Module Design (6592) Paper Publication Lauren Boteler, Michael Fish, Morris Berman, U.S. Army Research Laboratory	Packaging and Integration of an Additively Manufactured Photovoltaic Inverter (6411) Presentation Only Akanksha Singh, National Renewable Energy Laboratory
7-8: Thermal Switches and Thermal Metamaterials Fourth Floor, Palos Verdes A Session Organizers: Menglong Hao, University of California, Berkeley, Sean Lubner, Lawrence Berkeley National Laboratory	3D Architected Packaging Structures for Thermal Man- agement (6415) Presentation Only Shiva Farzinazar, Jaeho Lee, Univer- sity of California, Irvine	Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Management (6402) Paper Publication Gary Liang, Ashkan Sadeghifard, Anirudh Krishna, Jaeho Lee, Edwin Peraza Hernandez, University of California, Irvine	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams (6554) Presentation Only Luis Delgado, Purdue University, Tingting Du, Shandong University, Purdue University, Amy Marconnet, Xiulin Ruan, Purdue University	Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foams (6557) Presentation Only Tingting Du, Shangdong University, Weizhi Liao, Luis Delgado, Joseph Peoples, Amy Marconnet, Xiulin Ruan, Purdue University

Technical Sessions WEDNESDAY, OCTOBER 9

	3:30PM	3:50PM	4:10PM	4:30PM
4-2: Microfluidics for Flexible Electronics Fourth Floor, Huntington B Session Organizers: Azar Alizadeh, General Electric, E. Yegan Erdem, Bilkent University	Textured Superoleophobic Surfaces: Fabrication and Characterization (6713) Presentation Only Ecem Yelekli, E. Yegan Erdem, Bilkent University	Experimental Study of Flexible Electrohydrody-namic Conduc- tion Pumping for Electronics Cooling (6746) Presentation Only Alexander J. Castaneda, Nathaniel O'Connor, Jamal Yagoobi, Worcester Polytechnic Institute	Bio-Applications of Wearable Sensors (6775) Invited Presentation Andrew Burns, <i>General Electric</i>	Microfluidic Devices for Health Monitoring (6774) Invited Presentation Leanna Levine, Aline
6-14: Additive Manufacturing Fourth Floor, Huntington C Session Organizers: Douglas Hop- kins , North Carolina State University, Stephen Lynch , Pennsylvania State University	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization (6442) Paper Publication Reece Whitt, David Huitink, Skyler Hudson, Bakhtiyar Mohammad Nafis, Zhao Yuan, Balaji Narayana- samy, Amol Deshpande, Fang Luo, Asif Imran, University of Arkansas, Zion Clarke, Sonya Smith, Howard University	A Numerical Investigation of Additive Manufactured Foam Structures for Single Phase Hotspot Thermal Management (6519) Paper Publication Justin Broughton, Yogendra Joshi, Georgia Tech	Advanced Packaging and Ther- mal Management of High-Pow- er DC-DC Converters (6559) Paper Publication Sevket Umut Yuruker, Raphael Mandel, Patrick McCluskey, Michael Ohadi, Shiladri Chakraborty, Yong- wan Park, He Yun, Alireza Khaligh, University of Maryland, Lauren Boteler, Miguel Hinojosa, U.S. Army Research Laboratory	Additive Manufactured Hybrid Cold Plates for Efficient Ther- mal Management of High-Pow- er Density Electronics (6664) Presentation Only Muhammad Jahidul Hoque, Nithin Vinod Upot, Nenad Milijkovic, Univer- sity of Illinois at Urbana-Champaign
6-15: Emerging Technologies Fourth Floor, Palos Verdes A Session Organizers: Paul Paret, Na- tional Renewable Energy Laboratory, Patrick McCluskey, University of Maryland	Evolution of Anand Parameters With Elevated Temperature Aging for SAC Leadfree Alloys (6577) Paper Publication Pradeep Lall, Vikas Yadav, Jeffrey Suhling, Auburn University, David Locker, U.S. Army RDECOM	Simulating the Effect of Elastic Particle Inclusion on the Mechanical Properties of Tran- sient Liquid Phase Sintered (TLPS) Alloys (6435) Presentation Only Gilad Nave, Erick Gutierrez, Patrick McCluskey, University of Maryland	Quantitative Characterization of Sapphire and Silicon Nitride for Space Applications Circuit Subassemblies Using Cryogen- ic Cycling (6499) Paper Publication Kirsten Lovelace, Sonya Smith, Howard University	Effect of Low Melting Point Bridge With High Melting Point Fine Filler on the Conductivity of Conductive Adhesive (6403) Presentation Only Michiya Matsushima, Shogo Minami, Naoki Ito, Shinji Fukumoto, Kozo Fujimoto, Osaka University
7-10: Batteries, Supercapaci- tors, and Solar Cells II Fourth Floor, Palos Verdes B Session Organizers: Xiangyang Zhou, University of Miami, Chuanbo Yang, National Renewable Energy Laboratory	Li-Ion Battery Impact Testing (6710) Presentation Only June Stanley, Sandia National Laboratories	The Role of Interfacial Thermal Resistance in Li-Ion Battery Thermal Management (6594) Paper Publication Chuanbo Yang, Lei Cao, National Renewable Energy Laboratory	In-situ Diagnosis of Li-Ion Bat- tery Internal Short Circuit (6757) Presentation Only Shan Huang, Guangsheng Zhang, University of Alabama in Huntsville	A High-Performance Polymer Electrolyte Membrane Based on Poly (Vinylidene Fluoride) and Graphene Oxide Doped With Redox Species (6479) Paper Publication Xiangyang Zhou, University of Miami
8-7: Reliability of Electronic Components for Harsh Environ- ment Fourth Floor, Redondo Session Organizers: Fabian Welschinger, Bosch, David Huitink, University of Arkansas	Effects of Shear Cycling on the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints (6567) Paper Publication Mohd Aminul Hoque, Md. Mah- mudur Chowdhury, Jeffrey Suhling, Sa'd Hamasha, Pradeep Lall, Auburn University	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissi- pation in Vapor Chambers (6367) Presentation Only Srivathsan Sudhakar, Justin Weibel, Purdue University, Feng Zhou, Toyota Research Institute North America, Ercan Dede, Toyota Research Institute of North America, Suresh Garimella, University of Vermont	Effect of Drop Angle Variation and Restraint Mecha-nisms on Surface Mount Electronics Under High G Shock (6575) Paper Publication Pradeep Lall, Aathi Raja Ram Pan- durangan, Jeffrey Suhling, Auburn University, John Deep, Air Force Re- search Laboratory, Ryan Lowe, ARA Associates, Venkata Kalyan Reddy Dornala, Auburn University	Modeling of Underfilled PBGA Assemblies Using Both Vis- coelastic and Elastic Material Properties (6561) Paper Publication Promod Chowdhury, Jeffrey Suhling, Pradeep Lall, Auburn University

MONDAY, OCTOBER 7

Monday, October 7, 8:00AM-9:30AM

TRACK 1: HETEROGENEOUS INTEGRATION

Track Organizer: Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States Track Co-Organizers: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Winston Zhang, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China

1-7: DESIGN AND CHARACTERIZATION II

Concourse Level, Fourth Floor, Huntington A

Session Organizer: **Shankar Narayanan**, *RPI, Troy, NY, United States* Session Co-Organizer: **Shima Hajimirza**, *Texas A&M University, College Station, TX, United States*

-	
8:00AM	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads Technical Paper Publication. InterPACK2019-6507
	Travis Dale, Yuvraj Singh, Ian Bernander, Ganesh Subbarayan, Carol Handwerker, Purdue University, West Lafayette, IN, United States, Peng Su, Bernard Glasauer, Juniper Networks, Sunnyvale, CA, United States
8:20AM	Strain Distribution in a Small Solder Specimen With Few Crystal Grains Technical Presentation. InterPACK2019-6546
	Toru Ikeda, Takumi Sasaki, Atushi Yanase, Kagoshima University, Kagoshima, Japan, Dai Okumura, Nagoya University, Nagoya, Aichi, Japan, Yoshiharu Kariya, Shibaura Institute of Technology, Tokyo, Japan, Masaaki Koganemaru, Kagoshima University, Kagoshima, Japan
8:40AM	Medium to High Strain-Rate Characterization of Lead Free Solder Alloys Through Metal Cutting Experiments Technical Paper Publication. InterPACK2019-6510
	Yuvraj Singh, Anirudh Udupa, Srinivasan Chandrasekar, Ganesh Subbarayan, Purdue University, West Lafayette, IN, United State
	RVERS OF THE FUTURE, EDGE, AND CLOUD COMPUTING: WITH PAPERS HONORING MICHAEL ELLSWORTH BUTIONS AND SERVICE TO ASME INTERPACK, THE ELECTRONIC AND PHOTONIC PACKAGING DIVISION, AND IN LIQUID COOLING OF SERVER SYSTEMS
Frack Co-Organi	Saket Karajgikar, Facebook Inc., Menlo Park, CA, United States izers: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Cisco Systems Inc., Santa Clara, CA, United States
2-1: DATA CENT	
Concourse Leve	el, Fourth Floor, Huntington B
-	ter: Cheng Chen, Facebook Inc., Menlo Park, CA, United States anizer: Prakriti Choudhary, Facebook Inc., Menlo Park, CA, United States, Brent Goren, Eaton Corporation, San Marcos, CA, United States
8:00AM	Dynamic Control of Airflow Balance in Data Centers Technical Paper Publication. InterPACK2019-6304
8.00AW	Stephen Linder, Schneider-Electric, Medford, MA, United States, Jim VanGilder, Yan Zhang, Schneider-Electric, Andover, MA, Unite States, Enda Barrett, National University of Ireland Galway, Galway, Ireland
8:20AM	Thermal Profiling of a Small Operational Data Center Technical Paper Publication. InterPACK2019-6309
	Ismail Turkmen, Cem Ahmet Mercan, Hamza Salih Erden, Istanbul Technical University, Istanbul, Turkey
8:40AM	Feedback Control System for Airflow Management in Data Centers Using Active Air Dampers Technical Presentation. InterPACK2019-6430
	Ghazal Mohsenian, Binghamton State University, Binghamton, NY, United States, Sadegh Khalili, State University of New York at Binghamton, Binghamton, NY, United States, Bahgat Sammakia, Binghamton University, Binghamton, NY, United States
9:00AM	Thermal Challenges in Servers Technical Presentation. InterPACK2019-6532
	Timothy Chainer Mark Schultz Pritish Parida IBM Yorktown Heights NY United States

Monday, October 7, 8:00AM-9:30AM

TRACK 5: PHOTONICS AND OPTICS

Track Organizer: Changqing Chen, Huazhong University of Science and Technology, Wuhan, China Track Co-Organizer: Ping Zhou, LDX Optronics, Maryville, TN, United States, Haiding Sun, University of Science and Tech-nology of China, Anhui, China

5-1: DUV-LED I

Concourse Level, Fourth Floor, Huntington C

Session Organizer: **Yuji Zhao**, Arizona State University, Tempe, AZ, United States Session Co-Organizer: **Jonathan Klamkin**, University of California, Santa Barbara, Santa Barbara, CA, United States

8:00AM	AlGaN Nanowire Light Emitting Diodes on Metal Substrates Technical Presentation. InterPACK2019-6322 Haiding Sun, University of Science and Technology of China, Anhui, China
8:20AM	 Large Roll Hexagonal BN Monolayer: Synthesis, Modulation Doping and 2D Emitter Technical Presentation. InterPACK2019-6326 Duanjun Cai, Guozhen Liu, Yuejin Wang, Xiamen University, Xiamen, Fujian, China
8:40AM	Polarization Engineering of III-Nitride Photonic Devices Technical Presentation. InterPACK2019-6370 Cheng Liu, Jing Zhang, Rochester Institute of Technology, Rochester, NY, United States
9:00AM	Recent Progress on the Development of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes Technical Presentation. InterPACK2019-6310 Zi-Hui Zhang, Yonghui Zhang, Kangkai Tian, Chunshuang Chu, Jiamang Che, Hua Shao, Jianquan Kou, Xu Hou, Hebei University of Technology, Tianjin, China
Track Co-Organize	auren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States m: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research ord, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States
	Fourth Floor, Palos Verdes A
	: Jae-Hyun Ryou, University of Houston, Houston, TX, United States izer: Richard Thomas, U.S. Army Research Laboratory, Adelphi, MD, United States, Anil Yuksel, IBM Corporation, Austin, TX, United States
8:00AM	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs Technical Presentation. InterPACK2019-6438
	Bikramjit Chatterjee, Yiwen Song, Brian Foley, Pennsylvania State University, State College, PA, United States, Hyungtak Kim, Hongik University, Seoul, Korea (Republic), Sukwon Choi, Pennsylvania State University, University Park, PA, United States
8:20AM	Piezoresistive Theory for 4H Silicon Carbide Stress Sensors on Four-Degree Off-Axis Wafers Technical Paper Publication. InterPACK2019-6461
	Jun Chen, Richard Jaeger, Jeffrey Suhling, Auburn University, Auburn, AL, United States
8:40AM	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques Technical Presentation. InterPACK2019-6528 Yiwen Song, Bikramjit Chatterjee, Brian Foley, Pennsylvania State University, University Park, PA, United States, Jae-Hyun Ryou, Weijie Wang, University of Houston, Houston, TX, United States, Sukwon Choi, Pennsylvania State University, University, University, University, Park, PA,
	United States, Jacob Leach, Kyma Technologies, Inc., Raleigh, NC, United States, Srabanti Chowdhury, Stanford University, Stanford, CA, United States
9:00AM	Design, Analysis and Comparison of Insulated Metal Substrates for High Power Wide-Bandgap Power Modules Technical Paper Publication. InterPACK2019-6436
	Emre Gurpinar, Burak Ozpineci, Shajjad Chowdhury, Oak Ridge National Laboratory, Knoxville, TN, United States

MONDAY, OCTOBER 7

Monday, October 7, 8:00AM-9:30AM

TRACK 8: AUTONOMOUS, HYBRID, AND ELECTRIC VEHICLES

Track Organizer: Przemysław Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany

Track Co-Organizer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States, Sven Rzepka, Fraunhofer ENAS, Chemnitz, Germany

8-2: ELECTRIC/HYBRID CARS

Concourse Level, Fourth Floor, Palos Verdes B

Session Organizer: **Azeem Sarwar,** *General Motors, Warren, MI, United States* Session Co-Organizer: **Przemyslaw Jakub Gromala,** *Robert Bosch GmbH, Reutlingen, Germany*

8:00AM	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles Technical Paper Publication. InterPACK2019-6429
	Bakhtiyar Mohammad Nafis, David Huitink, Ange-Christian Iradukunda, Yarui Peng, Imam Al Razi, University of Arkansas, Fayetteville, AR, United States
8:20AM	Experimentation and Simulation of Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid Technical Presentation. InterPACK2019-6445
	Xuhui Feng, Kevin Bennion, J. Emily Cousineau, Gilberto Moreno, Bidzina Kekelia, Sreekant Narumanchi, Jeff Tomerlin, Nationa Renewable Energy Laboratory, Golden, CO, United States
8:40AM	Thermal Management of Fast Charging Systems for Electrified Vehicles Technical Presentation. InterPACK2019-6660
	Yashraj Gurumukhi, Muhammad Jahidul Hoque, University of Illinois at Urbana-Champaign, Urbana, IL, United States, Hansen Qiao, Stanford University, Stanford, CA, United States, Myung Ki Sung, Xi Lu, Ted Fillipi, Ford Motor Company, Dearborn, MI, United States, Andrew Alleyne, University of Illinois, Urbana, IL, United States, Kenneth Goodson, Mehdi Asheghi, Stanford University, Stan ford, CA, United States, Nenad Miljkovic, University of Illinois at Urbana-Champaign, Urbana, IL, United States
9:00AM	Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid Technical Paper Publication. InterPACK2019-6457
	Bidzina Kekelia, Kevin Bennion, Xuhui Feng, Gilberto Moreno, J. Emily Cousineau, Sreekant Narumanchi, Jeff Tomerlin, Nationa Renewable Energy Laboratory, Golden, CO, United States

Monday, October 7, 10:45AM–12:15PM

TRACK 1: HETEROGENEOUS INTEGRATION

Track Organizer: Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States Track Co-Organizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Winston Zhang, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China

1-3: MICROFABRICATION

Concourse Level, Fourth Floor, Huntington A

Session Organizer: **Tuhin Sinha,** *IBM, Hopewell Junction, NY, United States* Session Co-Organizer: **Shima Hajimirza,** *Texas A&M University, College Station, TX, United States*

10:45AM	CFD Analysis of Molten Solder Flow Behavior and Bridging Mechanism During Solder Bump Formation Technical Paper Publication. InterPACK2019-6395
	Risa Miyazawa, IBM Japan, Ltd., Kawasaki, Japan, Keishi Okamoto, IBM Research - Tokyo, Kawasaki, Japan, Hiroyuki Mori, IBM Japan Ltd., Kawasaki, Kanagawa, Japan
11:05AM	Numerical/Experimental Hybrid Approach to Predict Warpage of Thin Substrates Technical Presentation. InterPACK2019-6420
1.03AW	Sukrut Prashant Phansalkar, Bongtae Han, University of Maryland, College Park, MD, United States, Jongkeun Moon, Samsung Electronics, Asansi, Korea (Republic)
11:25AM	Addressing the Challenges in Laser Micro-Machining and Bonding of Silicon Microchannel Cold-Plate and 3D-Manifold for Em- bedded Cooling Applications: Perfect Debris Removal Technical Paper Publication. InterPACK2019-6539
	Sougata Hazra, Ki Wook Jung, Stanford University, Stanford, CA, United States, Madhusudan Iyengar, Chris Malone, Google, LLC, Mountain View, CA, United States, Mehdi Asheghi, Kenneth Goodson, Stanford University, Stanford, CA, United States
9	
Ģ	Saket Karajgikar, Facebook Inc., Menlo Park, CA, United States zer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Bar Systems Inc., Santa Clara, CA, United States
Dogruoz, Cisco 2-2: TWO PHAS	zer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Bar Systems Inc., Santa Clara, CA, United States
Dogruoz, Cisco 2-2: TWO PHAS Concourse Leve Session Organiz	zer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Bar Systems Inc., Santa Clara, CA, United States E COOLING I
Dogruoz, Cisco 2-2: TWO PHAS Concourse Leve Session Organiz	zer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Bar Systems Inc., Santa Clara, CA, United States E COOLING I I, Fourth Floor, Huntington B er: Emad A. Poshtan, Bosch, Reutlingen, Germany
Dogruoz, Cisco 2-2: TWO PHAS Concourse Leve Session Organiz	zer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Bar Systems Inc., Santa Clara, CA, United States E COOLING I I, Fourth Floor, Huntington B er: Emad A. Poshtan, Bosch, Reutlingen, Germany anizer: Mark Schultz, IBM Corporation, Yorktown Heights, NY, United States An Experimental Investigation on the Fluid Distribution in a Two-Phase Cooled Rack Under Steady and Transient IT Load
Dogruoz, Cisco 2-2: TWO PHAS Concourse Leve Session Organiz Session Co-Org	zer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Bari Systems Inc., Santa Clara, CA, United States E COOLING I I, Fourth Floor, Huntington B er: Emad A. Poshtan, Bosch, Reutlingen, Germany anizer: Mark Schultz, IBM Corporation, Yorktown Heights, NY, United States An Experimental Investigation on the Fluid Distribution in a Two-Phase Cooled Rack Under Steady and Transient IT Load Technical Paper Publication. InterPACK2019-6463 Sadegh Khalili, State University of New York at Binghamton, Binghamton, NY, United States, Srikanth Rangarajan, Binghamton University, Vestal, NY, United States, Bahgat Sammakia, Binghamton University, Binghamton, NY, United States, Vadim Gektin, Fu-

MONDAY, OCTOBER 7

Monday, October 7, 10:45AM-12:15PM

TRACK 5: PHOTONICS AND OPTICS

Track Organizer: Changqing Chen, Huazhong University of Science and Technology, Wuhan, China Track Co-Organizer: Ping Zhou, LDX Optronics, Maryville, TN, United States, Haiding Sun, University of Science and Technology of China, Anhui, China

5-2: DUV-LED II

Concourse Level, Fourth Floor, Huntington C

Session Organizer: **Zi-Hui Zhang,** Hebei University of Technology, Tianjin, China Session Co-Organizer: **Haiding Sun,** University of Science and Technology of China, Anhui, China

Session co org	anizer. Harring out, oniversity of occhee and reclamology of china, Anina, ening
10:45AM	III-Nitride UV-Visible Integrated Photonics for Quantum and Biomedical Applications Technical Presentation. InterPACK2019-6323
	Yuji Zhao, Arizona State University, Tempe, AZ, United States
11:05AM	Improvement of DUV LEDs Light Extraction Efficiency by Novel Microstructures Technical Presentation. InterPACK2019-6340
	Changqing Chen, Shuang Zhang, Shuai Wang, Jun Zhang, Hanling Long, Qian Chen, Jiangnan Dai, Huazhong University of Science and Technology, Wuhan, China
11:25AM	Strain Effect on AlGaN Anisotropic Ultraviolet Light Emitting Characteristic Technical Presentation. InterPACK2019-6341
	Hanling Long, Linlin Xu, Jiangnan Dai, Changqing Chen, Huazhong University of Science and Technology, Wuhan, Hubei, China
11:45AM	Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization Technical Presentation. InterPACK2019-6357
	Shiqiang Lu, Wei Lin, Shuping Li, Junyong Kang, Duanjun Cai, Xiamen University, Xiamen, Fujian, China
TRACK 6: PO	WER ELECTRONICS
Track Co-Organi	Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States zer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research tford, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States
6-2: ULTRA-WIE	DE BANDGAP GALLIUM OXIDE ELECTRONICS
Concourse Leve	I, Fourth Floor, Palos Verdes A
Session Organiz	er: Jungwan Cho, Kyunghee University, Gyeonggido, Korea (Republic)
Session Co-Org	anizer: Mandar Kulkarni, Amazon, Fremont, CA, United States
	Electrothermal Modeling and Analysis of Gallium Oxide Power Switching Devices Technical Paper Publication. InterPACK2019-6453
10:45AM	Ramchandra Kotecha, Andriy Zakutayev, Wyatt Metzger, Paul Paret, Gilberto Moreno, Bidzina Kekelia, Kevin Bennion, Barry Mather, Sreekant Narumanchi, National Renewable Energy Laboratory, Golden, CO, United States, Samuel Kim, Samuel Graham, Georgia Institute of Technology, Atlanta, GA, United States
11:05AM	Thermal Management of Beta-Ga ₂ O ₃ Transistors Technical Presentation. InterPACK2019-6728
	Samuel Kim, Chao Yuan, Jingjing Shi, Samuel Graham, Georgia Institute of Technology, Atlanta, GA, United States
	Thermal Management of Gallium Oxide Electronics via Hetero-Integration on High Thermal Conductivity Substrates Technical Presentation. InterPACK2019-6439
11:25AM	Bikramjit Chatterjee, Pennsylvania State University, State College, PA, United States, Craig McGray, Modern Microsystems, Inc., Gaithersburg, MD, United States, Jacob Leach, Kyma Technologies, Inc., Raleigh, NC, United States, Yiwen Song, Zahabul Islam, Aman Haque, Brian Foley, Sukwon Choi, Pennsylvania State University, University Park, PA, United States
	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga2O3-Diamond Interfaces Technical Presentation. InterPACK2019-6608
11:45AM	Zhe Cheng, Georgia Institute of Technology, Atlanta, GA, United States, Virginia Wheeler, Marko Tadjer, Karl Hobart, U.S. Naval Research Laboratory, Washington, DC, United States, Jingjing Shi, Georgia Institute of Technology, Atlanta, GA, United States, Tingyu Bai, University of California, Los Angeles, Los Angeles, United States, Luke Yates, Georgia Institute of Technology, Atlanta, GA, United States, Mark Goorsky, University of California, Los Angeles, Los Angeles, Los Angeles, CA, United States, Samuel Graham, Georgia Institute of Technology, Atlanta, GA, United States

Monday, Octobe	er 7, 10:45AM–12:15PM
TRACK 7: ENE	RGY CONVERSION AND STORAGE
Track Co-Organiz	Guangsheng Zhang, University of Alabama in Huntsville, Huntsville, AL, United States zer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States, Xuemin Li, A123 Systems, Waltham, MA, United Aomen, Oak Ridge National Library, Oak Ridge, TN, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, United States
	ES AND OPPORTUNITIES IN THERMAL MANAGEMENT OF COMPONENTS AND SYSTEMS I, Fourth Floor, Palos Verdes B
	er: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States anizer: Ayyoub Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States
	Challenges and Opportunities in Thermal Management of Directed Energy Systems Technical Presentation. InterPACK2019-6625
10:45AM	Avram Bar-Cohen, DARPA, Arlington, VA, United States, Terry G. DuBois, U.S. Army Futures Command, Aberdeen Proving Ground, MD, United States
11:05AM	Measuring Junction Temperature of LEDs: Challenges and Opportunities Technical Presentation. InterPACK2019-6776
	Mehmet Arik, Ozyegin University, Istanbul, Turkey
8-4: MATERIAL I Concourse Level Session Organize	Apka, Fraunhofer ENAS, Chemnitz, Germany MODELING FOR AUTOMOTIVE PACKAGING I I, Fourth Floor, Redondo er: Xuhui Feng, National Renewable Energy Laboratory, Golden, CO, United States anizer: Klas Brinkfeldt, RISE IVF AB, Molndal, Sweden
10:45AM	Study of Thermal Aging Behavior of Epoxy Molding Compound for Applications in Harsh Environments Technical Presentation. InterPACK2019-6506
10.107.00	Przemyslaw Jakub Gromala, Adwait Inamdar, Alexandru Prisacaru, Robert Bosch GmbH, Reutlingen, Germany, Bongtae Han, University of Maryland, College Park, MD, United States
11:05AM	Fatigue Delamination Crack Growth of Potting Compounds in PCB/Epoxy Interfaces Under Flexure Loading Technical Paper Publication. InterPACK2019-6572
II.05AW	Pradeep Lall, Kalyan Dornala, Jeffrey Suhling, Auburn University, Auburn, AL, United States, John Deep, U.S. Air Force Research Laboratory, Eglin AFB, AL, United States, Ryan Lowe, ARA Associates, Littleton, CO, United States
11:25AM	Moisture Transport Through Housing Materials Enclosing Critical Automotive Electronics Technical Presentation. InterPACK2019-6621
	Artur Roman, Bongtae Han, University of Maryland, College Park, MD, United States
11·25AM	Evolution of the Microstructure of Lead Free Solders Subjected to Both Aging and Cyclic Loading Technical Paper Publication. InterPACK2019-6560
11:45AM	Md. Mahmudur Chowdhury, Mohd Aminul Hoque, Jeffrey Suhling, Sa'd Hamasha, Pradeep Lall, Auburn University, Auburn, AL, United States

MONDAY, OCTOBER 7

Monday, October 7, 1:45PM-3:15PM

TRACK 1: HETEROGENEOUS INTEGRATION

Track Organizer: Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States Track Co-Organizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Winston Zhang, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China

1-4: FUNDAMENTAL OF THERMAL TRANSPORT

Concourse Level, Fourth Floor, Huntington A

Session Organizer: **Nirup Nagabandi,** Incendium Technologies, College Station, TX, United States Session Co-Organizer: **Yuling Niu,** State University of New York at Binghamton, Vestal, NY, United States

Session Co-Orga	anizer: Yuling Niu, State University of New York at Binghamton, Vestal, NY, United States
1:45PM	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings Technical Paper Publication. InterPACK2019-6307
	Quang Pham, Youngjoon Suh, Bowen Shao, Yoonjin Won, University of California, Irvine, Irvine, CA, United States
2:05PM	Effect of Inclined Angle of Radiator on Natural Convective Heat Dissipation Performance Technical Paper Publication. InterPACK2019-6313
	Tengfei Ma, Wen Wang, Shanghai Jiao Tong University, Shanghai, China
2:25PM	Ultrahigh Thermal Boundary Conductance Across GaN-SiC Heterogeneous Interfaces by Surface Activated Bonding Technical Presentation. InterPACK2019-6607
2.231 1	Zhe Cheng, Georgia Institute of Technology, Atlanta, GA, United States, Fengwen Mu, Tadatomo Suga, University of Tokyo, Tokyo, Japan, Samuel Graham, Georgia Institute of Technology, Atlanta, GA, United States
2:45PM	Demonstration of 150-micron Ultrathin Vapor Chambers for 5G Smartphones Technical Presentation. InterPACK2019-6683
2.10111	Ryan Lewis, Kelvin Thermal Technologies, Lafayette, CO, United States, Yung Cheng Lee, University of Colorado, Boulder, CO, United States
Track Co-Organiz	Saket Karajgikar, Facebook Inc., Menlo Park, CA, United States zer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Baris Systems Inc., Santa Clara, CA, United States
2-3: TWO PHAS Concourse Level	E COOLING II I, Fourth Floor, Huntington B
Ų	er: Emad A. Poshtan, Robert Bosch GmbH, Reutlingen, Germany anizer: Mark Schultz, IBM Corporation, Yorktown Heights, NY, United States
1:45PM	The Critical Role of Dynamic Surface Wettability on Bubble Dynamics and Boiling Performance Technical Presentation. InterPACK2019-6308
1.431 101	Taylor Allred, Justin Weibel, Purdue University, West Lafayette, IN, United States, Suresh Garimella, University of Vermont, Burlington, VT, United States
2:05PM	On Temperature Discontinuity at an Evaporating Liquid-Vapor Interface Technical Presentation. InterPACK2019-6346
2:25PM	Parham Jafari, Hadi Ghasemi, University of Houston, Houston, TX, United States
2:25PM	
2:25PM	Parham Jafari, Hadi Ghasemi, University of Houston, Houston, TX, United States Capillary Evaporation in Graphene Coated Nanochannels
2:25PM 2:45PM	Parham Jafari, Hadi Ghasemi, University of Houston, Houston, TX, United States Capillary Evaporation in Graphene Coated Nanochannels Technical Presentation. InterPACK2019-6428
	Parham Jafari, Hadi Ghasemi, University of Houston, Houston, TX, United States Capillary Evaporation in Graphene Coated Nanochannels Technical Presentation. InterPACK2019-6428 Hadi Ghasemi, Masoumeh Nazari, University of Houston, Houston, TX, United States Enabling Thermal Management of High-Powered Server Processors Using Passive Thermosiphon Heat Sink

Technical Sessions MONDAY, OCTOBER 7

Monday, October 7, 1:45PM–3:15PM

TRACK 5: PHOTONICS AND OPTICS

Track Organizer: Changqing Chen, Huazhong University of Science and Technology, Wuhan, China Track Co-Organizer: Ping Zhou, LDX Optronics, Maryville, TN, United States, Haiding Sun, University of Science and Technology of China, Anhui, China

5-3: INTEGRATED PHOTONICS AND WIDE BANDGAP PHOTONICS Concourse Level, Fourth Floor, Huntington C

Session Organizer: **Jing Zhang,** *Rochester Institute of Technology, Rochester, NY, United States* Session Co-Organizer: **Bin Liu,** *Nanjing University, Nanjing, Jiangsu Province, China*

1:45PM	On-Chip Detection From Directly Modulated Quantum Dot Microring Lasers on Si Technical Presentation. InterPACK2019-6352 Yating Wan, UCSB, Goleta, CA, United States
2:05PM	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures Technical Presentation. InterPACK2019-6371 Lai Wang, Xingzhao Wu, Tsinghua University, Beijing, China, Julien Brault, Mohamed Al Khalfioui, Maud Nemoz, CNRS, Valbonne, France, Zhibiao Hao, Yi Luo, Changzheng Sun, Bing Xiong, Yanjun Han, Jian Wang, Hongtao Li, Tsinghua University, Beijing, China
2:25PM	Laser Integration Technologies for Silicon Photonics Technical Presentation. InterPACK2019-6610 Jonathan Klamkin, University of California, Santa Barbara, Santa Barbara, CA, United States
2:45PM	Improving Performance and Reliability of GaN-Based Flip-Chip Light Emitting Diodes by Reflective Bonding Pads Technical Presentation. InterPACK2019-6337 Linlin Xu, Hanling Long, Jiangnan Dai, Changqing Chen, Huazhong University of Science and Technology, Wuhan
TRACK 6: POWER ELECTRONICS	
Track Organizer: Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States Track Co-Organizer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research Center, East Hartford, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States	

6-3: DEVICE THERMAL MANAGEMENT AND RELIABILITY Concourse Level, Fourth Floor, Palos Verdes A

Session Organizer: **Shubhodeep Goswami,** *General Electric Company, Niskayuna, NY, United States* Session Co-Organizer: **Lauren Kegley,** *Cree Wolfspeed, Fayetteville, AR, United States*

1:45PM	Degradation Modeling and Reliability Assessment of Capacitors Technical Paper Publication. InterPACK2019-6456
	Anunay Gupta, Om Prakash Yadav, Arighna Roy, North Dakota State University, Fargo, ND, United States, Douglas DeVoto, Na- tional Renewable Energy Laboratory, Golden, CO, United States, Joshua Major, National Renewable Energy Laboratory, Denver, CO, United States
2:05PM	Thermal Assessment and In-Situ Monitoring of Insulated Gate Bipolar Transistors in Power Electronic Modules Technical Paper Publication. InterPACK2019-6470
	Erick Gutierrez, Kevin Lin, University of Maryland, College Park, MD, United States, Douglas DeVoto, National Renewable Energy Laboratory, Golden, CO, United States, Patrick McCluskey, University of Maryland, College Park, MD, United States
2:25PM	The Effect of Anisotropy on Thermal Boundary Conductance at Metal-Semiconductor Interface Technical Presentation. InterPACK2019-6748
	Jingjing Shi, Zhe Cheng, Chao Yuan, Samuel Graham, Georgia Institute of Technology, Atlanta, GA, United States
	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics Technical Paper Publication. InterPACK2019-6440
2:45PM	James Spencer Lundh, Pennsylvania State University, University Park, PA, United States, Yiwen Song, Bikramjit Chatterjee, Penn- sylvania State University, State College, PA, United States, Albert G. Baca, Robert J. Kaplar, Andrew M. Armstrong, Andrew A. Allerman, Sandia National Laboratories, Albuquerque, NM, United States, Hyungtak Kim, Hongik University, Seoul, Korea (Republic), Sukwon Choi, Pennsylvania State University, University Park, PA, United States

MONDAY, OCTOBER 7

Monday, October 7, 1:45PM-3:15PM

TRACK 8: AUTONOMOUS, HYBRID, AND ELECTRIC VEHICLES

Track Organizer: **Przemysław Jakub Gromała,** Robert Bosch GmbH, Reutlingen, Germany Track Co-Organizer: **Gopi Krishnan,** Tesla, Palo Alto, CA, United States, **Ercan Dede,** Toyota Research Institute of North America, Ann Arbor, MI, United States, **Sven Rzepka,** Fraunhofer ENAS, Chemnitz, Germany

8-6: PROGNOSTICS AND HEALTH MANAGEMENT OF AUTOMOTIVE ELECTRONICS Concourse Level, Fourth Floor, Palos Verdes B

Session Organizer: Przemysław Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany Session Co-Organizer: Bongtae Han, University of Maryland, College Park, MD, United States

	Ciliana Deced Discoveristics Strees Sense as a Local Counter for Automotive Flashrania Sustaine
	Silicon-Based Piezoresistive Stress Sensor as a Load Counter for Automotive Electronic Systems Technical Presentation. InterPACK2019-6419
1:45PM	
	Yu-Hsiang Yang, Bongtae Han, University of Maryland, College Park, MD, United States
	Data-Driven Approaches for Fault Prognosis of SiC MOSFETs
	Technical Presentation. InterPACK2019-6524
2:05PM	Walning Chan Lings 7 Januar Ali Darri Krishan Dattingti University of Connecting the Charge CT United States Shalloch N Jachi
	United States
	Prognostication of Failure in Packaged Power Devices for Automotive Applications
2.250M	Technical Presentation. InterPACK2019-6487
Z.ZOPIVI	
	Andreas Lövberg, Klas Brinkfeldt, Jerry Börjesson, Dag Andersson, RISE IVF AB, Mölndal, Sweden
	Stator Diagnosis in Permanent Magnet Synchronous Motor (PMSM)
0.45014	Technical Paper Publication. InterPACK2019-6423
2:45PM	Madi Thelbanyasay University of Illinois at Urbana Champaign Urbana II. United States, Azoom Sarwar, Conoral Motors, Warren
	Mil United States
2:05PM 2:25PM 2:45PM	 Prognostication of Failure in Packaged Power Devices for Automotive Applications Technical Presentation. InterPACK2019-6487 Andreas Lövberg, Klas Brinkfeldt, Jerry Börjesson, Dag Andersson, RISE IVF AB, Mölndal, Sweden Stator Diagnosis in Permanent Magnet Synchronous Motor (PMSM) Technical Paper Publication. InterPACK2019-6423 Madi Zholbaryssov, University of Illinois at Urbana-Champaign, Urbana, IL, United States, Azeem Sarwar, General Motors, Warren,

Monday, October 7, 3:30PM–5:00PM

TRACK 1: HETEROGENEOUS INTEGRATION

Track Organizer: Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States Track Co-Organizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Winston Zhang, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China

1-5: DESIGN AND CHARACTERIZATION

Concourse Level, Fourth Floor, Huntington A

Session Organizer: Sandeep Mallampati, globalfoundries, Albany, NY, United States Session Co-Organizer: Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany

3:30PM	The Assembly Solutions for Heterogeneous Integration Packaging Technology for High Performance Computing Technical Presentation. InterPACK2019-6450
	Bo-Hao Ma, Chich Sheng Lin, Nicholas Kao, Daniel Ng, Yu Po Wang, Siliconware Precision Industries Co., Ltd., Taichung, Taiwan
3:50PM	Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation Technical Presentation. InterPACK2019-6369
	Abhijit Dasgupta, University of Maryland College Park, College Park, MD, United States
4:10PM	Time-Dependent Behavior of Epoxy Molding Compound Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment Technical Presentation. InterPACK2019-6441
	Hyun Seop Lee, Sukrut Prashant Phansalkar, Bongtae Han, University of Maryland, College Park, MD, United States
4:30PM	Design-for-Reliability of Solder Joint Interconnections in Aerospace Electronics Technical Presentation. InterPACK2019-6318
	Ephraim Suhir, Portland State University, Portland, OR

MONDAY, OCTOBER 7

Monday, October 7, 3:30PM-5:00PM

TRACK 2: SERVERS OF THE FUTURE, EDGE AND CLOUD COMPUTING: WITH PAPERS HONORING MICHAEL ELLSWORTH FOR CONTRIBUTIONS AND SERVICE TO ASME INTERPACK, THE ELECTRONIC AND PHOTONIC PACKAGING DIVISION, AND LEADERSHIP IN LIQUID COOLING OF SERVER SYSTEMS

Track Organizer: Saket Karajgikar, Facebook Inc., Menlo Park, CA, United States

Zhenghua An, Fudan University, Shanghai, Shanghai, China

Technical Presentation. InterPACK2019-6338

Hui Xiong, Hubei University, Wuhan, China

Technical Paper Publication. InterPACK2019-6616

Track Co-Organizer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States

2-4: FUNDAMENTAL COOLING TECHNOLOGIES Concourse Level, Fourth Floor, Huntington B

3:50PM

4:10PM

4:30PM

Session Organizer: **Jimil M. Shah,** University of Texas at Arlington, Arlington, TX, United States Session Co-Organizer: **Pavan Rajmane,** Qualcomm, San Diego, CA, United States, **Steve Moon,** 3M Company, St. Paul, MN, United States

3:30PM	Demonstration of a Compliant Micro-Spring Array as a Thermal Interface Material for Pluggable Optoelectronic Transceiver Modules Technical Paper Publication. InterPACK2019-6389
3.30PM	Jin Cui, Liang Pan, Justin Weibel, Purdue University, West Lafayette, IN, United States
3:50PM	Investigation Regarding Transient Compact Thermal Model for Microprocessor Packages Technical Paper Publication. InterPACK2019-6390
	Koji Nishi, Japan/Ashikaga University, Ashikaga, Japan
4:10PM	Thermal and Mechanical Design of the Fastest Supercomputer of the World in Cognitive Systems: IBM POWER AC 922 Technical Paper Publication. InterPACK2019-6444
	Anil Yuksel, Vic Mahaney, IBM Corporation, Austin, TX, United States, Chris Marroquin, IBM Corporation, Rochester, MN, United States, Shurong Tian, IBM Corporation, Yorktown Heights, NY, United States, Mark Hoffmeyer, IBM Corporation, Rochester, MN, United States, Mark Schultz, Todd Takken, IBM Corporation, Yorktown Heights, NY, United States
4:30PM	Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior Technical Paper Publication. InterPACK2019-6501
	Sukshitha Achar Puttur Lakshminarayana, Huanyu Liao, Ganesh Subbarayan, Purdue University, West Lafayette, IN, United States
TRACK 5: PH	OTONICS AND OPTICS
Ų	Changqing Chen, Huazhong University of Science and Technology, Wuhan, China izer: Ping Zhou, LDX Optronics, Maryville, TN, United States, Haiding Sun, University of Science and Technology of China, Anhui, China
Concourse Leve	UCTURES/FLEXIBLE MATERIALS & DEVICES el, Fourth Floor, Huntington C
	anizer: Junyou Pan, Guangzhou ChinaRay Optoelectronic Materials Co., Ltd, Guangzhou, China, Klaus Müllen, Max-Planck Institute for ch, Mainz, Germany
3:30PM	Barcode-Like Security Labels Based on Flexible and Ultra-Lightweight Polymer Membrane Lasers Technical Presentation. InterPACK2019-6431
	Malte Gather, University of St. Andrews, St. Andrews, Fife, United Kingdom
3.20PM	Near-Field Infrared Imaging of Hot Electrons in Nano-Devices Technical Presentation. InterPACK2019-6330

Design of Diffractive Beam Splitters by Indirect Construction of Diffraction Pattern Based on Sampling Theory

Qinglei Sun, Yang Peng, Hao Cheng, Yun Mou, Mingxiang Chen, Huazhong University of Science and Technology, Wuhan, China

Direct Ink Printing of Cavities in DPC Ceramic Substrates With Kaolin Pastes for Hermetic Packaging

MONDAY, OCTOBER 7

Monday, October 7, 3:30PM-5:00PM

TRACK 6: POWER ELECTRONICS

Track Organizer: Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States Track Co-Organizer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research Center, East Hartford, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States

6-7: TWO PHASE COOLING

Concourse Level, Fourth Floor, Palos Verdes B

Session Organizer: **Ruander Cardenas,** Intel Corporation, Hillsboro, OR, United States Session Co-Organizer: **Franklin Robinson,** NASA Goddard Space Flight Center, Greenbelt, MD, United States

3:30PM	Two-Phase Immersion Cooling of a SiC On-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers Technical Presentation. InterPACK2019-6494
	Tsuji Rikako, Kazuhisa Yuki, Kio Takai, Risako Kibushi, Noriyuki Unno, Sanyo-Onoda City University, Sanyo-Onoda, Japan, Takuy Ide, Tetsuro Ogushi, Masaaki Murakami, Tomiyuki Numata, Lotus Thermal Solution Inc., Kitaku, Japan, Hikaru Nomura, Osaka University, Toyonakashi, Japan
3:50PM	Gravity Effects in Two-Phase Microgap Flow Technical Presentation. InterPACK2019-6745
3.50PM	Franklin Robinson, NASA Goddard Space Flight Center, Greenbelt, MD, United States, Avram Bar-Cohen, University of Maryland a College Park, College Park, MD, United States
4:10PM	Moving Boundary Model for Dynamic Control of Two Microchannel Evaporator Cooling System Technical Presentation. InterPACK2019-6760
	Qi Jin, John T. Wen, Shankar Narayanan, Rensselaer Polytechnic Institute, Troy, NY, United States
4:30PM	Assessing the Performance of Advanced Cooling Techniques on Thermal Management of Next-Generation Power Electronics Technical Paper Publication. InterPACK2019-6311
	Palash Acharya, Vaibhav Bahadur, Robert Hebner, Abdelhamid Ouroua, Shannon Strank, University of Texas at Austin, Austin, 7 United States

MONDAY, OCTOBER 7-TUESDAY, OCTOBER 8

Monday, October	7, 3:30PM–5:00PM	
TRACK 7: ENERGY CONVERSION AND STORAGE		
Track Organizer: Guangsheng Zhang, University of Alabama in Huntsville, Huntsville, AL, United States Track Co-Organizer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States, Xuemin Li, A123 Systems, Waltham, MA, United States, Ayyoub Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, United States		
	7-4: SOLID-STATE COOLING Concourse Level, Fourth Floor, Palos Verdes A	
	r: Michael Benedict, PARC, Palo Alto, CA, United States nizer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States	
3:30PM	Performance of an Electrocaloric Heat Pump Device Technical Presentation. InterPACK2019-6558	
3.30FW	Subramanyaravi Annapragada, United Technologies Research, East Hartford, CT, United States, Aritra Sur, Joseph Mantese, Unit- ed Technologies Research Center, East Hartford, CT, United States, William Rioux, Master Technician, East Hartford, CT, United States	
3:50PM	Magnetocaloric Refrigeration Technical Presentation. InterPACK2019-6623	
	Ayyoub Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States	
Tuesday, Octobe	r 8, 8:00AM–9:30AM	
TRACK 2: SERVERS OF THE FUTURE, EDGE AND CLOUD COMPUTING: WITH PAPERS HONORING MICHAEL ELLSWORTH FOR CONTRIBUTIONS AND SERVICE TO ASME INTERPACK, THE ELECTRONIC AND PHOTONIC PACKAGING DIVISION, AND LEADERSHIP IN LIQUID COOLING OF SERVER SYSTEMS Track Organizer: Saket Karajgikar, Facebook Inc., Menlo Park, CA, United States Track Co-Organizer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States		
2-5: DATA CENTER COOLING II Concourse Level, Fourth Floor, Huntington A		
U	r: Prakriti Choudhary, Facebook Inc., Menlo Park, CA, United States iizer: Cheng Chen, Facebook Inc., Menlo Park, CA, United States, Brent Goren, Eaton Corporation, San Marcos, CA, United States	
	Optimal Design and Modeling of Server Cabinets With In-Row Coolers and Air Conditioning Units in a Modular Data Center Technical Paper Publication. InterPACK2019-6522	
8:00AM	Uschas Chowdhury, University of Texas at Arlington, Arlington, TX, United States, Mark Hendrix, Thomas Craft, Willis James, Com- mScope Inc., Richardson, TX, United States, Ankit Sutaria, Dereje Agonafer, University of Texas at Arlington, Arlington, TX, United States	
8:20AM	Comparison of Data Driven Modeling Approaches for Temperature Prediction in Data Centers Technical Presentation. InterPACK2019-6565	
0.20AW	Jayati Athavale, Facebook, Atlanta, GA, United States, Yogendra Joshi, Minami Yoda, Georgia Institute of Technology, Atlanta, GA, United States	
8:40AM	Data Center Thermal Efficiency Improvement by Cooling Flow Vectoring Using Synthetic Jets Technical Paper Publication. InterPACK2019-6585	
	Eduardo Sepúlveda Jiménez, Jean Paul D'alençon, Luis Silva-Llanca, Universidad de La Serena, La Serena, Chile	
9:00AM	Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center Technical Paper Publication. InterPACK2019-6601	
	Jimil M. Shah, Roshan Anand, Satyam Saini, Rawhan Cyriac, Dereje Agonafer, University of Texas at Arlington, Arlington, TX, United States, Prabjit Singh, IBM Corporation, Poughkeepsie, NY, United States, Mike Kaler, Mestex, a Division of Mestek, Inc., Dallas, TX, United States	

Technical Sessions TUESDAY, OCTOBER 8 Tuesday, October 8, 8:00AM-9:30AM TRACK 4: FLEXIBLE AND WEARABLE ELECTRONICS Track Organizer: Valerie Marty, Connected Micro, Corvallis, OR, United States Track Co-Organizer: E. Yegan Erdem, Bilkent University, Ankara, Turkey, Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, United States, Janos Veres, PARC, Palo Alto, CA, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States 4-1: DESIGN & MODELING FOR FLEXIBLE ELECTRONICS Concourse Level, Fourth Floor, Huntington B Session Organizer: Philip Buskohl, U.S. Air Force Research Laboratory, OH, United States Session Co-Organizer: Tsung-Ching Jim Huang, Hewlett Packard Labs, Palo Alto, CA, United States Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements Technical Presentation. InterPACK2019-6498 8:00AM Rui Chen, Yi Zhou, Sridhar Sivapurapu, Nahid A. Amoli, Mohamed Bellaredj, Justin Chow, Georgia Institute of Technology, Atlanta, GA, United States, Tsung-Ching, Jim Huang, Hewlett Packard Labs, Palo Alto, CA, United States, Madhavan Swaminathan, Suresh Sitaraman, Georgia Institute of Technology, Atlanta, GA, United States Design Tools and FHE Materials for Physically Reconfigurable RF Platforms Technical Presentation. InterPACK2019-6750 8:20AM Philip Buskohl, AFRL, WPAFB, OH, United States **Bounding The Problem** Technical Presentation. InterPACK2019-6764 8:40AM James Chew, Cadence Design Systems, San Jose, CA, United States Applying Multi-Physics Analysis and Data Analytics for IIoT Applications With FHE Invited Presentation. InterPACK2019-6755 9:00AM Norman Chang, ANSYS Inc., San Jose, CA, United States **TRACK 5: PHOTONICS AND OPTICS** Track Organizer: Changqing Chen, Huazhong University of Science and Technology, Wuhan, China Track Co-Organizer: Ping Zhou, LDX Optronics, Maryville, TN, United States, Haiding Sun, University of Science and Technology of China, Anhui, China 5-5: VISIBLE LED AND ITS APPLICATION Concourse Level, Fourth Floor, Huntington C China Red InGaN LEDs Grown by Micro-Flow Channel MOVPE Technical Presentation. InterPACK2019-6362 8:00AM Kazuhiro Ohkawa, Daisuke lida, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia Hybrid Nitride-Based Micro/Nano-LEDs With Quantum Dots for High Performance RGB/White Emissions Technical Presentation. InterPACK2019-6406 8:20AM Bin Liu, Nanjing University, Nanjing, Jiangsu Province, China

Session Co-Organizer: Changqing Chen, Huazhong University of Science and Technology, Wuhan, China, Lai Wang, Tsinghua University, Beijing, Beijing, GaN White Lasers and III-Nitride Integrated Photonics for Visible Light Communications Technical Presentation. InterPACK2019-6488 8:40AM Chao Shen, SaNoor Technologies, Thuwal, Saudi Arabia Making a Viable Electronic or a Photonic Device Into a Reliable Product: Application of the Probabilistic Design for Reliability Concept 9:00AM Technical Presentation. InterPACK2019-6301 Ephraim Suhir, Portland State University, Portland, OR

Technical Sessions TUESDAY, OCTOBER 8

Tuesday, October 8, 8:00AM-9:30AM

TRACK 6: POWER ELECTRONICS

Track Organizer: Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States Track Co-Organizer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research Center, East Hartford, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States

6-6: POWER ELECTRONICS PACKAGING RELIABILITY Concourse Level, Fourth Floor, Palos Verdes A

Session Organizer: **Fang Luo,** *University of Arkansas, Fayetteville, AR, United States* Session Co-Organizer: **Pedro Quintero,** *University of Puerto Rico Mayaguez, Mayaguez, PR, United States*

8:00AM	Numerical Investigation on Electromigration Oriented Failure of Lead Free Solder Joints With Aging Effects Technical Paper Publication. InterPACK2019-6521
	Tusher Ahmed, Mohammad Motalab, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, Jeffrey Suhling, Auburn University, Auburn, AL, United States
8:20AM	Analysis of Thermal Stress in High Temperature Transient Liquid Phase Bonding of Power Electronics Technical Presentation. InterPACK2019-6525
	Yanghe Liu, Toyota Research Institute of North America, Ann Arbor, MI, United States, Shailesh N. Joshi, Toyota Motor North America Ann Arbor, MI, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States
	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology Technical Presentation. InterPACK2019-6531
8:40AM	Liang Yin, Christopher Kapusta, Arun Gowda, David Esler, Kaustubh Nagarkar, GE Global Research Center, Niskayuna, NY, United States, Risto Tuominen, GE Ventures, Niskayuna, NY, United States, Richard Eddins, Liqiang Yang, Robert George, GE Aviation, Pompano Beach, FL, United States
9:00AM	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design Technical Paper Publication. InterPACK2019-6424
9.004101	Mahsa Montazeri, John Harris, David Huitink, Adithya Venkatanarayanan, Simon Ang, University of Arkansas, Fayetteville, AR, United States
0	zer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States, Xuemin Li, A123 Systems, Waltham, MA, United Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, Unitea
	MANAGEMENT OPTIMIZATION STRATEGIES II, Fourth Floor, Palos Verdes B
Ų	er: Menglong Hao, University of California, Berkeley, Berkeley, CA, United States anizer: Sean Lubner, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
8:00AM	A Statistical Study to Evaluate the Performance of Liquid Cooling Garments Considering Thermal Comfort Technical Paper Publication. InterPACK2019-6325
	Weicheng Shu, Jiawen Wang, Xinfeng Zhang, Xiaobing Luo, Huazhong University of Science and Technology, Wuhan, China
8:20AM	Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization Technical Presentation, InterPACK2019-6360
	Technical resentation. Intel Act2019-0500
8:40AM	Jonghyun Lim, Sung Jin Kim, KAIST, Daejeon, Korea (Republic)
0.40AW	
6.40AM	Jonghyun Lim, Sung Jin Kim, KAIST, Daejeon, Korea (Republic) Development and Optimization of Control Strategy for a Dynamic Cold Plate to Save Pumping Power and Increase the Reliabili
9:00AM	Jonghyun Lim, Sung Jin Kim, KAIST, Daejeon, Korea (Republic) Development and Optimization of Control Strategy for a Dynamic Cold Plate to Save Pumping Power and Increase the Reliability Technical Presentation. InterPACK2019-6536

TUESDAY, OCTOBER 8

Tuesday, October 8, 10:45AM-12:15PM TRACK 2: SERVERS OF THE FUTURE. EDGE AND CLOUD COMPUTING: WITH PAPERS HONORING MICHAEL ELLSWORTH FOR CONTRIBUTIONS AND SERVICE TO ASME INTERPACK. THE ELECTRONIC AND PHOTONIC PACKAGING DIVISION. AND LEADERSHIP IN LIQUID COOLING OF SERVER SYSTEMS Track Organizer: Saket Karajgikar, Facebook Inc., Menlo Park, CA, United States Track Co-Organizer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States 2-6: IMMERSION COOLING I Concourse Level, Fourth Floor, Huntington A Session Organizer: Nikhil Lakhkar, Emerson Climate Technologies, Sidney, OH, United States Session Co-Organizer: Steve Moon, 3M Company, St. Paul, MN, United States Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling Technical Paper Publication. InterPACK2019-6590 10.45AM Pravin Shinde, Pratik Bansode, Satyam Saini, Rajesh Kasukurthy, Tushar Chauhan, Jimil M. Shah, Dereje Agonafer, University of Texas at Arlington, Arlington, TX, United States CFD Analysis of Thermal Shadowing and Optimization of Heatsinks in Third-Generation Open Compute Server for Single-Phase Immersion Cooling Technical Paper Publication. InterPACK2019-6600 11:05AM Jimil M. Shah, Ravya Dandamudi, Chinmay Bhatt, Pranavi Rachamreddy, Pratik Bansode, Dereje Agonafer, University of Texas at Arlinaton, Arlinaton, TX, United States Viability of Two Phase Immersion Cooling by Performing Thermal Testing Vehicle Experiments Using Enhanced Boilers Technical Presentation. InterPACK2019-6604 11:25AM Jimil M. Shah, University of Texas at Arlington, Arlington, TX, United States TRACK 4: FLEXIBLE AND WEARABLE ELECTRONICS Track Organizer: Valerie Marty, Connected Micro, Corvallis, OR, United States Track Co-Organizer: E. Yegan Erdem, Bilkent University, Ankara, Turkey, Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, United States, Janos Veres, PARC, Palo Alto, CA, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States 4-6: FHE DESIGN & MODELING DEMONSTRATIONS Concourse Level, Fourth Floor, Huntington B Session Organizer: Tsung-Ching Jim Huang, Hewlett Packard Labs, Palo Alto, CA, United States Session Co-Organizer: Philip Buskohl, AFRL, WPAFB, OH, United States Flexible Hybrid Electronics Process Design Kit (FHE-PDK) Invited Presentation. InterPACK2019-6756 10:45AM Tsung-Ching Jim Huang, Hewlett Packard Labs, Palo Alto, CA, United States Manufacturing Process Driven Design (MPDD) for Improved Flexible Hybrid Electronic Design Invited Presentation. InterPACK2019-6768 11:05AM Kris Hill, International TechneGroup Inc., Milford, OH, United States EDA Design and Analysis Methodology for Flexible Circuits Technical Presentation. InterPACK2019-6759 11:25AM John Carney, James Chew, John Park, Cadence Design Systems, San Jose, CA, United States **Digital Qualification of Flexible and Wearable Electronics** Invited Presentation. InterPACK2019-6767 11:45AM Ian Campbell, OnScale, Redwood City, CA, United States

Technical Sessions TUESDAY, OCTOBER 8

Tuesday, October 8, 10:45AM–12:15PM

TRACK 5: PHOTONICS AND OPTICS

Track Organizer: Changging Chen, Huazhong University of Science and Technology, Wuhan, China Track Co-Organizer: Ping Zhou, LDX Optronics, Maryville, TN, United States, Haiding Sun, University of Science and Technology of China, Anhui, China 5-6: LED, OLED AND PHOTO DEVICES Concourse Level, Fourth Floor, Huntington C Session Organizer: Zhenghua An, Fudan University, Shanghai, Shanghai, China Session Co-Organizer: Chao Shen, SaNoor Technologies, Thuwal, Saudi Arabia Printed OLED Display and Soluble Materials Technical Presentation. InterPACK2019-6374 10:45AM Junyou Pan, Jiahui Tan, Xi Yang, Yusheng Chen, Guangzhou ChinaRay Optoelectronic Materials Co., Ltd., Guangzhou, China On the Development of Beta-Ga2O3-Based High-Performance Solar-Blind Photodetectors Technical Presentation. InterPACK2019-6414 11:05AM Yunbin He, Qile Wang, Mingkai Li, Hubei University, Wuhan, Hubei, China Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature Technical Paper Publication. InterPACK2019-6426 11:25AM Bikramjit Chatterjee, Pennsylvania State University, State College, PA, United States, James Spencer Lundh, Daniel Shoemaker, Pennsylvania State University, University Park, PA, United States, Tae Kyoung Kim, Joon Seop Kwak, Sunchon National University, Sunchon, Jeonnam, Korea (Republic), Jaehee Cho, Chonbuk National University, Jeonju, Chonbuk, Korea (Republic), Sukwon Choi, Pennsylvania State University, University Park, PA, United States High Performance Nonplar M-Plane InGaN Multiple-Quantum-Well Solar Cells With Improved Carrier Collection and High Temperature Spectral Response 11:45AM Technical Presentation, InterPACK2019-6335 Xuanqi Huang, Houqiang Fu, Yuji Zhao, Arizona State University, Tempe, AZ, United States **TRACK 6: POWER ELECTRONICS** Track Organizer: Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States Track Co-Organizer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research Center, East Hartford, CT, United States, Sukwon Choi, Pennsylvania State University, State College, PA, United States 6-4: METROLOGY TECHNIQUES Concourse Level, Fourth Floor, Palos Verdes A Session Organizer: Ronald Warzoha, United States Naval Academy, Annapolis, MD, United States Session Co-Organizer: Brian Foley, Pennsylvania State University, State College, PA, United States Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes Technical Paper Publication. InterPACK2019-6372 10:45AM Youngjoon Suh, Cheng-Hui Lin, Hamsa N. Gowda, Yoonjin Won, University of California, Irvine, Irvine, CA, United States Advances in Nanoscale Thermoreflectance Thermal Imaging Calibration Technical Presentation. InterPACK2019-6425 11:05AM Kazuaki Yazawa, Dustin Kendig, Microsanj LLC, Santa Clara, CA, United States, Ali Shakouri, Purdue University, West Lafayette, IN, United States Application of X-Ray CT Images and Phase-Shifted Sampling Moiré Method to Residual Strain Measurement in Electronic Packages Technical Presentation. InterPACK2019-6486 11:25AM Masaaki Koganemaru, Sho Nagato, Kagoshima University, Kagoshima, Japan, Masakazu Uchino, Fukuoka Industrial Technology Center, Kitakyusyu, Japan, Toru Ikeda, Kagoshima University, Kagoshima, Japan Thermoreflectance Imaging of Electromigration in Aluminum Interconnects at Different Ambient Temperatures Technical Paper Publication. InterPACK2019-6413 11:45AM Sami Alajlouni, Kerry Maize, Peter Bermel, Ali Shakouri, Purdue University, West Lafayette, IN, United States

TUESDAY, OCTOBER 8

Tuesday, October 8, 10:45AM-12:15PM

TRACK 7: ENERGY CONVERSION AND STORAGE

Track Organizer: Guangsheng Zhang, University of Alabama in Huntsville, Huntsville, AL, United States

Track Co-Organizer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States, Xuemin Li, A123 Systems, Waltham, MA, United States, Ayyoub Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, United States

7-3: PHASE-CHANGE COOLING

Concourse Level, Fourth Floor, Palos Verdes B

Session Organizer: Marc Dunham, 3M, Golden Valley, MN, United States Session Co-Organizer: Kyle Gluesenkamp, Oak Ridge National Laboratory, Knoxville, TN, United States

Mechanical Properties of Polyethylene Based Heat Storage Composite Containing Phase Change Material and Copper Sheet Technical Presentation. InterPACK2019-6464 10:45AM Kohei Fukuchi, Kenichi Ohguchi, Kengo Kurosawa, Yuuki Sugimoto, Akita University, Akita, Japan, Katsuhiko Sasaki, Hokkaido University, Sapporo, Hokkaido, Japan **Characterizing Dynamic Response of Phase Change Materials** Technical Presentation. InterPACK2019-6656 11:05AM Alison Hoe, Texas A&M University, College Station, TX, United States, Michael Barako, Northrop Grumman, Manhattan Beach, CA, United States, Patrick Shamberger, Texas A&M University, College Station, TX, United States Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance Technical Presentation. InterPACK2019-6465 11:25AM Junhui Li, Li Shan, Binjian Ma, Runzhi Zhang, Xinyu Jiang, Damena Agonafer, Washington University in St. Louis, St. Louis, MO, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States Molecular Dynamics Simulation of Thin-Film Evaporation From Nanocoated Surfaces: The Asymptotic Relationship Between **Evaporation Rate and Nanocoating Thickness** Technical Presentation. InterPACK2019-6466 11:45AM Binjian Ma, Rui Zhou, Li Shan, Junhui Li, Washington University in St. Louis, St. Louis, MO, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States, Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States Tuesday, October 8, 1:45PM-3:15PM **TRACK 1: HETEROGENEOUS INTEGRATION** Track Organizer: Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States Track Co-Organizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Winston Zhang, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China 1-6: MICROSYSTEMS PACKAGING Concourse Level, Fourth Floor, Huntington A Session Organizer: Subhasis Mukherjee, Apple, Cupertino, CA, United States Session Co-Organizer: Subramanyaravi Annapragada, United Technologies Research Center, East Hartford, CT, United States Double Side System in Package Development Challenge for Heterogeneous Integration Technical Paper Publication. InterPACK2019-6354 1:45PM

Feng Kao, Yu Po Wang, Davidlion Wang, Jensen Tsai, Mike Tsai, Ryan Chiu, Eric He, Silliconware Precision Industries Co., Ltd., Taichung, Taiwan

Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro-Channel Heat Sinks Technical Presentation. InterPACK2019-6455

2:05PM Yaser Hadad, Cong Hoang, Binghamton University, Binghamton, NY, United States, Srikanth Rangarajan, Binghamton University, Vestal, NY, United States, Paul R. Chiarot, State University of New York at Binghamton, Binghamton, NY, United States, Bahgat Sammakia, Binghamton University, Binghamton, NY, United States

Minimizing the Effects of On-Chip Hot-Spots Using Multi-Objective Optimization of Flow Distribution in Water-Cooled Parallel Micro-Channel Heat Sinks Technical Presentation. InterPACK2019-6459

Yaser Hadad, Vahideh Radmard, Mahdi Farahikia, Binghamton University, Binghamton, NY, United States, Paul R. Chiarot, State University of New York at Binghamton, Binghamton, NY, United States, Bahgat Sammakia, Binghamton University, Binghamton, NY, United States

High Strain Rate Mechanical Properties of SAC-Q With Sustained Elevated Temperature Storage at 100°C Technical Paper Publication. InterPACK2019-6576

Pradeep Lall, Vishal Mehta, Jeffrey Suhling, Auburn University, Auburn, AL, United States, **David Locker,** U.S. Army RDECOM, Redstone Arsenal, AL, United States

2:25PM

2:45PM

Tuesday, October 8, 1:45PM–3:15PM

TRACK 5: PHOTONICS AND OPTICS

Track Organizer: Changqing Chen, Huazhong University of Science and Technology, Wuhan, China Track Co-Organizer: Ping Zhou, LDX Optronics, Maryville, TN, United States, Haiding Sun, University of Science and Technology of China, Anhui, China

5-7: ORGANIC MATERIALS AND DEVICES

Concourse Level, Fourth Floor, Huntington B

Session Organizer: **Malte Gather,** *University of St. Andrews, St. Andrews, Fife, United Kingdom* Session Co-Organizer: **Yunbin He,** *Hubei University, Wuhan, Hubei, China*

Session Co-Orga	anizer: Yundin He, Hubei University, Wuhan, Hubei, China
1:45PM	Mechanical Instability in Organic Optoelectronics: Surface Wrinkling and Its Prediction Technical Presentation. InterPACK2019-6355
	Yu-Lin Shen, University of New Mexico, Albuquerque, NM, United States
2:05PM	Organic Electronics for Neuromorphic Computing Technical Presentation. InterPACK2019-6375
	Yoeri van de Burgt, Eindhoven University of Technology, Eindhoven, Netherlands
2:25PM	Double Perovskites as p-Type Conducting Transparent Semiconductors: A High-Throughput Search Technical Presentation. InterPACK2019-6378
	Haichen Wang, Miguel A.L. Marques, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany
2:45PM	Designed Silver Nanowires Transparent Conductive Electrodes for Efficient Optoelectronic Devices Technical Presentation. InterPACK2019-6380
	Bin Hu, Huazhong University of Science and Technology, Wuhan, China
TRACK 6: PO\	WER ELECTRONICS
Track Co-Organi	Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States zer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research tford, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States
	ANNEL HEAT SINKS II, Fourth Floor, Huntington C
Ų	er: Hyoungsoon Lee, Chung-Ang University, Seoul, Korea (Republic) anizer: Bladimir Ramos Alvarado, Pennsylvania State University, University Park, PA, United States
1:45PM	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa Technical Paper Publication. InterPACK2019-6400
	<i>Ki Wook Jung,</i> Stanford University, Stanford, CA, United States, <i>Hyoungsoon Lee,</i> Chung-Ang University, Seoul, Korea (Republic), <i>Chirag R. Kharangate,</i> Case Western Reserve University, Cleveland, OH, United States, <i>Feng Zhou,</i> Toyota Research Institute North America, Ann Arbor, MI, United States, <i>Mehdi Asheghi,</i> Stanford University, Stanford, CA, United States, <i>Ercan Dede,</i> Toyota Research Institute of North America, Ann Arbor, MI, United States, <i>Kenneth Goodson,</i> Stanford University, Stanford, CA, United States
2:05PM	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa Technical Presentation. InterPACK2019-6382
	Daeyoung Kong, Chung-Ang University, Seoul, Korea (Republic), Ki Wook Jung, Stanford University, Stanford, CA, United States, Sangwoo Jung, Daewoong Jung, Chung-Ang University, Seoul, Korea (Republic), Joseph Schaadt, Villanova University, Sunnyvale, CA, United States, Madhusudan Iyengar, Chris Malone, Google LLC, Mountain View, CA, United States, Chirag R. Kharangate, Case Western Reserve University, Cleveland, OH, United States, Mehdi Asheghi, Kenneth Goodson, Stanford University, Stanford, CA, United States, Hyoungsoon Lee, Chung-Ang University, Seoul, Korea (Republic)
2:25PM	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (~1 kW/cm ²) Power Electronics Cooling Technical Paper Publication. InterPACK2019-6472
	Ki Wook Jung, Sougata Hazra, Heungdong Kwon, Stanford University, Stanford, CA, United States, Alisha Piazza, Stanford Na- no-heat Lab, Stanford, CA, United States, Edward Jih, Ford Motor Co., Dearborn, MI, United States, Mehdi Asheghi, Stanford Univer- sity, Stanford, CA, United States, Man Prakash Gupta, Michael Degner, Ford Motors, Dearborn, MI, United States, Kenneth Goodson, Stanford University, Stanford, CA, United States

TUESDAY, OCTOBER 8

Tuesday, October 8, 1:45PM-3:15PM

TRACK 7: ENERGY CONVERSION AND STORAGE

Track Organizer: Guangsheng Zhang, University of Alabama in Huntsville, Huntsville, AL, United States

Track Co-Organizer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States, Xuemin Li, A123 Systems, Waltham, MA, United States, Ayyoub Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, United States

7-1: BATTERIES, SUPERCAPACITORS, AND SOLAR CELLS I Concourse Level, Fourth Floor, Palos Verdes A

Session Organizer: **Amy Marconnet,** *Purdue University, West Lafayette, IN, United States* Session Co-Organizer: **June Stanley,** *Sandia National Laboratories, Albuquerque, NM, United States*

1:45PM	Operando Measurements of the Dominant Thermal Resistance in Lithium-Ion Batteries Technical Presentation. InterPACK2019-6658
	Sean Lubner, Sumanjeet Kaur, Yanbao Fu, Vince Battaglia, Ravi Prasher, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
2:05PM	Lithium Plating and Dendrites in Li-Ion Batteries Under Thermal Gradient Technical Presentation. InterPACK2019-6432
	Conner Fear, Aashutosh Mistry, Purdue University, West Lafayette, IN, United States, Rachel Carter, Corey T. Love, U.S. Naval Research Laboratory, Washington, DC, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, United States
0.05514	Effects of Non-Uniform Temperature Distributions on Lithium-Ion Battery Degradation Technical Presentation. InterPACK2019-6477
2:25PM	Gabriel M. Cavalheiro, Takuto Iriyama, Shan Huang, George Nelson, Guangsheng Zhang, University of Alabama in Huntsville, Huntsville, AL, United States
2:45PM	Effect of Transition Metal Prussian Blue Analogues as Mediators on the Performance of Mediator Supercapacitor Technical Presentation. InterPACK2019-6478
	Xiangyang Zhou, University of Miami, Coral Gables, FL, United States
rack Co-Organiz	Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany er: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United
rack Co-Organiz States, Sven Rze S-5: MATERIAL I Concourse Level	
rack Co-Organiz States, Sven Rze S-5: MATERIAL I Concourse Level	er: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United pka, Fraunhofer ENAS, Chemnitz, Germany NODELING FOR AUTOMOTIVE PACKAGING II , Fourth Floor, Palos Verdes B er: Adam Boros, Robert Bosch Kft, Budapest, Hungary
rack Co-Organiz States, Sven Rze S-5: MATERIAL I Concourse Level Session Organize Session Co-Orga	er: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United pka, Fraunhofer ENAS, Chemnitz, Germany MODELING FOR AUTOMOTIVE PACKAGING II , Fourth Floor, Palos Verdes B er: Adam Boros, Robert Bosch Kft, Budapest, Hungary nizer: Anna Prakash, Intel Corp, Chandler, AZ, United States Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading
rack Co-Organiz States, Sven Rze S-5: MATERIAL I Concourse Level Session Organize Session Co-Orga	er: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United pka, Fraunhofer ENAS, Chemnitz, Germany MODELING FOR AUTOMOTIVE PACKAGING II , Fourth Floor, Palos Verdes B er: Adam Boros, Robert Bosch Kft, Budapest, Hungary nizer: Anna Prakash, Intel Corp, Chandler, AZ, United States Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading Technical Paper Publication. InterPACK2019-6471 Abdullah Fahim, S.M. Kamrul Hasan, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-based Molding Compounds Technical Presentation. InterPACK2019-6409
irack Co-Organiz States, Sven Rze 5: MATERIAL I Concourse Level Session Organize Session Co-Orga 1:45PM	er: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United pka, Fraunhofer ENAS, Chemnitz, Germany MODELING FOR AUTOMOTIVE PACKAGING II , Fourth Floor, Palos Verdes B er: Adam Boros, Robert Bosch Kft, Budapest, Hungary nizer: Anna Prakash, Intel Corp, Chandler, AZ, United States Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading Technical Paper Publication. InterPACK2019-6471 Abdullah Fahim, S.M. Kamrul Hasan, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-base Molding Compounds Technical Presentation. InterPACK2019-6409 Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen,
irack Co-Organiz States, Sven Rze 5: MATERIAL I Concourse Level Session Organize Session Co-Orga 1:45PM	er: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United pka, Fraunhofer ENAS, Chemnitz, Germany MODELING FOR AUTOMOTIVE PACKAGING II , Fourth Floor, Palos Verdes B er: Adam Boros, Robert Bosch Kft, Budapest, Hungary nizer: Anna Prakash, Intel Corp, Chandler, AZ, United States Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading Technical Paper Publication. InterPACK2019-6471 Abdullah Fahim, S.M. Kamrul Hasan, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-base Molding Compounds Technical Presentation. InterPACK2019-6409 Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany, Hüsnü Dal, Middle East Technical University Ankara, Ankara, Turkey, Hyun Seop Lee, Bongtae Han, University of Maryland
irack Co-Organiz States, Sven Rze States, Sven Rze Session Organize Session Organize Session Co-Orga 1:45PM 2:05PM	er: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United pka, Fraunhofer ENAS, Chemnitz, Germany MODELING FOR AUTOMOTIVE PACKAGING II Fourth Floor, Palos Verdes B er: Adam Boros, Robert Bosch Kft, Budapest, Hungary nizer: Anna Prakash, Intel Corp, Chandler, AZ, United States Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading Technical Paper Publication. InterPACK2019-6471 Abdullah Fahim, S.M. Kamrul Hasan, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-baser Molding Compounds Technical Presentation. InterPACK2019-6409 Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Przemysław Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany, Hüsnü Dal, Middle East Technical University Ankara, Ankara, Turkey, Hyun Seop Lee, Bongtae Han, University of Maryland College Park, MD, United States Effects of Thermal Cycling on the Mechanical and Microstructural Evolution of SAC305 Lead-Free Solder
irack Co-Organiz States, Sven Rze States, Sven Rze Session Organize Session Organize Session Co-Orga 1:45PM 2:05PM	er: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United pka, Fraunhofer ENAS, Chemnitz, Germany MODELING FOR AUTOMOTIVE PACKAGING II Fourth Floor, Palos Verdes B ar: Adam Boros, Robert Bosch Kft, Budapest, Hungary nizer: Anna Prakash, Intel Corp, Chandler, AZ, United States Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading Technical Paper Publication. InterPACK2019-6471 Abdullah Fahim, S.M. Kamrul Hasan, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-base Molding Compounds Technical Presentation. InterPACK2019-6409 Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Przemysław Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany, Hüsnü Dal, Middle East Technical University Ankara, Ankara, Turkey, Hyun Seop Lee, Bongtae Han, University of Maryland College Park, MD, United States Effects of Thermal Cycling on the Mechanical and Microstructural Evolution of SAC305 Lead-Free Solder Technical Paper Publication. InterPACK2019-6563

Tuesday, October 8, 3:30PM-5:00PM

TRACK 5: PHOTONICS AND OPTICS

Track Organizer: Changging Chen, Huazhong University of Science and Technology, Wuhan, China Track Co-Organizer: Ping Zhou, LDX Optronics, Maryville, TN, United States, Haiding Sun, University of Science and Technology of China, Anhui, China 5-8: PACKAGING AND THERMAL MANAGEMENT I Concourse Level, Fourth Floor, Huntington A Session Organizer: Firooz Faili, Element Six, Santa Clara, CA, United States Session Co-Organizer: Duanjun Cai, Xiamen University, Xiamen, Fujian, China Numerical Analysis of Pulse Laser Assisted Curing Region of Photocurable Resins Technical Paper Publication. InterPACK2019-6356 3:30PM Yuta Nakamura, Kazuyoshi Fushinobu, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan, Asato Tamura, Tokyo Institute of Technology/Ricoh Co., Ltd., Ebinashi, Kanagawa, Japan Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components Technical Paper Publication. InterPACK2019-6391 3:50PM Jeho Kim, Georgia Institute of Technology, Atlanta, GA, United States, J. Michael Brown, Manufacturing Resources International, Alpharetta, GA, United States, Yogendra Joshi, Georgia Institute of Technology, Atlanta, GA, United States, Kevin O'Connor, Marcos Diaz, Manufacturing Resources International, Alpharetta, GA, United States, Zhuomin Zhang, Peiyan Yang, Georaia Institute of Technology, Atlanta, GA, United States Topology Optimization of Time-Transient Heat Conduction for Thermo-Optic Devices Technical Presentation. InterPACK2019-6526 4:10PM Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States, Gil Ho Yoon, Hanyang University, Seoul, Korea (Republic), Paul Schmalenberg, Tsuyoshi Nomura, Toyota Research Institute of North America, Ann Arbor, MI, United States Modeling of Light Emitting Device Populations in the Electrical, Thermal, and Optical Domain for Luminaire Design Technical Paper Publication. InterPACK2019-6547 4:30PM Gabor Farkas, Marta Rencz, Andras Vass Varnai, Lajos Gaal, Mentor, Budapest, Hungary **TRACK 6: POWER ELECTRONICS** Track Organizer: Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States Track Co-Organizer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research Center, East Hartford, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States **6-9: PHASE CHANGE MATERIALS** Concourse Level, Fourth Floor, Huntington B Session Organizer: Michael Fish, U.S. Army Research Laboratory, Adelphi, MD, United States Session Co-Organizer: Jorge Padilla, Google LLC, Mountain View, CA, United States Evaluation of Thermal and Electrical Properties of Nano-Enhanced PCM for Usage in High-Voltage Systems Technical Paper Publication. InterPACK2019-6422 3:30PM Ange-Christian Iradukunda, Joshua Kasitz, Fernando Moreno, David Huitink, University of Arkansas, Fayetteville, AR, United States Metallic PCMs Microstructural Stability Under Repetitive Melting/Solidification Cycles Technical Paper Publication. InterPACK2019-6385 3:50PM Rafael Baez, Luis Gonzalez, University of Puerto Rico-Mayaguez, Mayaguez, PR, United States, Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States, Pedro Quintero, University of Puerto Rico-Mayaguez, Mayaguez, PR, United States Lamellar Phase Change Material Composites for Power Electronics Thermal Management Technical Presentation. InterPACK2019-6751 4:10PM Patrick Shamberger, Alison Hoe, Michael Deckard, Achutha Tamraparni, Alaa Elwany, Jonathan Felts, Texas A&M University, College Station, TX, United States Multi-Scale Multi-Fidelity Approaches to Power and Thermal System Engineering Challenges Invited Presentation, InterPACK2019-6772 4:30PM Nicholas Niedbalski, U.S. Air Force, USAF, TX, United States

TUESDAY, OCTOBER 8

Tuesday, Octob	per 8, 3:30PM–5:00PM
	INTERFACE MATERIALS II, Fourth Floor, Huntington C
0	rer: Xuhui Feng, National Renewable Energy Laboratory, Golden, CO, United States anizer: Dinesh P.R. Thanu, Intel Corporation, Chandler, AZ, United States
	Evaluation of Contact Thermal Resistance of Metal Material in Low Contact Pressure Region Technical Presentation. InterPACK2019-6543
3:30PM	Yoshiki Hyodo, Tomoyuki Hatakeyama, Toyama Prefectural University, Imizushi, Toyamaken, Japan, Risako Kibushi, Sanyo-Onoda City University, Sanyo-Onodashi, Yamaguchiken, Japan, Masaru Ishizuka, Toyama Prefectural University, Imizushi, Toyamaken, Japan
	Thermal Contact Resistance at DBC Interfaces Technical Presentation. InterPACK2019-6609
3:50PM	Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States, Ronald Warzoha, U.S. Naval Academy, Annapolis, MD, United States
4:10PM	Thermo-Mechanical Degradation of Thermal Interface Materials: Accelerated Test Development and Reliability Analysis Technical Paper Publication. InterPACK2019-6416
	Dustin Pense, Hayden Carlton, David Huitink, University of Arkansas, Fayetteville, AR, United States
0	zer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States, Xuemin Li, A123 Systems, Waltham, MA, United Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, United
	5, SUPERCAPACITORS, AND SOLAR CELLS III 91, Fourth Floor, Palos Verdes A
0	rer: Laura Spinella, National Renewable Energy Laboratory, Golden, CO, United States anizer: Kazuaki Yazawa, Purdue University, West Lafayette, IN, United States
3:30PM	Three-Dimensional Modeling of Mediator-Enhanced Solid-State Supercapacitors Technical Presentation. InterPACK2019-6481
	Xiangyang Zhou, University of Miami, Coral Gables, FL, United States
3:50PM	Application of Electronics Packaging Fundamentals to Photovoltaic Interconnects and Packaging Technical Paper Publication. InterPACK2019-6520
	Laura Spinella, Nick Bosco, National Renewable Energy Laboratory, Golden, CO, United States
4:10PM	Development of Structural Supercapacitors With Epoxy Based Adhesive Polymer Electrolyte Technical Presentation. InterPACK2019-6480
	Xiangyang Zhou, University of Miami, Coral Gables, FL, United States

68

TRACK 1: HETEROGENEOUS INTEGRATION		
Track Organizer: Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States Track Co-Organizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Winston Zhang, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China		
	ANAGEMENT APPLICATIONS I	
	Fourth Floor, Huntington A	
	: Srikanth Rangarajan, Binghamton University, Binghamton, NY, United States izer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States	
8:00AM	Thermal Cycle Reliability of Package on Package (PoP) Assemblies Technical Presentation. InterPACK2019-6317	
	Reza Ghaffarian, JET Propulsion Laboratory, Pasadena, CA, United States	
	Optimal Arrangement of Multiple Heat Sources in Vertically Stacked Two-Layer 3D IC Using Genetic Algorithm Technical Paper Publication. InterPACK2019-6334	
8:20AM	Srikanth Rangarajan, Binghamton University, Vestal, NY, United States, Yaser Hadad, Binghamton University, Binghamton, NY, United States, Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Bahgat Sammakia, Binghamton University, Bingham- ton, NY, United States	
	Thermal-Switch-Enabled Power Electronics Isothermalization Technical Presentation. InterPACK2019-6738	
8:40AM	Tianyu Yang, University of Illinois at Urbana-Champaign, Urbana, IL, United States, Fei Diao, Alan Mantooth, Yue Zhao, University of Arkansas, Fayetteville, AR, United States, William P. King, Nenad Miljkovic, University of Illinois at Urbana-Champaign, Urbana, IL, United States	
TRACK 4: FLEX	IBLE AND WEARABLE ELECTRONICS	
Track Organizer: Valerie Marty, Connected Micro, Corvallis, OR, United States Track Co-Organizer: E. Yegan Erdem, Bilkent University, Ankara, Turkey, Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, United States, Janos Veres, PARC, Palo Alto, CA, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States		
	ECTRONICS PACKAGING & ASSEMBLY Fourth Floor, Huntington B	
	: Pradeep Lall, Auburn University, Auburn, AL, United States izer: Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States	
	Applying Ultrasonic Dehumidification Technology for Water Rejection in Wearable Electronics Technical Paper Publication. InterPACK2019-6387	
8:00AM	Priyanka Deo, Samuel Graham, Georgia Institute of Technology, Atlanta, GA, United States, Ayyoub Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States	
	Foldable Thermal Ground Plane for Cooling of Foldable Smartphones Technical Presentation. InterPACK2019-6351	
8:20AM	Ali Nematollahisarvestani, University of Colorado Boulder, Boulder, CO, United States, Ryan Lewis, Kelvin Thermal Technologies, Lafayette, CO, United States, Yung-Cheng Lee, University of Colorado Boulder, Boulder, CO, United States	
8:40AM	Stretchable and Wearable Emitters Based on Corrugated Nickel for Personal Thermal Management Technical Presentation. InterPACK2019-6628	
	Anirudh Krishna, Martí Sala-Casanovas, Ziqi Yu, Jaeho Lee, University of California, Irvine, Irvine, CA, United States	
9:00AM	How Ultrathin Die Enable Flexible Hybrid Electronics Invited Presentation. InterPACK2019-6769	
	Wilfried Bair, NextFlex, San Jose, CA, United States	

WEDNESDAY, OCTOBER 9

Wednesday, October 9, 8:00AM-9:30AM TRACK 5: PHOTONICS AND OPTICS Track Organizer: Changging Chen, Huazhong University of Science and Technology, Wuhan, China Track Co-Organizer: Ping Zhou, LDX Optronics, Maryville, TN, United States, Haiding Sun, University of Science and Technology of China, Anhui, China 5-9: PACKAGING AND THERMAL MANAGEMENT II Concourse Level, Fourth Floor, Huntington C Session Organizer: Niamh Richardson, University of Limerick, Co. Limerick, Ireland Session Co-Organizer: Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States Study on the Precise Measurement of LED Thermal Resistance Based on LEDs With an Internal Sensor Unit Technical Presentation. InterPACK2019-6321 8:00AM Yugang Zhou, Renbao Tian, Zili Xie, Bin Liu, Rong Zhang, Youdou Zheng, Nanjing University, Nanjing, Jiangsu Province, China Prediction and Control Technique of the Paper Media Temperature After Fusing in Electrophotographic Process Technical Paper Publication. InterPACK2019-6396 8:20AM Shunsuke Kawasaki, Shinichi Kuramoto, Kazuyoshi Fushinobu, Tokyo Institute of Technology, Meguroku, Tokyo, Japan, Koichi Kato, Ricoh Co., Ltd./Tokyo Institute of Technology, Ebina-shi, Kanagawa, Japan, Kimiharu Yamazaki, Kaori Hemmi, Ricoh Co., Ltd., Ebina-shi, Kanagawa, Japan Reducing CTE Mismatch and Maximizing Heat Transport on Single Emitter Laser Diodes Using Diamond Heat Spreaders Technical Presentation. InterPACK2019-6599 8:40AM Firooz Faili, Alex Muhr, Thomas Obeloer, Daniel Twitchen, Element Six Technologies USA, Santa Clara, CA, United States **TRACK 6: POWER ELECTRONICS** Track Organizer: Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States Track Co-Organizer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research Center, East Hartford, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States 6-5: HIGH TEMPERATURE ELECTRONICS PACKAGING Concourse Level, Fourth Floor, Palos Verdes B Session Organizer: Douglas DeVoto, National Renewable Energy Laboratory, Golden, CO, United States Session Co-Organizer: Christina DiMarino, Virginia Tech, Arlington, VA, United States Aging Dependent Anand Parameters of SAC305 Lead Free Solder at Extreme High Temperatures Technical Presentation. InterPACK2019-6564 8:00AM K.M. Rafidh Hassan, Mohammad S. Alam, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States Evaluation of a Lead Glass for Encapsulating High-Temperature Power Modules for Aerospace Application Technical Paper Publication. InterPACK2019-6393 8:20AM Lanbing Liu, David Nam, Virginia Tech, Blacksburg, VA, United States, Ben Guo, United Technologies, East Hartford, CT, United States, Rolando Burgos, Guo-Quan Lu, Virginia Tech, Blacksburg, VA, United States Health Monitoring of PCBs Under Mechanical Shock Loads Technical Paper Publication. InterPACK2019-6578 8:40AM Pradeep Lall, Tony Thomas, Jeffrey Suhling, Auburn University, Auburn, AL, United States, Ken Blecker, U.S. Army CCDC-AC, Picatinny Arsenal, NJ, United States Advances in Organic Substrate Approaches for High Voltage Power Electronics Packaging Invited Presentation. InterPACK2019-6770 9.00AM Douglas Hopkins, North Carolina State University, Raleigh, NC, United States

Wednesday, Oc	tober 9, 8:00AM-9:30AM
	EVEL THERMAL DESIGN I I, Fourth Floor, Palos Verdes A
5	er: Todd Bandhauer, Colorado State University, Fort Collins, MD, United States anizer: David Huitink, University of Arkansas, Fayetteville, AR, United States
8:00AM	Modular Heat Sinks for Enhanced Thermal Management of Electronics Technical Presentation. InterPACK2019-6665
	Muhammad Jahidul Hoque, Ahmet Gunay, Andrew Stillwell, Yashraj Gurumukhi, University of Illinois at Urbana-Champaign, Urbana, IL, United States, Robert Pilawa-Podgurski, University of California, Berkeley, Berkeley, CA, United States, Nenad Miljkovic, University of Illinois at Urbana-Champaign, Urbana, IL, United States
0.20 AM	Thermal Analysis of High Efficiency High Speed Drives Technical Paper Publication. InterPACK2019-6534
8:20AM	Yasmin Khakpour, Weilun Warren Chen, Parikshith Channegowda, Matthew R. Pearson, Yongduk Lee, Luis Arnedo, United Tech- nologies Research Center, East Hartford, CT, United States
9:40 AM	Evaluation of Low Order Stress Models for Use in Co-Design Analysis of Electronics Packaging Technical Paper Publication. InterPACK2019-6381
8:40AM	Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States, Steven Miner, U.S. Naval Academy, Annapolis, MD, United States
0.00 AM	Multi-Scale Thermal Analysis for Design of SiC-Based Medium Voltage Motor Drive Technical Paper Publication. InterPACK2019-6631
9:00AM	1 Series Contractor Marine National Descention Science Contractor Contractor Contractor Known Devention II. Distance
	J. Emily Cousineau, Kevin Bennion, National Renewable Energy Laboratory, Golden, CO, United States, Karun Potty, He Li, Risha Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States
TRACK 1: HET Track Organizer: Track Co-Organi	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States tober 9, 10:45AM–12:15PM
TRACK 1: HET Track Organizer: Track Co-Organi Winston Zhang, 1-8: THERMAL I	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States stober 9, 10:45AM–12:15PM EROGENEOUS INTEGRATION Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States zer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany,
TRACK 1: HET Track Organizer: Track Co-Organi Winston Zhang, 1-8: THERMAL I Concourse Leve Session Organiz	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States tober 9, 10:45AM-12:15PM EROGENEOUS INTEGRATION Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States zer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China MANAGEMENT APPLICATIONS II
TRACK 1: HET Track Organizer: Track Co-Organi Winston Zhang, 1-8: THERMAL I Concourse Leve Session Organiz	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States tober 9, 10:45AM-12:15PM EROGENEOUS INTEGRATION Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States zer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China MANAGEMENT APPLICATIONS II er: Yuling Niu, State University of New York at Binghamton, Vestal, NY, United States
TRACK 1: HET Track Organizer: Track Co-Organi Winston Zhang, 1-8: THERMAL I Concourse Leve Session Organiz Session Co-Org.	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States tober 9, 10:45AM-12:15PM EROGENEOUS INTEGRATION Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States zer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China WANAGEMENT APPLICATIONS II eit, Fourth Floor, Huntington A rer: Yuling Niu, State University of New York at Binghamton, Vestal, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States Thermal Analysis of 3D ICs With TSVs Placement Optimization
TRACK 1: HET Track Organizer: Track Co-Organi Winston Zhang, 1-8: THERMAL I Concourse Leve Session Organiz Session Co-Org. 10:45AM	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States Itober 9, 10:45AM-12:15PM EROGENEOUS INTEGRATION Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States zer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China WANAGEMENT APPLICATIONS II eit, Fourth Floor, Huntington A rer: Yuling Niu, State University of New York at Binghamton, Vestal, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States Thermal Analysis of 3D ICs With TSVs Placement Optimization Technical Paper Publication. InterPACK2019-6417
TRACK 1: HET Track Organizer: Track Co-Organi Winston Zhang, 1-8: THERMAL I Concourse Leve Session Organiz Session Co-Org.	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States Itober 9, 10:45AM-12:15PM IEROGENEOUS INTEGRATION Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States zer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China MANAGEMENT APPLICATIONS II eit, Fourth Floor, Huntington A er: Yuling Niu, State University of New York at Binghamton, Vestal, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States Thermal Analysis of 3D ICs With TSVs Placement Optimization Technical Paper Publication. InterPACK2019-6417 Zongqing Ren, Ayed Alqahtani, Nader Bagherzadeh, Jaeho Lee, University of California, Irvine, Irvine, CA, United States Fabrication Steps and Thermal Modeling of Three-Dimensional Asynchronous Field Programmable Gate Arr
TRACK 1: HET Track Organizer: Track Co-Organi Winston Zhang, 1-8: THERMAL I Concourse Leve Session Organiz Session Co-Org, 10:45AM 11:05AM	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States tober 9, 10:45AM-12:15PM EROGENEOUS INTEGRATION Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States zer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China WANAGEMENT APPLICATIONS II II, Fourth Floor, Huntington A er: Yuling Niu, State University of New York at Binghamton, Vestal, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States Thermal Analysis of 3D ICS With TSVS Placement Optimization Technical Paper Publication. InterPACK2019-6417 Zongqing Ren, Ayed Alqahtani, Nader Bagherzadeh, Jaeho Lee, University of California, Irvine, Irvine, CA, United States Fabrication Steps and Thermal Modeling of Three-Dimensional Asynchronous Field Programmable Gate Array (3D-AFPGA) Technical Paper Publication. InterPACK2019-6514 Robert Carroll, SUNY Polytechnic Institute, Albany, NY, United States, Carlos Gutierrez, Leila Choobineh, SUNY Polytechnic Institute,
TRACK 1: HET Track Organizer: Track Co-Organi Winston Zhang, 1-8: THERMAL I Concourse Leve Session Organiz Session Co-Org. 10:45AM	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States tober 9, 10:45AM-12:15PM ECGENEOUS INTEGRATION Gamal Refai-Ahmad, Xilinx, Santa Clara, CA, United States zer. Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China MAAGEMENT APPLICATIONS II H, Fourth Floor, Huntington A eer: Yuling Niu, State University of New York at Binghamton, Vestal, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States Thermal Analysis of 3D ICs With TSVs Placement Optimization Technical Paper Publication. InterPACK2019-6417 Zongging Ren, Ayed Alqahanin, Nader Bagherzadeh, Jaeho Lee, University of California, Irvine, Irvine, CA, United States Fabrication Steps and Thermal Modeling of Three-Dimensional Asynchronous Field Programmable Gate Array (3D-AFPGA) Technical Paper Publication. InterPACK2019-6514 Robert Carroll, SUNY Polytechnic Institute, Albany, NY, United States, Carlos Gutierrez, Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States Power Delivery and Thermal Management for the Silicon Interconnect Fabric
TRACK 1: HET Track Organizer: Track Co-Organi Winston Zhang, 1-8: THERMAL I Concourse Leve Session Organiz Session Co-Org, 10:45AM 11:05AM	Na, Longya Xu, Jin Wang, Ohio State University, Columbus, OH, United States tober 9, 10:45AM-12:15PM EROGENEOUS INTEGRATION Gama Refai-Ahmad, Xilinx, Santa Clara, CA, United States zer. Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States, Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany, Novark Technologies, Inc., Shenzhen, Guangdong, Guangdong, China WANAGEMENT APPLICATIONS II H, Fourth Floor, Huntington A er: Yuling Niu, State University of New York at Binghamton, Vestal, NY, United States anizer: Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States Thermal Analysis of 3D ICs With TSVs Placement Optimization Technical Paper Publication. InterPACK2019-6417 Zongqing Ren, Ayed Alqahtani, Nader Bagherzadeh, Jaeho Lee, University of California, Irvine, Irvine, CA, United States Fabrication Steps and Thermal Modeling of Three-Dimensional Asynchronous Field Programmable Gate Array (3D-AFPGA) Technical Paper Publication. InterPACK2019-6514 Robert Carroll, SUNY Polytechnic Institute, Albany, NY, United States, Carlos Gutierrez, Leila Choobineh, SUNY Polytechnic Institute, Utica, NY, United States Power Delivery and Thermal Management for the Silicon Interconnect Fabric Technical Presentation. InterPACK2019-6550 Ujash Shah, Pranav Ambhore, Umesha Mogera, Subramanian Iyer, Timothy Fisher, Boris Vaisband, University of California, Los

WEDNESDAY, OCTOBER 9

Wednesday, October 9, 10:45AM-12:15PM	
TRACK 4: FLEXIBLE AND WEARABLE ELECTRONICS	
Track Co-Organize	'alerie Marty, Connected Micro, Corvallis, OR, United States er: E. Yegan Erdem, Bilkent University, Ankara, Turkey, Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, o s Veres, PARC, Palo Alto, CA, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States
	ECT RELIABILITY IN FLEXIBLE SYSTEMS Fourth Floor, Huntington B
	r: Vaibhav Agrawal, Intel, Tempe, AZ, United States izer: Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, United States
10:45AM	Damage of Flexible Electronic Line Printed With Ag Nanoparticle Ink due to High-Current Density Technical Paper Publication. InterPACK2019-6408
	Daiki Saito, Kazuhiko Sasagawa, Takeshi Moriwaki, Kazuhiro Fujisaki, Hirosaki University, Hirosaki, Japan
11:05AM	Stress Evaluation of Flexible Displays With Multiple-Laminations Architecture Enabled by Experimental Measurement and Simu- lation Based Factorial Design Technical Paper Publication. InterPACK2019-6541
	Chang-Chun Lee, Pei-Chen Huang, Chi-Wei Wang, Oscar Chuang, National Tsing Hua University, Hsinchu, Taiwan
11:25AM	Folding-Reliability of Flexible Electronics in Wearable Applications Technical Paper Publication. InterPACK2019-6584
1.2340	Pradeep Lall, Hyesoo Jang, Auburn University, Auburn, AL, United States, Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States
11:45AM	Flexure and Twist Test Reliability Assurance of Flexible Electronics Technical Paper Publication. InterPACK2019-6579
11.45AWI	Pradeep Lall, Jinesh Narangaparambil, Auburn University, Auburn, AL, United States, Benjamin Leever, Air Force Research Labora- tory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States
TRACK 6: POW	ER ELECTRONICS
Track Co-Organize	auren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States er: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research ord, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States
	VEL THERMAL DESIGN II Fourth Floor, Huntington C
U U	r: Nicholas Niedbalski, U.S. Air Force, USAF, TX, United States izer: Kristen Hines, Johns Hopkins Applied Physics Laboratory, Laurel, MD, United States
10:45 414	System Electrothermal Transient Analysis of a High Current (40A) Synchronous Step Down Converter Technical Paper Publication. InterPACK2019-6384
10:45AM	Rajen Murugan, Jie Chen, Todd Harrison, Texas Instruments, Dallas, TX, United States, C.T. Kao, Cadence Design Systems, San Jose, CA, United States, Nathan Ai, Cadence Design, Dallas, TX, United States
	Direct Bonding of Aluminum Foam With AISiC for Rapid Fabrication of Power Electronic Packages Technical Presentation. InterPACK2019-6733
11:05AM	Darshan Pahinkar, Chidinma Imediegwu, Georgia Institute of Technology, Atlanta, GA, United States, Jordon Hoyer, Mississippi State University, Mississippi State, MS, United States, Brian Kelly, Samuel Graham, Georgia Institute of Technology, Atlanta, GA, United States
11:25AM	Effects of Cooling Architecture and PCB Layout Co-Design on the Concurrent Thermal and Electrical Performance of an On- Board Electric Vehicle Charger Technical Paper Publication. InterPACK2019-6434
	Omri Tayyara, Kshitij Gupta, Carlos Da Silva, Miad Nasr, Amir Assadi, Olivier Trescases, Cristina H. Amon, University of Toronto, Toronto, ON, Canada

TRACK 7: ENERGY CONVERSION AND STORAGE
 Track Organizer: Guangsheng Zhang, University of Alabama in Huntsville, Huntsville, AL, United States
 Track Co-Organizer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States, Xuemin Li, A123 Systems, Waltham, MA, United States, Ayyoub Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, United States
 7-7: THERMAL CHARACTERIZATION

Concourse Level, Fourth Floor, Palos Verdes A

Wednesday, October 9, 10:45AM-12:15PM

Session Organizer: Ayyoub Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States Session Co-Organizer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States

10:45AM	Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures Technical Presentation. InterPACK2019-6606
	Cheng-Hui Lin, Youngjoon Suh, Yoonjin Won, University of California, Irvine, Irvine, CA, United States
11:05AM	Combined Experimental-Numerical Investigation of Microstructure and Thermal Conduction in Dispensed and Squeezed Ther- mal Interface Materials Technical Presentation. InterPACK2019-6462
	Rajath Kantharaj, Jackson Santana, Carl Wassgren, Aaron Morris, Amy Marconnet, Purdue University, West Lafayette, IN, United States
	Surface Temperature Measurements Using Infrared Thermometry Considering Background Radiation From High-Temperature Environment Technical Presentation. InterPACK2019-6505
11:25AM	Mingeon Kim, Korea Advanced Institute of Science and Technology, Daejeon, Korea (Republic), Dong Hwan Shin, Jinsub Kim, Jung ho Lee, Korea Institute of Machinery and Materials, Deajeon, Korea (Republic), Bong Jae Lee, Korea Advanced Institute of Science and Technology, Daejeon, Korea (Republic)
	Experimental Investigation of Asymmetrical Microdroplet Evaporation on Heated Porous Pillar Array Structures Technical Presentation. InterPACK2019-6449
11:45AM	Li Shan, Runzhi Zhang, Xinyu Jiang, Binjian Ma, Washington University in St. Louis, St. Louis, MO, United States, Jorge Padilla, God gle LLC, Mountain View, CA, United States, Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States
rack Organizer: rack Co-Organi tates, Sven Rz	TONOMOUS, HYBRID, AND ELECTRIC VEHICLES Przemysław Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United epka, Fraunhofer ENAS, Chemnitz, Germany
rack Organizer: rack Co-Organi States, Sven Rz 5-1: ECU-LEVEL	Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United epka, Fraunhofer ENAS, Chemnitz, Germany
rack Organizer; rack Co-Organi itates, Sven Rz I-1: ECU-LEVEL Concourse Leve session Organiz	Przemysław Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United epka, Fraunhofer ENAS, Chemnitz, Germany RELIABILITY
Track Organizer: Track Co-Organi States, Sven Rz S-1: ECU-LEVEL Concourse Leve Gession Organiz	Przemysław Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United epka, Fraunhofer ENAS, Chemnitz, Germany RELIABILITY II, Fourth Floor, Palos Verdes B Ier: Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States
rack Organizer: rack Co-Organi itates, Sven Rz I -1: ECU-LEVEL Concourse Leve cession Organiz cession Co-Org	Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United epka, Fraunhofer ENAS, Chemnitz, Germany RELIABILITY el, Fourth Floor, Palos Verdes B rer: Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States anizer: Hyun Seop Lee, University of Maryland, College Park, MD, United States Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders
rack Organizer: rack Co-Organi itates, Sven Rz -1: ECU-LEVEL Concourse Leve ession Organiz ession Co-Org	Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United epka, Fraunhofer ENAS, Chemnitz, Germany RELIABILITY el, Fourth Floor, Palos Verdes B eer: Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States anizer: Hyun Seop Lee, University of Maryland, College Park, MD, United States Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders Technical Paper Publication. InterPACK2019-6562
rack Organizer: rack Co-Organi <i>tates,</i> Sven Rz - 1: ECU-LEVEL Concourse Leve ession Organiz ession Co-Org 10:45AM	Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United epka, Fraunhofer ENAS, Chemnitz, Germany RELIABILITY eq. Fourth Floor, Palos Verdes B er: Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States anizer: Hyun Seop Lee, University of Maryland, College Park, MD, United States Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders Technical Paper Publication. InterPACK2019-6562 Mohammad Ashraful Haq, Mohd Aminul Hoque, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States A Study on Relationship Between Low Cycle Fatigue Strength and Load Conditions for Lead Free Solder Material
rack Organizer: rack Co-Organi <i>tates,</i> Sven Rz - 1: ECU-LEVEL Concourse Leve ession Organiz ession Co-Org 10:45AM	Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United epka, Fraunhofer ENAS, Chemnitz, Germany RELIABILITY el, Fourth Floor, Palos Verdes B eer: Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States anizer: Hyun Seop Lee, University of Maryland, College Park, MD, United States Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders Technical Paper Publication. InterPACK2019-6562 Mohammad Ashraful Haq, Mohd Aminul Hoque, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States A Study on Relationship Between Low Cycle Fatigue Strength and Load Conditions for Lead Fee Solder Material Technical Presentation. InterPACK2019-6446
rack Organizer: rack Co-Organi <i>itates</i> , Sven Rz -1: ECU-LEVEL Concourse Leve session Organiz session Co-Org 10:45AM	Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United tepka, Fraunhofer ENAS, Chemnitz, Germany RELIABILITY al, Fourth Floor, Palos Verdes B eer: Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States anizer: Hyun Seop Lee, University of Maryland, College Park, MD, United States Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders Technical Paper Publication. InterPACK2019-6562 Mohammad Ashraful Haq, Mohd Aminul Hoque, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States A Study on Relationship Between Low Cycle Fatigue Strength and Load Conditions for Lead Free Solder Material Technical Presentation. InterPACK2019-6446 Takashi Kawakami, Takahiro Kinoshita, Yuki Murai, Toyama Prefectural University, Imizu, Japan The Effect of Low Temperature Conditions on Vibration Durability of SAC105 Interconnects
Track Organizer: Track Co-Organi States, Sven Rz 3-1: ECU-LEVEL Concourse Leve Session Organiz Session Co-Org 10:45AM 11:05AM	Przemysław Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany zer: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United epka, Fraunhofer ENAS, Chemnitz, Germany RELIABILITY N, Fourth Floor, Palos Verdes B er: Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States anizer: Hyun Seop Lee, University of Maryland, College Park, MD, United States Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders Technical Paper Publication. InterPACK2019-6562 Mohammad Ashraful Haq, Mohd Aminul Hoque, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States A Study on Relationship Between Low Cycle Fatigue Strength and Load Conditions for Lead Fee Solder Material Technical Presentation. InterPACK2019-6446 Takashi Kawakami, Takahiro Kinoshita, Yuki Murai, Toyama Prefectural University, Imizu, Japan The Effect of Low Temperature Conditions on Vibration Durability of SAC105 Interconnects Technical Presentation. InterPACK2019-6509 David Leslie, University of Maryland, College Park, College Park, MD, United States, Karsten Meier, Maximilian Ochmann, Technische Universitä Dresden, Dersden, Germany, Tamara Storz, Hochschule Mannheim - University of Applied Sciences, Mannheim,

Technical Sessions

WEDNESDAY, OCTOBER 9

Wednesday, October 9, 1:45PM–3:15PM

FOR CONTRI	RVERS OF THE FUTURE, EDGE AND CLOUD COMPUTING: WITH PAPERS HONORING MICHAEL ELLSWORTH BUTIONS AND SERVICE TO ASME INTERPACK, THE ELECTRONIC AND PHOTONIC PACKAGING DIVISION, AND IN LIQUID COOLING OF SERVER SYSTEMS
Track Co-Organ	Saket Karajgikar, Facebook Inc., Menlo Park, CA, United States zer: Timothy Chainer, IBM, Yorktown Heights, NY, United States, Joshua Gess, Oregon State University, Corvallis, OR, United States, Baris Systems Inc., Santa Clara, CA, United States
2-7: IMMERSIO	N COOLING II 9. Fourth Floor, Palos Verdes B
	rer: Nikhil Lakhkar, Emerson Climate Technologies, Sidney, OH, United States anizer: Steve Moon, 3M Company, St. Paul, MN, United States
1:45PM	Impact of Immersion Cooling on Thermo-Mechanical Properties of PCBs and Reliability of Electronic Packages Technical Paper Publication. InterPACK2019-6568
1.452101	Shrinath Ramdas, Pavan Rajmane, Tushar Chauhan, Abel Misrak, Dereje Agonafer, University of Texas at Arlington, Arlington, TX, United States
2:05PM	Computational Analysis for Thermal Optimization of Server for Single Phase Immersion Cooling Technical Paper Publication. InterPACK2019-6587
2.059101	Dhruvkumar Gandhi, Dereje Agonafer, Tushar Chauhan, Uschas Chowdhury, Satyam Saini, Pratik Bansode, Jimil M. Shah, University of Texas at Arlington, Arlington, TX, United States
2:25PM	Computational Form Factor Study of a Third-Generation Open Compute Server for Single-Phase Immersion Cooling Technical Paper Publication. InterPACK2019-6602
2.235101	Jimil M. Shah, Chinmay Bhatt, Pranavi Rachamreddy, Ravya Dandamudi, Satyam Saini, Dereje Agonafer, University of Texas at Arlington, Arlington, TX, United States
TRACK 3: INT	ERNET OF THINGS
-	Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States zer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States
3-1: IOT APPLIC Concourse Leve	el, Fourth Floor, Huntington A
Session Co-Org	rer: Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States anizer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Anil Yuksel, IBM Corporation, Austin, TX, Iehmet Arik, Ozyegin University, Istanbul, Turkey
1:45PM	Thermal Characterization of Composite Ultra-High Molecular Weight Polyethylene Fabrics Technical Presentation. InterPACK2019-6412
	Aaditya Candadai, Justin Weibel, Amy Marconnet, Purdue University, West Lafayette, IN, United States
2:05PM	Packaging Environmental Sensors for an Internet-of-Things Solution for Urban-Microclimate Studies Technical Paper Publication. InterPACK2019-6515
2.000 111	Shuv Dey, Yogendra Joshi, Georgia Institute of Technology, Atlanta, GA, United States, J. Michael Brown, Manufacturing Resources International, Alpharetta, GA, United States
2:25PM	Ultra-Low SWaP CO₂ Sensing for Demand Control Ventilation Technical Presentation. InterPACK2019-6747
	Elif Karatay, Eric Cocker, Kyle Arakaki, David Schwartz, PARC, Palo Alto, CA, United States
2:45PM	An RF-Powered Self-Locating Flexible Building Environment Sensor System Technical Presentation. InterPACK2019-6306
2.401-141	David Schwartz, Shabnam Ladan, Vijay Venkatasubramanian, Clinton Smith, Joseph Lee, Ping Mei, Brent Krusor, Shakthi Gowri, PARC, Palo Alto, CA, United States

Wednesday, Octo	ber 9, 1:45PM–3:15PM					
TRACK 4: FLEX	IBLE AND WEARABLE ELECTRONICS					
Track Co-Organize	alerie Marty, Connected Micro, Corvallis, OR, United States er: E. Yegan Erdem, Bilkent University, Ankara, Turkey, Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, os Veres, PARC, Palo Alto, CA, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States					
	EVELOPMENT AND CHARACTERIZATION OF FLEXIBLE SYSTEMS Fourth Floor, Huntington B					
5	: David Schwartz, PARC, Palo Alto, CA, United States izer: Janos Veres, PARC, Palo Alto, CA, United States, Vaibhav Agrawal, Intel, Tempe, AZ, United States					
	Process Capability of Aerosol-Jet Additive Processes for Long-Runs up to 10 Hours Technical Paper Publication. InterPACK2019-6569					
1:45PM	Pradeep Lall, Amrit Abrol, Nakul Kothari, Auburn University, Auburn, AL, United States, Benjamin Leever, Air Force Research Labo- ratory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States					
2:05PM	Effect of Charge-Discharge Depth and Environment Use Conditions on Flexible Power Sources Technical Paper Publication. InterPACK2019-6570					
2.05FW	Pradeep Lall, Amrit Abrol, Ved Soni, Auburn University, Auburn, AL, United States, Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States					
2:25PM	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry Technical Paper Publication. InterPACK2019-6574					
2.25FW	Pradeep Lall, Kartik Goyal, Nakul Kothari, Auburn University, Auburn, AL, United States, Benjamin Leever, Air Force Research Labo- ratory, Wright Patterson AFB, OH, United States, Scott Miller, NextFlex, San Jose, CA, United States					
2:45PM	Acceleration Factors for Flexible Electronics in Wearable Applications From Actual Human Body Measurements Technical Paper Publication. InterPACK2019-6580					
	Pradeep Lall, Tony Thomas, Vikas Yadav, Jinesh Narangaparambil, Wei Liu, Auburn University, Auburn, AL, United States					
TRACK 6: POW	ER ELECTRONICS					
Track Co-Organize	auren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States rr: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research ord, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States					
6-13: SYSTEM INT Concourse Level,	Fegration Fourth Floor, Huntington C					
-	:: Ramchandra Kotecha, National Renewable Energy Laboratory, Golden, CO, United States izer: Sangbeom Cho, Qualcomm, San Diego, CA, United States					
1:45PM	Comparative Study on Power Module Architectures for Modularity and Scalability Technical Paper Publication. InterPACK2019-6443					
	Mei-Chien Lu, Monte Rosa Technology, Saratoga, CA, United States					
2:05PM	Integration Challenges of SiC Power Module for High Temperature and High Frequency Operation Technical Presentation. InterPACK2019-6548					
	Shohei Suenaga, Shailesh N. Joshi, Toyota Motor North America, Ann Arbor, MI, United States					
2:25PM	Parametric and Sensitivity Analysis of Power Module Design Technical Paper Publication. InterPACK2019-6592					
	Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States, Michael Fish, Morris S. Berman, U.S. Army Re- search Laboratory, Adelphi, MD, United States					
2:45PM	Packaging and Integration of an Additively Manufactured Photovoltaic Inverter Technical Presentation. InterPACK2019-6411					
	Akanksha Singh, National Renewable Energy Laboratory, Golden, CO, United States					

Technical Sessions

WEDNESDAY, OCTOBER 9

Wednesday, October 9, 1:45PM-3:15PM

TRACK 7: ENERGY CONVERSION AND STORAGE

Track Organizer: Guangsheng Zhang, University of Alabama in Huntsville, Huntsville, AL, United States

Track Co-Organizer: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States, Xuemin Li, A123 Systems, Waltham, MA, United States, Ayyoub Momen, Oak Ridge National Laboratory, Oak Ridge, TN, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, United States States

7-8: THERMAL SWITCHES AND THERMAL METAMATERIALS Concourse Level, Fourth Floor, Palos Verdes A

Session Organizer: **Menglong Hao**, University of California, Berkeley, Berkeley, CA, United States Session Co-Organizer: **Sean Lubner**, Lawrence Berkeley National Laboratory, Berkeley, CA, United States

1:45PM	3D Architected Packaging Structures for Thermal Management Technical Presentation. InterPACK2019-6415					
	Shiva Farzinazar, Jaeho Lee, University of California, Irvine, Irvine, CA, United States					
2:05PM	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams Technical Presentation. InterPACK2019-6554					
2.001 1	Luis Delgado, Purdue University, West Lafayette, IN, United States, Tingting Du, Shandong University, Purdue University, Jinan, Chi Amy Marconnet, Xiulin Ruan, Purdue University, West Lafayette, IN, United States					
2:25PM	Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Management Technical Paper Publication. InterPACK2019-6402					
2.2581	Gary Liang, Ashkan Sadeghifard, Anirudh Krishna, Jaeho Lee, Edwin Peraza Hernandez, University of California, Irvine, Irvine, O United States					
2:45PM	Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foams Technical Presentation. InterPACK2019-6557					
2.451 10	Tingting Du, Shandong University, Purdue University, Jinan, China, Weizhi Liao, Luis Delgado, Joseph Peoples, Amy Marconnet, Xiulin Ruan, Purdue University, West Lafayette, IN, United States					
lednesday. Oct	ober 9, 3:30PM –5:00PM					
Inited States, Ja	er: E. Yegan Erdem, Bilkent University, Ankara, Turkey, Benjamin Leever, Air Force Research Laboratory, Wright Patterson AFB, OH, nos Veres, PARC, Palo Alto, CA, United States, Baris Dogruoz, Cisco Systems Inc., Santa Clara, CA, United States					
	DICS FOR FLEXIBLE ELECTRONICS , Fourth Floor, Huntington B					
	DICS FOR FLEXIBLE ELECTRONICS					
	DICS FOR FLEXIBLE ELECTRONICS , Fourth Floor, Huntington B er: Azar Alizadeh, GE, Niskayuna, NY, United States					
ession Co-Orga	DICS FOR FLEXIBLE ELECTRONICS , Fourth Floor, Huntington B er: Azar Alizadeh, GE, Niskayuna, NY, United States nizer: E. Yegan Erdem, Bilkent University, Ankara, Turkey Textured Superoleophobic Surfaces: Fabrication and Characterization					
ession Co-Orga 3:30PM	DICS FOR FLEXIBLE ELECTRONICS , Fourth Floor, Huntington B er: Azar Alizadeh, GE, Niskayuna, NY, United States nizer: E. Yegan Erdem, Bilkent University, Ankara, Turkey Textured Superoleophobic Surfaces: Fabrication and Characterization Technical Presentation. InterPACK2019-6713					
ession Co-Orga	DICS FOR FLEXIBLE ELECTRONICS , Fourth Floor, Huntington B er: Azar Alizadeh, GE, Niskayuna, NY, United States nizer: E. Yegan Erdem, Bilkent University, Ankara, Turkey Textured Superoleophobic Surfaces: Fabrication and Characterization Technical Presentation. InterPACK2019-6713 Ecem Yelekli, E. Yegan Erdem, Bilkent University, Ankara, Turkey Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling Technical Presentation. InterPACK2019-6746					
3:30PM	DICS FOR FLEXIBLE ELECTRONICS , Fourth Floor, Huntington B er: Azar Alizadeh, GE, Niskayuna, NY, United States nizer: E. Yegan Erdem, Bilkent University, Ankara, Turkey Textured Superoleophobic Surfaces: Fabrication and Characterization Technical Presentation. InterPACK2019-6713 Ecem Yelekli, E. Yegan Erdem, Bilkent University, Ankara, Turkey Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling Technical Presentation. InterPACK2019-6746 Alexander J. Castaneda, Worcester Polytechnic Institute, Worcester, MA, United States, Nathaniel O'Connor, Worcester Polytechnic					
3:30PM 3:50PM	 DICS FOR FLEXIBLE ELECTRONICS Fourth Floor, Huntington B Per: Azar Alizadeh, GE, Niskayuna, NY, United States nizer: E. Yegan Erdem, Bilkent University, Ankara, Turkey Textured Superoleophobic Surfaces: Fabrication and Characterization Technical Presentation. InterPACK2019-6713 Ecem Yelekli, E. Yegan Erdem, Bilkent University, Ankara, Turkey Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling Technical Presentation. InterPACK2019-6746 Alexander J. Castaneda, Worcester Polytechnic Institute, Worcester, MA, United States, Nathaniel O'Connor, Worcester Polytechnic Institute, Oxford, MA, United States, Jamal Yagoobi, Worcester Polytechnic Institute, Worcester, MA, United States Bio-Applications of Wearable Sensors					
3:30PM 3:50PM	DICS FOR FLEXIBLE ELECTRONICS , Fourth Floor, Huntington B er: Azar Alizadeh, GE, Niskayuna, NY, United States nizer: E. Yegan Erdem, Bilkent University, Ankara, Turkey Textured Superoleophobic Surfaces: Fabrication and Characterization Technical Presentation. InterPACK2019-6713 Ecem Yelekli, E. Yegan Erdem, Bilkent University, Ankara, Turkey Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling Technical Presentation. InterPACK2019-6746 Alexander J. Castaneda, Worcester Polytechnic Institute, Worcester, MA, United States, Nathaniel O'Connor, Worcester Polytechnic Institute, Oxford, MA, United States, Jamal Yagoobi, Worcester Polytechnic Institute, Worcester, MA, United States Bio-Applications of Wearable Sensors Invited Presentation. InterPACK2019-6775					

TRACK 6: POWER ELECTRONICS Track Organizer: Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States Track Co-Organizer: Damena Agonafer, Washington University in St. Louis, Saint Louis, MO, United States, Ram Ranjan, United Technologies Research Center, East Hartford, CT, United States, Sukwon Choi, Pennsylvania State University, University Park, PA, United States 6-14: ADDITIVE MANUFACTURING Concourse Level, Fourth Floor, Huntington C Session Organizer: Douglas Hopkins, North Carolina State University, Raleigh, NC, United States Session Co-Organizer: Stephen Lynch, Penn State University, University Park, PA, United States Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization Technical Paper Publication. InterPACK2019-6442 3:30PM Reece Whitt, David Huitink, Skyler Hudson, Bakhtiyar Mohammad Nafis, Zhao Yuan, Balaji Narayanasamy, Amol Deshpande, Fang Luo, Asif Imran, University of Arkansas, Fayetteville, AR, United States, Zion Clarke, Sonya Smith, Howard University, Washington, DC. United States A Numerical Investigation of Additive Manufactured Foam Structures for Single Phase Hotspot Thermal Management Technical Paper Publication. InterPACK2019-6519 3:50PM Justin Broughton, Yogendra Joshi, Georgia Institute of Technology, Atlanta, GA, United States Advanced Packaging and Thermal Management of High-Power DC-DC Converters Technical Paper Publication. InterPACK2019-6559 4:10PM Sevket Umut Yuruker, Raphael Mandel, Patrick McCluskey, Michael Ohadi, Shiladri Chakraborty, Yongwan Park, He Yun, Alireza Khaligh, University of Maryland, College Park, College Park, MD, United States, Lauren M. Boteler, U.S. Army Research Laboratory, Highland, MD, United States, Miguel Hinojosa, U.S. Army Research Laboratory, Adelphi, MD, United States Additive Manufactured Hybrid Cold Plates for Efficient Thermal Management of High Power Density Electronics Technical Presentation. InterPACK2019-6664 4:30PM Muhammad Jahidul Hoque, Nithin Vinod Upot, Nenad Miljkovic, University of Illinois at Urbana-Champaign, Urbana, IL, United States 6-15: EMERGING TECHNOLOGIES Concourse Level, Fourth Floor, Palos Verdes A Session Organizer: Paul Paret, National Renewable Energy Laboratory, Golden, CO, United States Session Co-Organizer: Patrick McCluskey, University of Maryland, College Park, MD, United States Evolution of Anand Parameters With Elevated Temperature Aging for SAC Leadfree Alloys Technical Paper Publication. InterPACK2019-6577 3:30PM Pradeep Lall, Vikas Yadav, Jeffrey Suhling, Auburn University, Auburn, AL, United States, David Locker, U.S. Army RDECOM, Redstone Arsenal, AL, United States Simulating the Effect of Elastic Particle Inclusion on the Mechanical Properties of Transient Liquid Phase Sintered (TLPS) Alloys Technical Presentation. InterPACK2019-6435 3:50PM Gilad Nave, Erick Gutierrez, Patrick McCluskey, University of Maryland, College Park, College Park, MD, United States Quantitative Characterization of Sapphire and Silicon Nitride for Space Applications Circuit Subassemblies Using Cryogenic Cycling 4:10PM Technical Paper Publication. InterPACK2019-6499 Kirsten Lovelace, Sonya Smith, Howard University, Washington, DC, United States Effect of Low Melting Point Bridge With High Melting Point Fine Filler on the Conductivity of Conductive Adhesive Technical Presentation. InterPACK2019-6403 4:30PM Michiya Matsushima, Shogo Minami, Naoki Ito, Shinji Fukumoto, Kozo Fujimoto, Osaka University, Suita, Osaka, Japan

Wednesday, October 9, 3:30PM -5:00PM

Technical Sessions

WEDNESDAY, OCTOBER 9

Wednesday, Octo	ober 9, 3:30PM-5:00PM				
TRACK 7: ENER	RGY CONVERSION AND STORAGE				
Track Co-Organize	Guangsheng Zhang, University of Alabama in Huntsville, Huntsville, AL, United States er: Aritra Sur, United Technologies Research Center, East Hartford, CT, United States, Xuemin Li, A123 Systems, Waltham, MA, United Iomen, Oak Ridge National Laboratory, Oak Ridge, TN, United States, Partha Mukherjee, Purdue University, West Lafayette, IN, United				
	, SUPERCAPACITORS, AND SOLAR CELLS II Fourth Floor, Palos Verdes B				
	er: Xiangyang Zhou, University of Miami, Coral Gables, FL, United States nizer: Chuanbo Yang, National Renewable Energy Laboratory, Golden, CO, United States				
3:30PM	Li-Ion Battery Impact Testing Technical Presentation. InterPACK2019-6710				
	June Stanley, Sandia National Laboratories, Albuquerque, NM, United States				
3:50PM	The Role of Interfacial Thermal Resistance in Li-Ion Battery Thermal Management Technical Paper Publication. InterPACK2019-6594				
	Chuanbo Yang, Lei Cao, National Renewable Energy Laboratory, Golden, CO, United States				
4:10PM	In-Situ Diagnosis of Li-Ion Battery Internal Short Circuit Technical Presentation. InterPACK2019-6757				
	Shan Huang, Guangsheng Zhang, University of Alabama in Huntsville, Huntsville, AL, United States				
4:30PM	A High-Performance Polymer Electrolyte Membrane Based on Poly (Vinylidene Fluoride) and Graphene Oxide Doped With Redox Species Technical Presentation. InterPACK2019-6479				
	Xiangyang Zhou, University of Miami, Coral Gables, FL, United States				
TRACK 8: AUTO	ONOMOUS, HYBRID, AND ELECTRIC VEHICLES				
Track Co-Organize	Przemyslaw Jakub Gromala, Robert Bosch GmbH, Reutlingen, Germany er: Gopi Krishnan, Tesla, Palo Alto, CA, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United pka, Fraunhofer ENAS, Chemnitz, Germany				
8-7: RELIABILITY	OF ELECTRONIC COMPONENTS FOR HARSH ENVIRONMENT Fourth Floor, Redondo				
	er: Fabian Welschinger, Robert Bosch GmbH, Renningen, Germany nizer: David Huitink, University of Arkansas, Fayetteville, AR, United States				
2.20714	Effects of Shear Cycling on the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints Technical Paper Publication. InterPACK2019-6567				
3:30PM	Mohd Aminul Hoque, Md. Mahmudur Chowdhury, Jeffrey Suhling, Sa'd Hamasha, Pradeep Lall, Auburn University, Auburn, AL, United States				
	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers Technical Presentation. InterPACK2019-6367				
3:50PM	Srivathsan Sudhakar, Justin Weibel, Purdue University, West Lafayette, IN, United States, Feng Zhou, Toyota Research Institute North America, Ann Arbor, MI, United States, Ercan Dede, Toyota Research Institute of North America, Ann Arbor, MI, United States, Suresh Garimella, University of Vermont, Burlington, VT, United States				
	Effect of Drop Angle Variation and Restraint Mechanisms on Surface Mount Electronics Under High G Shock Technical Paper Publication. InterPACK2019-6575				
4:10PM	Pradeep Lall, Aathi Raja Ram Pandurangan, Jeffrey Suhling, Auburn University, Auburn, AL, United States, John Deep, Air Force Research Laboratory, Eglin AFB, AL, United States, Ryan Lowe, ARA Associates, Littleton, CO, United States, Venkata Kalyan Reddy Dornala, Auburn University, Auburn, AL, United States				
4:30PM	Modeling of Underfilled PBGA Assemblies Using Both Viscoelastic and Elastic Material Properties Technical Paper Publication. InterPACK2019-6561				
	Promod Chowdhury, Jeffrey Suhling, Pradeep Lall, Auburn University, Auburn, AL, United States				

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Abrol	Amrit	InterPACK2019-6569	Process Capability of Aerosol-Jet Additive Processes for Long-Runs up to 10 Hours
		InterPACK2019-6570	Effect of Depth of Charge-Discharge Depth and Environment Use Conditions on Flexible Power Sources
Achar Puttur Lakshminarayana	Sukshitha	InterPACK2019-6669	Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties
		InterPACK2019-6501	Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior
		InterPACK2019-6697	Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties
		InterPACK2019-6696	Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior
Acharya	Palash	InterPACK2019-6311	Assessing the Performance of Advanced Cooling Techniques on Thermal Management of Next-Generation Power Electronics
Agonafer	Damena	InterPACK2019-6465	Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance
		InterPACK2019-6466	Molecular Dynamics Simulation of Thin-Film Evaporation From Nanocoated Surfaces:The Asymptotic Relationship Between Evaporation Rate and Nanocoating Thickness
		InterPACK2019-6449	Experimental Investigation of Asymmetrical Microdroplet Evaporation on Heated Porous Pillar Array Structures
Agonafer	Dereje	InterPACK2019-6522	Optimal Design and Modeling of Server Cabinets With In-Row Coolers and Air Conditioning Units in a Modular Data Center
		InterPACK2019-6601	Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center
		InterPACK2019-6590	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
		InterPACK2019-6600	CFD Analysis of Thermal Shadowing and Optimization of Heat Sinks in Third-Generation Open Compute Server for Single-Phase Immersion Cooling
		InterPACK2019-6568	Impact of Immersion Cooling on Thermo-mechanical Properties of PCBs and Reliability of Electronic Packages
		InterPACK2019-6587	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6602	Computational Form Factor Study of a Third-Generation Open Compute Server for Single- Phase Immersion Cooling
		InterPACK2019-6536	Development and Optimization of Control Strategy for a Dynamic Cold Plate to Save Pumping Power and Increase the Reliability
		InterPACK2019-6651	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6653	Artificial Neural Network Based Prediction of Control Strategies for Multiple Air Cooling Units in a Raised Floor Data Center
		InterPACK2019-6671	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
		InterPACK2019-6677	Study of Hybrid Cooled Servers Using Warm Water Cooling and Comparing Distributed Pumping System With and Without Controlling Pumps
		InterPACK2019-6723	Comparative CFD Analysis of the Effect of Air and Liquid Cooling on the Form Factor of GPU Server
		InterPACK2019-6724	Comparative Rack Level CFD Analysis of Air to Hybrid Cooling
Ahmed	Tusher	InterPACK2019-6521	Numerical Investigation on Electromigration Oriented Failure of Lead Free Solder Joints With Aging Effects
Ai	Nathan	InterPACK2019-6384	System ElectroThermal Transient Analysis of a High Current (40A) Synchronous Step Down Converter
Al Razi	Imam	InterPACK2019-6429	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles
		InterPACK2019-6730	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles
Alajlouni	Sami	InterPACK2019-6413	Thermoreflectance Imaging of Electromigration in Aluminum Interconnects at Different Ambient Temperatures

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6708	Full-Field Thermal Imaging of Electromigration in Aluminum Interconnects at Different Ambient Temperatures
Alam	Mohammad S.	InterPACK2019-6564	Aging Dependent Anand Parameters of SAC305 Lead Free Solder at Extreme High Temperatures
		InterPACK2019-6571	Investigation of the Effects of High Temperature Aging on Mechanical Behavior and Microstructural Changes in Lead Free Solders
		InterPACK2019-6647	The Poisson's Ratio of Lead Free Solder: The Often Forgotten but Important Material Property
		InterPACK2019-6642	Microstructural Evolution in SAC+X Solders Subjected to Aging
Al-Hashim	Hala H.	InterPACK2019-6737	High Brightness White Laser Module Enabling Gbps Li-Fi Link for High-Speed Visible Light Communications
		InterPACK2019-6739	High-Speed Visible Laser Light Communication (VLLC) Enabled Using RGB Laser Module for Gbps Li-Fi Links
Allerman	Andrew A.	InterPACK2019-6440	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
		InterPACK2019-6527	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
Alleyne	Andrew	InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
Allred	Taylor	InterPACK2019-6308	The Critical Role of Dynamic Surface Wettability on Bubble Dynamics and Boiling Performance
		InterPACK2019-6622	The Critical Role of Dynamic Surface Wettability on Bubble Dynamics and Boiling Performance
Alqahtani	Ayed	InterPACK2019-6417	Thermal Analysis of 3D ICs With TSVs Placement Optimization
Amalfi	Raffaele Luca	InterPACK2019-6386	Design of Passive Two-Phase Thermosyphons for Server Cooling
Ambhore	Pranav	InterPACK2019-6550	Power Delivery and Thermal Management for the Silicon Interconnect Fabric
		InterPACK2019-6754	Power Delivery and Thermal Management for the Silicon Interconnect Fabric
Amoli	Nahid A.	InterPACK2019-6498	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements
Amon	Cristina H.	InterPACK2019-6434	Understanding the Effect of the Cooling Architecture and PCB Layout Design on the Concurrent Thermal and Electrical Performance on an On-Board Electric Vehicle Charger
		InterPACK2019-6700	Effects of Cooling Architecture and PCB Layout Co-Design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger
An	Zhenghua	InterPACK2019-6330	Near-Field Infrared Imaging of Hot Electrons In Nano-Devices
Anand	Roshan	InterPACK2019-6601	Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center
Andersson	Dag	InterPACK2019-6487	Prognostication of Failure in Packaged Power Devices for Automotive Applications
Ang	Simon	InterPACK2019-6424	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design
		InterPACK2019-6742	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design
Annapragada	Subramanyaravi	InterPACK2019-6558	Performance of an Electrocaloric Heat Pump Device
Arakaki	Kyle	InterPACK2019-6747	Ultra-Low SWaP $\rm CO_2$ Sensing for Demand Control Ventilation
Arik	Mehmet		
		InterPACK2019-6776	Measuring Junction Temperature of LEDs: Challenges and Opportunities
Armstrong	Andrew M.	InterPACK2019-6440	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
		InterPACK2019-6527	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
Arnedo	Luis	InterPACK2019-6534	Thermal Analysis of High Efficiency High Speed Drives
Asheghi	Mehdi	InterPACK2019-6539	Addressing the Challenges in Laser Micro-Machining and Bonding of Silicon Microchannel Cold-Plate and 3D-Manifold for Embedded Cooling Applications
		InterPACK2019-6400	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa
		InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
		InterPACK2019-6472	Design and Optimization of Silicon-Based Embedded Microchannel and 3D Manifold for High Heat Flux (>1 kW/cm2) Power Electronics Cooling Applications

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
		InterPACK2019-6399	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R245fa
		InterPACK2019-6672	Novel Post-Process Cleaning Technique for Perfect Laser Debris Removal
		InterPACK2019-6692	Experimental Investigation of Capillary Rising in Micro Pin Fin Structures
		InterPACK2019-6701	Exploring the Limits of Cooling for Extreme Heat Flux Applications
		InterPACK2019-6705	Flow Boiling Heat Transfer in Embedded Micro-Pin Fin Arrays
		InterPACK2019-6712	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm2) Power Electronics Cooling
		InterPACK2019-6729	Pressure and Temperature in Simulations of Large-Footprint Manifold-Microchannel Cooling Devices
Assadi	Amir	InterPACK2019-6434	Understanding the Effect of the Cooling Architecture and PCB Layout Design on the Concurrent Thermal and Electrical Performance on an On-Board Electric Vehicle Charger
		InterPACK2019-6700	Effects of Cooling Architecture and PCB Layout Co-Design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger
Athavale	Jayati	InterPACK2019-6565	Comparison of Data Driven Modeling Approaches for Temperature Prediction in Data Centers
Васа	Albert G.	InterPACK2019-6440	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
		InterPACK2019-6527	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
Baez	Rafael	InterPACK2019-6385	Metallic PCMs Microstructural Stability and Compatibility Analysis Under Repetitive Melting/ Solidification Cycles
Bagherzadeh	Nader	InterPACK2019-6417	Thermal Analysis of 3D ICs With TSVs Placement Optimization
Bahadur	Vaibhav	InterPACK2019-6311	Assessing the Performance of Advanced Cooling Techniques on Thermal Management of Next-Generation Power Electronics
Bai	Tingyu	InterPACK2019-6608	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga ₂ O ₃ -Diamond Interfaces
Bair	Wilfried	InterPACK2019-6769	How Ultrathin Die Enable Flexible Hybrid Electronics
Bansode	Pratik	InterPACK2019-6590	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
		InterPACK2019-6600	CFD Analysis of Thermal Shadowing and Optimization of Heat Sinks in Third-Generation Open Compute Server for Single-Phase Immersion Cooling
		InterPACK2019-6587	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6651	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6671	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
Barako	Michael	InterPACK2019-6656	Characterizing Dynamic Response of Phase Change Materials
		InterPACK2019-6467	Design of Nanostructured Copper Surfaces for Thin Film Evaporation
		InterPACK2019-6657	Characterizing Dynamic Response of Phase Change Materials
Bar-Cohen	Avram	InterPACK2019-6745	Gravity Effects in Two-Phase Microgap Flow
		InterPACK2019-6625	Challenges and Opportunities in Thermal Management of Directed Energy Systems
Barigala Charles Paulraj	Anto Joseph	InterPACK2019-6684	Thermal Destratification of Air Streams to Improve the Cooling Provisioning of Air-Cooled Data Centers
Barrett	Enda	InterPACK2019-6304	Dynamic Control of Airflow Balance in Data Centers
Battaglia	Vince	InterPACK2019-6658	Operando Measurements of the Dominant Thermal Resistance in Lithium-Ion Batteries
Bazzi	Ali	InterPACK2019-6524	Data-Driven Approaches for Fault Prognosis of SiC MOSFETs
Bellaredj	Mohamed	InterPACK2019-6498	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements
Bennion	Kevin	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
		InterPACK2019-6631	Multi-Scale Thermal Analysis for Design of SiC Based Medium Voltage Motor Drive

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6445	Experimentation and Simulation of Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
		InterPACK2019-6457	Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
Berman	Morris S.	InterPACK2019-6592	Parametric and Sensitivity Analysis of Power Module Design
Bermel	Peter	InterPACK2019-6413	Thermoreflectance Imaging of Electromigration in Aluminum Interconnects at Different Ambient Temperatures
Bernander	lan	InterPACK2019-6507	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads
		InterPACK2019-6613	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads
Bhatt	Chinmay	InterPACK2019-6600	CFD Analysis of Thermal Shadowing and Optimization of Heat Sinks in Third-Generation Open Compute Server for Single-Phase Immersion Cooling
		InterPACK2019-6602	Computational Form Factor Study of a Third-Generation Open Compute Server for Single- Phase Immersion Cooling
Blattau	Nathan	InterPACK2019-6347	Automated Method Using Finite Element Analysis to Identify Plated Through Holes and Microvia Stacks at Failure Risk in Complex PCB Designs
Blecker	Ken	InterPACK2019-6578	Health Monitoring of PCBs Under Mechanical Shock Loads
Börjesson	Jerry	InterPACK2019-6487	Prognostication of Failure in Packaged Power Devices for Automotive Applications
Bosch	Stephen	InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
Bosco	Nick	InterPACK2019-6520	Application of Electronics Packaging Fundamentals to Photovoltaic Interconnects And Packaging
Boteler	Lauren M.	InterPACK2019-6385	Metallic PCMs Microstructural Stability and Compatibility Analysis Under Repetitive Melting/ Solidification Cycles
		InterPACK2019-6609	Thermal Contact Resistance at DBC Interfaces
		InterPACK2019-6381	Evaluation of Low Order Stress Models for Use in Co-Design Analysis of Electronics Packaging
		InterPACK2019-6592	Parametric and Sensitivity Analysis of Power Module Design
		InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 1
		InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 2
Brault	Julien	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AlN Hetero-Structures
Brinkfeldt	Klas	InterPACK2019-6487	Prognostication of Failure in Packaged Power Devices for Automotive Applications
Broughton	Justin	InterPACK2019-6519	Additive Manufactured Foam Structures For Single Phase Thermal Management of Power Electronics
		InterPACK2019-6722	A Numerical Investigation of Additive Manufactured Foam Structures for Single Phase Hotspot Thermal Management
Brown	J. Michael	InterPACK2019-6515	Packaging Enviromental Sensors for an Internet-of-Things Solution for Urban-Microclimate Studies
		InterPACK2019-6391	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components
		InterPACK2019-6758	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components
		InterPACK2019-6721	Packaging Environmental Sensors for an Internet-of-Things Solution for Urban-Microclimate Studies
Burgos	Rolando	InterPACK2019-6393	Evaluation of a Lead Glass for Encapsulating High-Temperature Power Modules for Aerospace Application
Burke	Jack	InterPACK2019-6688	Flexible High Thermal Conductivity Ultra-High Molecular Weight Polyethylene Fabrics: Fabrication and Metrology
Burns	Andrew	InterPACK2019-6775	Bio-Applications of Wearable Sensors
Buskohl	Philip	InterPACK2019-6750	Design Tools and FHE Materials for Physically Reconfigurable RF Platforms
Cai	Duanjun	InterPACK2019-6326	Large Roll Hexagonal Bn Monolayer: Synthesis, Modulation Doping and 2D Emitter
		InterPACK2019-6357	Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization
Campbell	lan	InterPACK2019-6767	Digital Qualification of Flexible and Wearable Electronics

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Candadai	Aaditya	InterPACK2019-6412	Thermal Characterization of Composite Ultra-High Molecular Weight Polyethylene Fabrics
		InterPACK2019-6688	Flexible High Thermal Conductivity Ultra-High Molecular Weight Polyethylene Fabrics: Fabrication and Metrology
Сао	Lei	InterPACK2019-6594	The Role of Interfacial Thermal Resistance in Li-Ion Battery Thermal Management
Carlton	Hayden	InterPACK2019-6416	Thermo-Mechanical Degradation of Thermal Interface Materials: Accelerated Test Development and Reliability Analysis: Part 1
		InterPACK2019-6720	Thermo-Mechanical Degradation of Thermal Interface Materials: Accelerated Test Development and Reliability Analysis: Part 2
Carney	John	InterPACK2019-6759	EDA Design and Analysis Methodology for Flexible Circuits
Carroll	Robert	InterPACK2019-6514	Fabrication Steps and Thermal Modeling of Three-Dimensional Asynchronous Field Programmable Gate Array (3D-AFPGA)
Carte	Casey	InterPACK2019-6530	Enabling Thermal Management of High Powered Server Processors Using Passive Thermosiphon Heat Sink
Carter	Rachel	InterPACK2019-6432	Lithium Plating and Dendrites in Li-Ion Batteries Under Thermal Gradient
Castaneda	Alexander J.	InterPACK2019-6746	Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling
Cataldo	Filippo F.	InterPACK2019-6386	Design of Passive Two-Phase Thermosyphons for Server Cooling
Cavalheiro	Gabriel M.	InterPACK2019-6477	Effects of Non-Uniform Temperature Distributions on Lithium-Ion Battery Degradation
Chainer	Timothy	InterPACK2019-6532	Thermal Challenges in Servers
Chakraborty	Shiladri	InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters
		InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters
Challener	W.A.	InterPACK2019-6726	Simplified Fabrication and Integration of Optical Fiber Sensor for Bio-Reactor Monitoring
Chandrasekar	Srinivasan	InterPACK2019-6510	Medium to High Strain-Rate Characterization of Lead Free Solder Alloys Through Metal Cutting Experiments: Part 1
		InterPACK2019-6686	Medium to High Strain-Rate Characterization of Lead Free Solder Alloys Through Metal Cutting Experiments: Part 2
Chang	Norman	InterPACK2019-6755	Applying Multi-Physics Analysis and Data Analytics for IIoT Applications With FHE
Channegowda	Parikshith	InterPACK2019-6534	Thermal Analysis of High Efficiency High Speed Drives
Chatterjee	Bikramjit	InterPACK2019-6426	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature
		InterPACK2019-6438	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs
		InterPACK2019-6528	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
		InterPACK2019-6439	Thermal Management of Gallium Oxide Electronics via Hetero-Integration on High Thermal Conductivity Substrates
		InterPACK2019-6440	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
		InterPACK2019-6527	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
		InterPACK2019-6529	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature
		InterPACK2019-6537	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs
		InterPACK2019-6538	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
Chauhan	Tushar	InterPACK2019-6590	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
		InterPACK2019-6568	Impact of Immersion Cooling on Thermo-mechanical Properties of PCBs and Reliability of Electronic Packages
		InterPACK2019-6587	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6651	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6671	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling

84

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Che	Jiamang	InterPACK2019-6310	Recent Progress on the Development of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes
Chen	Changqing	InterPACK2019-6340	Improvement of DUV LEDs Light Extraction Efficiency by Novel Microstructures
		InterPACK2019-6341	Strain Effect on AlGaN Anisotropic Ultraviolet Light Emitting Characteristic
		InterPACK2019-6337	Improving Performance and Reliability of GaN-Based Flip-Chip Light Emitting Diodes by Reflective Bonding Pads
Chen	Jie	InterPACK2019-6384	System ElectroThermal Transient Analysis of a High Current (40A) Synchronous Step Down Converter
Chen	Jun	InterPACK2019-6461	Piezoresistive Theory for 4H Silicon Carbide Stress Sensors on Four-Degree Off-Axis Wafers
		InterPACK2019-6643	A Study on the Impact of Four-Degree Off-Axis Wafers on 4H-SiC Stress Sensors
Chen	Mingxiang	InterPACK2019-6616	Direct Ink Writing of 3D Direct Plated Copper Ceramic Substrates With Kaolin Composites Pastes
Chen	Qian	InterPACK2019-6340	Improvement of DUV LEDs Light Extraction Efficiency by Novel Microstructures
Chen	Rui	InterPACK2019-6498	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements
Chen	Weilun Warren	InterPACK2019-6534	Thermal Analysis of High Efficiency High Speed Drives
Chen	Weiqiang	InterPACK2019-6524	Data-Driven Approaches for Fault Prognosis of SiC MOSFETs
Chen	Xinhe	InterPACK2019-6766	Realizing Enhanced CPU and GPU Performance With Directed Cooling on Scalable Coatings
Chen	Yusheng	InterPACK2019-6374	Printed OLED Display and Soluble Materials
Cheng	Baokai	InterPACK2019-6726	Simplified Fabrication and Integration of Optical Fiber Sensor for Bio-Reactor Monitoring
Cheng	Нао	InterPACK2019-6616	Direct Ink Writing of 3D Direct Plated Copper Ceramic Substrates With Kaolin Composites Pastes
Cheng	Tzu-Hsuan	InterPACK2019-6650	Characterization of a Topside Cooled Epoxy-Resin Composite Dielectric (ERCD) Package for Bi-Directional Power Switch
Cheng	Zhe	InterPACK2019-6607	Ultrahigh Thermal Boundary Conductance Across GaN-SiC Heterogeneous Interfaces by Surface Activated Bonding
		InterPACK2019-6608	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga ₂ O ₃ -Diamond Interfaces
		InterPACK2019-6748	The Effect of Anisotropy on Thermal Boundary Conductance at Metal-Semiconductor Interface
Chew	James	InterPACK2019-6764	Bounding the Problem
		InterPACK2019-6759	EDA Design and Analysis Methodology for Flexible Circuits
Chiarot	Paul R.	InterPACK2019-6455	Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro- Channel Heat Sinks
		InterPACK2019-6459	Minimizing the Effects of On-Chip Hot-Spots Using Multi-Objective Optimization of Flow Distribution in Water-Cooled Parallel Micro-Channel Heat Sinks
		InterPACK2019-6741	Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro- Channel Heat Sinks
Chiu	Ryan	InterPACK2019-6354	Double Side System in Package Development Challenge for Heterogeneous Integration
Cho	Eunho	InterPACK2019-6705	Flow Boiling Heat Transfer in Embedded Micro-Pin Fin Arrays
Cho	Jaehee	InterPACK2019-6426	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature: Part 1
		InterPACK2019-6529	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature: Part 2
Choi	Doo-Sun	InterPACK2019-6675	Replication of Hairy Surface Nanostructures on Elastomer Films for Flexible Pressure Sensors
		InterPACK2019-6706	A Study on Fabrication of Molds for Microlens Array Using Arrangement of Microparticles in a Liquid Droplet
Choi	Sukwon	InterPACK2019-6426	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature
		InterPACK2019-6438	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs
		InterPACK2019-6528	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6439	Thermal Management of Gallium Oxide Electronics via Hetero-Integration on High Thermal Conductivity Substrates
		InterPACK2019-6440	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
		InterPACK2019-6527	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
		InterPACK2019-6529	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature
		InterPACK2019-6537	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs
		InterPACK2019-6538	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
Choobineh	Leila	InterPACK2019-6334	Optimal Arrangement of Multiple Heat Sources in Vertically Stacked Two-Layer 3D IC Using Genetic Algorithm
		InterPACK2019-6514	Fabrication Steps and Thermal Modeling of Three-Dimensional Asynchronous Field Programmable Gate Array (3D-AFPGA)
Chou	Derek	InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
Chow	Justin	InterPACK2019-6498	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements
Chowdhury	Md. Mahmudur	InterPACK2019-6560	Evolution of the Microstructure of Lead Free Solders Subjected to Both Aging and Cyclic Loading
		InterPACK2019-6567	Effects of Shear Cycling on the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints
		InterPACK2019-6645	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solders Subjected to Shear Cycling
		InterPACK2019-6636	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints Subjected to Shear Cycling
		InterPACK2019-6649	Effects of Aging on the Damage Accumulation in Lead Free Solders Subjected to Cyclic Loading
Chowdhury	Promod	InterPACK2019-6561	Modeling of Underfilled PBGA Assemblies Using Both Viscoelastic and Elastic Material Properties
		InterPACK2019-6639	Characterization and FEA Modeling of Underfilled Flip Chip Package Assemblies Using Both Viscoelastic and Elastic Material Properties
Chowdhury	Shajjad	InterPACK2019-6436	Design, Analysis and Comparison of Insulated Metal Substrates for High Power Wide- Bandgap Power Modules
Chowdhury	Srabanti	InterPACK2019-6528	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
		InterPACK2019-6538	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
Chowdhury	Uschas	InterPACK2019-6522	Optimal Design and Modeling of Server Cabinets With In-Row Coolers and Air Conditioning Units in a Modular Data Center
		InterPACK2019-6587	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6651	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6723	Comparative CFD Analysis of the Effect of Air and Liquid Cooling on the Form Factor of GPU Server
		InterPACK2019-6724	Comparative Rack Level CFD Analysis of Air to Hybrid Cooling
Chu	Chunshuang	InterPACK2019-6310	Recent Progress on the Development of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes
Chuang	Oscar	InterPACK2019-6541	Stress Evaluation of Flexible Displays With Multiple-Laminations Architecture Enabled by Experimental Measurement and Simulation Based Factorial Design
Clarke	Zion	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
Cocker	Eric	InterPACK2019-6747	Ultra-Low SWaP CO ₂ Sensing for Demand Control Ventilation
Cousineau	J. Emily	InterPACK2019-6631	Multi-Scale Thermal Analysis for Design of SiC Based Medium Voltage Motor Drive

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6445	Experimentation and Simulation of Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
		InterPACK2019-6457	Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
Craft	Thomas	InterPACK2019-6522	Optimal Design and Modeling of Server Cabinets With In-Row Coolers and Air Conditioning Units in a Modular Data Center
Cui	Jin	InterPACK2019-6389	Demonstration of a Compliant Micro-Spring Array as a Thermal Interface Material for Pluggable Optoelectronic Transceiver Modules
		InterPACK2019-6666	Demonstration of a Compliant Micro-Spring Array as a Thermal Interface Material for Pluggable Optoelectronic Transceiver Modules
Cyriac	Rawhan	InterPACK2019-6601	Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center
Da Silva	Carlos	InterPACK2019-6434	Understanding the Effect of the Cooling Architecture and PCB Layout Design on the Concurrent Thermal and Electrical Performance on an On-Board Electric Vehicle Charger
		InterPACK2019-6700	Effects of Cooling Architecture and PCB Layout Co-Design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger
Dai	Jiangnan	InterPACK2019-6340	Improvement of DUV LEDs Light Extraction Efficiency by Novel Microstructures
		InterPACK2019-6341	Strain Effect on AlGaN Anisotropic Ultraviolet Light Emitting Characteristic
		InterPACK2019-6337	Improving Performance and Reliability of GaN-Based Flip-Chip Light Emitting Diodes by Reflective Bonding Pads
Dal	Hüsnü	InterPACK2019-6409	Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-Based Molding Compounds
Dale	Travis	InterPACK2019-6507	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads
		InterPACK2019-6613	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads
D'alençon	Jean Paul	InterPACK2019-6585	Data Center Thermal Efficiency Improvement by Cooling Flow Vectoring Using Synthetic Jets
Dandamudi	Ravya	InterPACK2019-6600	CFD Analysis of Thermal Shadowing and Optimization of Heat Sinks in Third-Generation Open Compute Server for Single-Phase Immersion Cooling
		InterPACK2019-6602	Computational Form Factor Study of a Third-Generation Open Compute Server for Single- Phase Immersion Cooling
Dasgupta	Abhijit	InterPACK2019-6504	Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation
		InterPACK2019-6369	Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation
		InterPACK2019-6509	The Effect of Low Temperature Conditions on Vibration Durability of SAC105 Interconnects
		InterPACK2019-6667	Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation
De Lima	Washington	InterPACK2019-6504	Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation
		InterPACK2019-6667	Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation
Deckard	Michael	InterPACK2019-6751	Lamellar Phase Change Material Composites for Power Electronics Thermal Management
Dede	Ercan	InterPACK2019-6526	Topology Optimization of Time-Transient Heat Conduction for Thermo-Optic Devices
		InterPACK2019-6525	Analysis of Thermal Stress in High Temperature Transient Liquid Phase Bonding of Power Electronics
		InterPACK2019-6400	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa
		InterPACK2019-6524	Data-Driven Approaches for Fault Prognosis of SiC MOSFETs
		InterPACK2019-6367	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers
		InterPACK2019-6399	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R245fa
		InterPACK2019-6695	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers
Deep	John	InterPACK2019-6572	Fatigue Delamination Crack Growth of Potting Compounds in PCB/Epoxy Interfaces Under Flexure Loading

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6575	Effect of Drop Angle Variation and Restraint Mechanisms on Surface Mount Electronics Under High G Shock
		InterPACK2019-6727	Effect of Inclination of Drop on Surface Mount Electronics Under High G Shock Conditions
Degner	Michael	InterPACK2019-6472	Design and Optimization of Silicon-Based Embedded Microchannel and 3D Manifold for High Heat Flux (>1 kW/cm²) Power Electronics Cooling Applications
		InterPACK2019-6712	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm²) Power Electronics Cooling
Delgado	Luis	InterPACK2019-6554	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams
		InterPACK2019-6557	Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foams
		InterPACK2019-6743	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams
Deo	Priyanka	InterPACK2019-6387	Applying Ultrasonic Dehumidification Technology for Water Rejection in Wearable Electronics
Deroche	Patrick	InterPACK2019-6766	Realizing Enhanced CPU and GPU Performance With Directed Cooling on Scalable Coatings
Deshpande	Amol	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
DeVoto	Douglas	InterPACK2019-6456	Degradation Modeling and Reliability Assessment of Capacitors
		InterPACK2019-6470	Thermal Assessment and In-Situ Monitoring of Insulated Gate Bipolar Transistors in Power Electronic Modules
		InterPACK2019-6678	Reliability Evaluation of Bonded Interfaces for High-Temperature Power Electronics Packages
Dey	Shuv	InterPACK2019-6515	Packaging Enviromental Sensors for an Internet-of-Things Solution for Urban-Microclimate Studies
		InterPACK2019-6721	Packaging Environmental Sensors for an Internet-of-Things Solution for Urban-Microclimate Studies
Diao	Fei	InterPACK2019-6738	Thermal-Switch-Enabled Power Electronics Isothermalization
		InterPACK2019-6761	Thermal-Switch-Enabled Power Electronics Isothermalization
Diaz	Marcos	InterPACK2019-6391	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components
		InterPACK2019-6758	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components
Dogruoz	Baris	InterPACK2019-6465	Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance
		InterPACK2019-6466	Molecular Dynamics Simulation of Thin-Film Evaporation From Nanocoated Surfaces:The Asymptotic Relationship Between Evaporation Rate and Nanocoating Thickness
Dold	Robert H.	InterPACK2019-6566	Thermal Management of a Highly Optimized Power Dense Non-Rare Earth Permanent Magnet Based Electric Traction Motor
Dornala	Kalyan	InterPACK2019-6572	Fatigue Delamination Crack Growth of Potting Compounds in PCB/Epoxy Interfaces Under Flexure Loading
		InterPACK2019-6718	Low Cycle Flexure Fatigue Life Prediction of Epoxy Potted PCB Interfaces Under Three Point Bending
Dornala	Venkata Kalyan Reddy	InterPACK2019-6575	Effect of Drop Angle Variation and Restraint Mechanisms on Surface Mount Electronics Under High G Shock
		InterPACK2019-6727	Effect of Inclination of Drop on Surface Mount Electronics Under High G Shock Conditions
Du	Tingting	InterPACK2019-6554	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams
		InterPACK2019-6557	Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foams
		InterPACK2019-6743	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams
Du	Zhentao	InterPACK2019-6566	Thermal Management of a Highly Optimized Power Dense Non-Rare Earth Permanent Magnet Based Electric Traction Motor
DuBois	Terry G.	InterPACK2019-6625	Challenges and Opportunities in Thermal Management of Directed Energy Systems
Eddins	Richard	InterPACK2019-6531	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology
Elwany	Alaa	InterPACK2019-6751	Lamellar Phase Change Material Composites for Power Electronics Thermal Management
Erdem	E. Yegan	InterPACK2019-6713	Textured Superoleophobic Surfaces: Fabrication and Characterization
Erden	Hamza Salih	InterPACK2019-6309	Thermal Profiling of a Small Operational Data Center

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Esler	David	InterPACK2019-6531	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology
Fahim	Abdullah	InterPACK2019-6471	Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading
		InterPACK2019-6563	Effects of Thermal Cycling on the Mechanical and Microstructural Evolution of SAC305 Lead- Free Solder
		InterPACK2019-6641	Mechanical Behavior of SAC Solder Joints Under Thermal Cycling Loading
		InterPACK2019-6640	Evolution of the Mechanical Behavior of Lead Free Solders Exposed to Thermal Cyclic Loading
Faili	Firooz	InterPACK2019-6599	Reducing CTE Mismatch and Maximizing Heat Transport on Single Emitter Laser Diodes Using Diamond Heat Spreaders
Farahikia	Mahdi	InterPACK2019-6459	Minimizing the Effects of On-Chip Hot-Spots Using Multi-Objective Optimization of Flow Distribution in Water-Cooled Parallel Micro-Channel Heat Sinks
Farkas	Gabor	InterPACK2019-6547	Modeling of Light Emitting Device Populations in the Electrical, Thermal and Optical Domain for Luminaire Design
Farzinazar	Shiva	InterPACK2019-6415	3D Architected Packaging Structures for Thermal Management
Fear	Conner	InterPACK2019-6432	Lithium Plating and Dendrites in Li-Ion Batteries Under Thermal Gradient
Felts	Jonathan	InterPACK2019-6751	Lamellar Phase Change Material Composites for Power Electronics Thermal Management
Feng	Xuhui	InterPACK2019-6445	Experimentation and Simulation of Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
		InterPACK2019-6457	Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
Fernandez	Kelly	InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
Fillipi	Ted	InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
Fish	Michael	InterPACK2019-6592	Parametric and Sensitivity Analysis of Power Module Design
Fisher	Timothy	InterPACK2019-6550	Power Delivery and Thermal Management for the Silicon Interconnect Fabric
		InterPACK2019-6754	Power Delivery and Thermal Management for the Silicon Interconnect Fabric
Foley	Brian	InterPACK2019-6438	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs
		InterPACK2019-6528	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
		InterPACK2019-6439	Thermal Management of Gallium Oxide Electronics via Hetero-Integration on High Thermal Conductivity Substrates
		InterPACK2019-6537	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs
		InterPACK2019-6538	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
Foulkes	Thomas	InterPACK2019-6766	Realizing Enhanced CPU and GPU Performance With Directed Cooling on Scalable Coatings
		InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
Fu	Houqiang	InterPACK2019-6335	High Performance Nonplar M-Plane InGaN Multiple-Quantum-Well Solar Cells With Improved Carrier Collection and High Temperature Spectral Response
Fu	Yanbao	InterPACK2019-6658	Operando Measurements of the Dominant Thermal Resistance in Lithium-Ion Batteries
Fujimoto	Kozo	InterPACK2019-6403	Effect of Low Melting Point Bridge With High Melting Point Fine Filler on the Conductivity of Conductive Adhesive
Fujisaki	Kazuhiro	InterPACK2019-6408	Damage of Flexible Electronic Line Printed With Ag Nanoparticle Ink Due to High-Current Density
Fukuchi	Kohei	InterPACK2019-6464	Mechanical Properties of Polyethylene Based Heat Storage Composite Containing Phase Change Material and Copper Sheet
Fukumoto	Shinji	InterPACK2019-6403	Effect of Low Melting Point Bridge With High Melting Point Fine Filler on the Conductivity of Conductive Adhesive
Fushinobu	Kazuyoshi	InterPACK2019-6356	Numerical Analysis of Pulse Laser Assisted Curing Region of Photocurable Resins
		InterPACK2019-6396	Prediction and Control Technique of the Paper Media Temperature After Fusing in Electrophotographic Process

89

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
			Madeling of Light Englishing Decision Decision in the Electric Life and the Life and the Life and the Life and
Gaal	Lajos	InterPACK2019-6547	Modeling of Light Emitting Device Populations in the Electrical, Thermal and Optical Domain for Luminaire Design
Gandhi	Dhruvkumar	InterPACK2019-6587	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6651	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
Gao	Во	InterPACK2019-6650	Characterization of a Topside Cooled Epoxy-Resin Composite Dielectric (ERCD) Package for Bi-Directional Power Switch
Garimella	Suresh	InterPACK2019-6308	The Critical Role of Dynamic Surface Wettability on Bubble Dynamics and Boiling Performance
		InterPACK2019-6367	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers
		InterPACK2019-6622	The Critical Role of Dynamic Surface Wettability on Bubble Dynamics and Boiling Performance
		InterPACK2019-6695	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers
Gather	Malte	InterPACK2019-6431	Barcode-Like Security Labels Based on Flexible and Ultra-Lightweight Polymer Membrane Lasers
Gebrael	Tarek	InterPACK2019-6654	Water Immersion Cooling of High Power Density Electronics
Geer	Robert	InterPACK2019-6514	Fabrication Steps and Thermal Modeling of Three-Dimensional Asynchronous Field Programmable Gate Array (3D-AFPGA)
Gektin	Vadim	InterPACK2019-6463	An Experimental Investigation on the Fluid Distribution in a Two-Phase Cooled rack Under Steady and Transient IT Load
George	Robert	InterPACK2019-6531	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology
Ghaffarian	Reza	InterPACK2019-6317	Thermal Cycle Reliability of Package on Package (PoP) Assemblies
Ghahremannezhad	Ali	InterPACK2019-6593	Thermal Behavior of Phase Change Materials (PCMs) Embedded in Gradient Porous Metal Foams
Ghasemi	Hadi	InterPACK2019-6428	Capillary Evaporation in Graphene Coated Nanochannels
		InterPACK2019-6646	On Temperature Discontinuity at an Evaporating Liquid-Vapor Interface
Glasauer	Bernard	InterPACK2019-6507	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads
		InterPACK2019-6613	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads
Gonzalez	Luis	InterPACK2019-6385	Metallic PCMs Microstructural Stability and Compatibility Analysis Under Repetitive Melting/ Solidification Cycles
Goodson	Kenneth	InterPACK2019-6539	Addressing the Challenges in Laser Micro-Machining and Bonding of Silicon Microchannel Cold-Plate and 3D-Manifold for Embedded Cooling Applications
		InterPACK2019-6400	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa
		InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
		InterPACK2019-6472	Design and Optimization of Silicon-Based Embedded Microchannel and 3D Manifold for High Heat Flux (>1 kW/cm²) Power Electronics Cooling Applications
		InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
		InterPACK2019-6399	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R245fa
		InterPACK2019-6672	Novel Post-Process Cleaning Technique for Perfect Laser Debris Removal
		InterPACK2019-6692	Experimental Investigation of Capillary Rising in Micro Pin Fin Structures
		InterPACK2019-6701	Exploring the Limits of Cooling for Extreme Heat Flux Applications
		InterPACK2019-6705	Flow Boiling Heat Transfer in Embedded Micro-Pin Fin Arrays
		InterPACK2019-6712	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm²) Power Electronics Cooling
		InterPACK2019-6729	Pressure and Temperature in Simulations of Large-Footprint Manifold-Microchannel Cooling Devices
Goorsky	Mark	InterPACK2019-6608	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited ${\rm Ga_2O_3}$ -Diamond Interfaces
Goswami	Shubhodeep	InterPACK2019-6726	Simplified Fabrication and Integration of Optical Fiber Sensor for Bio-Reactor Monitoring
·		InterPACK2019-6712 InterPACK2019-6729 InterPACK2019-6608	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm²) Power Electronics Cooling Pressure and Temperature in Simulations of Large-Footprint Manifold-Microchannel Cooling Devices Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga2O3-Diamond Interfaces

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Gowda	Arun	InterPACK2019-6531	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology
Gowda	Hamsa N.	InterPACK2019-6372	Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes
		InterPACK2019-6655	Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry
Gowri	Shakthi	InterPACK2019-6306	An RF-Powered Self-Locating Flexible Building Environment Sensor System
Goyal	Kartik	InterPACK2019-6574	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry: Part 1
		InterPACK2019-6716	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry: Part 2
Graham	Samuel	InterPACK2019-6607	Ultrahigh Thermal Boundary Conductance Across GaN-SiC Heterogeneous Interfaces by Surface Activated Bonding
		InterPACK2019-6387	Applying Ultrasonic Dehumidification Technology for Water Rejection in Wearable Electronics
		InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
		InterPACK2019-6728	Thermal Management of Beta-Ga ₂ O ₃ Transistors
		InterPACK2019-6608	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga ₂ O ₃ -Diamond Interfaces
		InterPACK2019-6748	The Effect of Anisotropy on Thermal Boundary Conductance at Metal-Semiconductor Interface
		InterPACK2019-6733	Direct Bonding of Aluminum Foam With AISiC for Rapid Fabrication of Power Electronic Packages
		InterPACK2019-6749	Thermal Management of Beta-Ga ₂ O ₃ Transistors
Gromala	Przemyslaw Jakub	InterPACK2019-6506	Study of Thermal Aging Behavior of Epoxy Molding Compound for Applications in Harsh Environments
		InterPACK2019-6409	Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-Based Molding Compounds
Gunay	Ahmet	InterPACK2019-6665	Modular Heat Sinks for Enhanced Thermal Management of Electronics
		InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
Guo	Ben	InterPACK2019-6393	Evaluation of a Lead Glass for Encapsulating High-Temperature Power Modules for Aerospace Application
Gupta	Anunay	InterPACK2019-6456	Degradation Modeling and Reliability Assessment of Capacitors
Gupta	Kshitij	InterPACK2019-6434	Understanding the Effect of the Cooling Architecture and PCB Layout Design on the Concurrent Thermal and Electrical Performance on an On-Board Electric Vehicle Charger
		InterPACK2019-6700	Effects of Cooling Architecture and PCB Layout Co-Design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger
Gupta	Man Prakash	InterPACK2019-6472	Design and Optimization of Silicon-Based Embedded Microchannel and 3D Manifold for High Heat Flux (>1 kW/cm2) Power Electronics Cooling Applications
		InterPACK2019-6712	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm²) Power Electronics Cooling
Gurpinar	Emre	InterPACK2019-6436	Design, Analysis and Comparison of Insulated Metal Substrates for High Power Wide- Bandgap Power Modules
Gurumukhi	Yashraj	InterPACK2019-6665	Modular Heat Sinks for Enhanced Thermal Management of Electronics
		InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
		InterPACK2019-6663	Modular Heat Sinks for Localized Thermal Management of High Gravimetric Power Density Electronics
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
Gutierrez	Carlos	InterPACK2019-6514	Fabrication Steps and Thermal Modeling of Three-Dimensional Asynchronous Field Programmable Gate Array (3D-AFPGA)
Gutierrez	Erick	InterPACK2019-6470	Thermal Assessment and In-Situ Monitoring of Insulated Gate Bipolar Transistors in Power Electronic Modules
		InterPACK2019-6435	Simulating the Effect of Elastic Particle Inclusion on the Mechanical Properties of Transient Liquid Phase Sintered (TLPS) Alloys

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Hadad	Yaser	InterPACK2019-6455	Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro- Channel Heat Sinks
		InterPACK2019-6459	Minimizing the Effects of On-Chip Hot-Spots Using Multi-Objective Optimization of Flow Distribution in Water-Cooled Parallel Micro-Channel Heat Sinks
		InterPACK2019-6334	Optimal Arrangement of Multiple Heat Sources in Vertically Stacked Two-Layer 3D IC Using Genetic Algorithm
		InterPACK2019-6741	Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro- Channel Heat Sinks
Hamasha	Sa'd	InterPACK2019-6560	Evolution of the Microstructure of Lead Free Solders Subjected to Both Aging and Cyclic Loading
		InterPACK2019-6563	Effects of Thermal Cycling on the Mechanical and Microstructural Evolution of SAC305 Lead- Free Solder
		InterPACK2019-6567	Effects of Shear Cycling on the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints
		InterPACK2019-6645	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solders Subjected to Shear Cycling
		InterPACK2019-6636	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints Subjected to Shear Cycling
		InterPACK2019-6649	Effects of Aging on the Damage Accumulation in Lead Free Solders Subjected to Cyclic Loading
Han	Bongtae	InterPACK2019-6420	Numerical/Experimental Hybrid Approach to Predict Warpage of Thin Substrates
		InterPACK2019-6441	Time-Dependent Behavior of Epoxy Molding Compound Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment
		InterPACK2019-6506	Study of Thermal Aging Behavior of Epoxy Molding Compound for Applications in Harsh Environments
		InterPACK2019-6621	Moisture Transport through Housing Materials Enclosing Critical Automotive Electronics
		InterPACK2019-6419	Silicon-Based Piezoresistive Stress Sensor as a Load Counter for Automotive Electronic Systems
		InterPACK2019-6409	Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-Based Molding Compounds
		InterPACK2019-6682	Numerical/Experimental Hybrid Approach to Predict Warpage of Thin Substrates
		InterPACK2019-6681	In-Situ Service Load Monitoring of Automotive Electronic Systems Using Silicon-Based Piezoresistive Stress Sensor
		InterPACK2019-6698	Time-Dependent Behavior of Epoxy Molding Compound Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment
Han	Yanjun	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Handwerker	Carol	InterPACK2019-6507	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads: Part 1
		InterPACK2019-6613	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads: Part 2
Нао	Zhibiao	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AlN Hetero-Structures
Haq	Mohammad Ashraful	InterPACK2019-6562	Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders
		InterPACK2019-6644	Evolution of Cyclic Stress-Strain Behavior of Lead Free Solders Subjected to Different Test Temperature and Prior Aging
Haque	Aman	InterPACK2019-6439	Thermal Management of Gallium Oxide Electronics via Hetero-Integration on High Thermal Conductivity Substrates
Harris	John	InterPACK2019-6424	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design: Part 1
		InterPACK2019-6742	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design: Part 2
Harrison	Todd	InterPACK2019-6384	System ElectroThermal Transient Analysis of a High Current (40A) Synchronous Step Down Converter
Hasan	S.M. Kamrul	InterPACK2019-6471	Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6563	Effects of Thermal Cycling on the Mechanical and Microstructural Evolution of SAC305 Lead-
			Free Solder
		InterPACK2019-6641	Mechanical Behavior of SAC Solder Joints Under Thermal Cycling Loading
		InterPACK2019-6640	Evolution of the Mechanical Behavior of Lead Free Solders Exposed to Thermal Cyclic Loading
Hassan	K.M. Rafidh	InterPACK2019-6647	The Poisson's Ratio of Lead Free Solder: The Often Forgotten but Important Material Property
		InterPACK2019-6564	Aging Dependent Anand Parameters of SAC305 Lead Free Solder at Extreme High Temperatures
Hatakeyama	Tomoyuki	InterPACK2019-6543	Evaluation of Contact Thermal Resistance of Metal Material in Low Contact Pressure Region
Hazra	Sougata	InterPACK2019-6539	Addressing the Challenges in Laser Micro-Machining and Bonding of Silicon Microchannel Cold-Plate and 3D-Manifold for Embedded Cooling Applications
		InterPACK2019-6472	Design and Optimization of Silicon-Based Embedded Microchannel and 3D Manifold for High Heat Flux (>1 kW/cm²) Power Electronics Cooling Applications
		InterPACK2019-6672	Novel Post-Process Cleaning Technique for Perfect Laser Debris Removal
		InterPACK2019-6692	Experimental Investigation of Capillary Rising in Micro Pin Fin Structures
		InterPACK2019-6701	Exploring the Limits of Cooling for Extreme Heat Flux Applications
		InterPACK2019-6712	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm²) Power Electronics Cooling
		InterPACK2019-6729	Pressure and Temperature in Simulations of Large-Footprint Manifold-Microchannel Cooling Devices
He	Eric	InterPACK2019-6354	Double Side System in Package Development Challenge for Heterogeneous Integration
He	Yunbin	InterPACK2019-6414	On the Development of Beta-Ga $_2O_3$ -Based High-Performance Solar-Blind Photodetectors
Hebner	Robert	InterPACK2019-6311	Assessing the Performance of Advanced Cooling Techniques on Thermal Management of Next-Generation Power Electronics
Hemmi	Kaori	InterPACK2019-6396	Prediction and Control Technique of the Paper Media Temperature After Fusing in Electrophotographic Process
Hendrix	Mark	InterPACK2019-6522	Optimal Design and Modeling of Server Cabinets With In-Row Coolers and Air Conditioning Units in a Modular Data Center
Hernandez	Natalie	InterPACK2019-6347	Automated Method Using Finite Element Analysis to Identify Plated Through Holes and Microvia Stacks at Failure Risk in Complex PCB Designs
Hill	Kris	InterPACK2019-6768	Manufacturing Process Driven Design (MPDD) for Improved Flexible Hybrid Electronic Design
Hillman	Craig	InterPACK2019-6347	Automated Method Using Finite Element Analysis to Identify Plated Through Holes and Microvia Stacks at Failure Risk in Complex PCB Designs
Hinojosa	Miguel	InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 1
		InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 2
Hoang	Cong	InterPACK2019-6455	Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro- Channel Heat Sinks
Hobart	Karl	InterPACK2019-6608	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga_2O_3 -Diamond Interfaces
Hoe	Alison	InterPACK2019-6751	Lamellar Phase Change Material Composites for Power Electronics Thermal Management
		InterPACK2019-6656	Characterizing Dynamic Response of Phase Change Materials: Part 1
		InterPACK2019-6657	Characterizing Dynamic Response of Phase Change Materials: Part 2
Hoffmeyer	Mark	InterPACK2019-6444	Thermal and Mechanical Design of the Fastest Supercomputer of the World in Cognitive Systems: IBM POWER AC 922
Hopkins	Douglas	InterPACK2019-6770	Advances In Organic Substrate Approaches for High Voltage Power Electronics Packaging
		InterPACK2019-6650	Characterization of a Topside Cooled Epoxy-Resin Composite Dielectric (ERCD) Package for Bi-Directional Power Switch
Hoque	Mohd Aminul	InterPACK2019-6560	Evolution of the Microstructure of Lead Free Solders Subjected to Both Aging and Cyclic Loading
		InterPACK2019-6562	Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders
		InterPACK2019-6567	Effects of Shear Cycling on the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6644	Evolution of Cyclic Stress-Strain Behavior of Lead Free Solders Subjected to Different Test Temperature and Prior Aging
		InterPACK2019-6645	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solders Subjected to Shear Cycling
		InterPACK2019-6636	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints Subjected to Shear Cycling
		InterPACK2019-6649	Effects of Aging on the Damage Accumulation in Lead Free Solders Subjected to Cyclic Loading
Hoque	Muhammad Jahidul	InterPACK2019-6665	Modular Heat Sinks for Enhanced Thermal Management of Electronics
		InterPACK2019-6664	Additive Manufactured Hybrid Cold Plates for Efficient Thermal Management of High Power Density Electronics
		InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6662	Light-Weight Hybrid Cold Plates for Isothermalization of Electronics
		InterPACK2019-6663	Modular Heat Sinks for Localized Thermal Management of High Gravimetric Power Density Electronics
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
Hou	Xu	InterPACK2019-6310	Recent Progress on the Development of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes
Hoyer	Jordon	InterPACK2019-6733	Direct Bonding of Aluminum Foam With AlSiC for Rapid Fabrication of Power Electronic Packages
Hu	Bin	InterPACK2019-6380	Designed Silver Nanowires Transparent Conductive Electrodes for Efficient Optoelectronic Devices
Hu	Jie	InterPACK2019-6739	High-Speed Visible Laser Light Communication (VLLC) Enabled Using RGB Laser Module for Gbps Li-Fi Links
		InterPACK2019-6737	High Brightness White Laser Module Enabling Gbps Li-Fi Link for High-Speed Visible Light Communications
Huang	Pei-Chen	InterPACK2019-6541	Stress Evaluation of Flexible Displays With Multiple-Laminations Architecture Enabled by Experimental Measurement and Simulation Based Factorial Design
		InterPACK2019-6635	Stress-Induced Electric Resistance Change of Flexible Displays With Multiple-Laminations Architecture Enabled by Experimental Measurement and Simulation
Huang	Shan	InterPACK2019-6477	Effects of Non-Uniform Temperature Distributions on Lithium-Ion Battery Degradation
		InterPACK2019-6757	In-Situ Diagnosis of Li-Ion Battery Internal Short Circuit
Huang	Tsung-Ching Jim	InterPACK2019-6498	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements
		InterPACK2019-6756	Flexible Hybrid Electronics Process Design Kit (FHE-PDK)
Huang	Xuanqi	InterPACK2019-6335	High Performance Nonplar M-Plane InGaN Multiple-Quantum-Well Solar Cells With Improved Carrier Collection and High Temperature Spectral Response
Hudson	Skyler	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
Huitink	David	InterPACK2019-6424	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design
		InterPACK2019-6422	Evaluation of Thermal and Electrical Properties of Nano-Enhanced PCMs for Usage in High- Voltage Systems
		InterPACK2019-6416	Thermo-Mechanical Degradation of Thermal Interface Materials: Accelerated Test Development and Reliability Analysis
		InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
		InterPACK2019-6429	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles
		InterPACK2019-6742	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design
		InterPACK2019-6720	Thermo-Mechanical Degradation of Thermal Interface Materials: Accelerated Test Development and Reliability Analysis

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6732	Evaluation of Thermal and Electrical Properties of Nano-Enhanced PCM for Usage in High- Voltage Systems
		InterPACK2019-6730	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles
Hyodo	Yoshiki	InterPACK2019-6543	Evaluation of Contact Thermal Resistance of Metal Material in Low Contact Pressure Region
lde	Takuya	InterPACK2019-6494	Two-Phase Immersion Cooling of a SiC on-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers
lida	Daisuke	InterPACK2019-6362	Red InGaN LEDs Grown by Micro-Flow Channel MOVPE
lkeda	Toru	InterPACK2019-6546	Strain Distribution in a Small Solder Specimen With Few Crystal Grains
		InterPACK2019-6486	Application of X-Ray CT Images and Phase-Shifted Sampling Moiré Method to Residual Strain Measurement in Electronic Packages
Imediegwu	Chidinma	InterPACK2019-6733	Direct Bonding of Aluminum Foam With AlSiC for Rapid Fabrication of Power Electronic Packages
Imran	Asif	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
Inamdar	Adwait	InterPACK2019-6506	Study of Thermal Aging Behavior of Epoxy Molding Compound for Applications in Harsh Environments
Iradukunda	Ange-Christian	InterPACK2019-6422	Evaluation of Thermal and Electrical Properties of Nano-Enhanced PCM for Usage in High- Voltage Systems
		InterPACK2019-6429	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles
		InterPACK2019-6732	Evaluation of Thermal and Electrical Properties of Nano-Enhanced PCM for Usage in High- Voltage Systems
		InterPACK2019-6730	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles
Iriyama	Takuto	InterPACK2019-6477	Effects of Non-Uniform Temperature Distributions on Lithium-Ion Battery Degradation
Ishizuka	Masaru	InterPACK2019-6543	Evaluation of Contact Thermal Resistance of Metal Material in Low Contact Pressure Region
Islam	Zahabul	InterPACK2019-6439	Thermal Management of Gallium Oxide Electronics via Hetero-Integration on High Thermal Conductivity Substrates
lto	Naoki	InterPACK2019-6403	Effect of Low Melting Point Bridge With High Melting Point Fine Filler on the Conductivity of Conductive Adhesive
lyengar	Madhusudan	InterPACK2019-6539	Addressing the Challenges in Laser Micro-Machining and Bonding of Silicon Microchannel Cold-Plate and 3D-Manifold for Embedded Cooling Applications
		InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
		InterPACK2019-6672	Novel Post-Process Cleaning Technique for Perfect Laser Debris Removal
		InterPACK2019-6705	Flow Boiling Heat Transfer in Embedded Micro-Pin Fin Arrays
lyer	Subramanian	InterPACK2019-6550	Power Delivery and Thermal Management for the Silicon Interconnect Fabric: Part 1
		InterPACK2019-6754	Power Delivery and Thermal Management for the Silicon Interconnect Fabric: Part 2
Jaeger	Richard	InterPACK2019-6461	Piezoresistive Theory for 4H Silicon Carbide Stress Sensors on Four-Degree Off-Axis Wafers
		InterPACK2019-6643	A Study on the Impact of Four-Degree Off-Axis Wafers on 4H-SiC Stress Sensors
Jafari	Parham	InterPACK2019-6346	On Temperature Discontinuity at an Evaporating Liquid-Vapor Interface: Part 1
		InterPACK2019-6646	On Temperature Discontinuity at an Evaporating Liquid-Vapor Interface: Part 2
James	Willis	InterPACK2019-6522	Optimal Design and Modeling of Server Cabinets With In-Row Coolers and Air Conditioning Units in a Modular Data Center
Jang	Hyesoo	InterPACK2019-6584	Folding-Reliability of Flexible Electronics in Wearable Applications
		InterPACK2019-6744	Folding Reliability Assessment of Flexible Electronics in Wearable
Jiang	Xinyu	InterPACK2019-6465	Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance
		InterPACK2019-6449	Experimental Investigation of Asymmetrical Microdroplet Evaporation on Heated Porous Pillar Array Structures
Jih	Edward	InterPACK2019-6472	Design and Optimization of Silicon-Based Embedded Microchannel and 3D Manifold for High Heat Flux (>1 kW/cm2) Power Electronics Cooling Applications

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6712	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm2) Power Electronics Cooling
Jin	Qi	InterPACK2019-6760	Moving Boundary Model for Dynamic Control of Two Microchannel Evaporator Cooling System
		InterPACK2019-6763	Moving Boundary Model for Dynamic Control of Two Microchannel Evaporator Cooling System
Joshi	Shailesh N	InterPACK2019-6525	Analysis of Thermal Stress in High Temperature Transient Liquid Phase Bonding of Power Electronics
		InterPACK2019-6548	Integration Challenges of SiC Power Module for High Temperature and High Frequency Operation
		InterPACK2019-6524	Data-Driven Approaches for Fault Prognosis of SiC MOSFETs
Joshi	Yogendra	InterPACK2019-6565	Comparison of Data Driven Modeling Approaches for Temperature Prediction in Data Centers
		InterPACK2019-6515	Packaging Enviromental Sensors for an Internet-of-Things Solution for Urban-Microclimate Studies
		InterPACK2019-6391	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components: Part 1
		InterPACK2019-6519	Additive Manufactured Foam Structures For Single Phase Thermal Management of Power Electronics
		InterPACK2019-6758	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components: Part 2
		InterPACK2019-6721	Packaging Environmental Sensors for an Internet-of-Things Solution for Urban-Microclimate Studies
		InterPACK2019-6722	A Numerical Investigation of Additive Manufactured Foam Structures for Single Phase Hotspot Thermal Management
Jung	Daewoong	InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
		InterPACK2019-6705	Flow Boiling Heat Transfer in Embedded Micro-Pin Fin Arrays
Jung	Ki Wook	InterPACK2019-6539	Addressing the Challenges in Laser Micro-Machining and Bonding of Silicon Microchannel Cold-Plate and 3D-Manifold for Embedded Cooling Applications
		InterPACK2019-6400	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa: Part 1
		InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
		InterPACK2019-6472	Design and Optimization of Silicon-Based Embedded Microchannel and 3D Manifold for High Heat Flux (>1 kW/cm2) Power Electronics Cooling Applications
		InterPACK2019-6399	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R245fa: Part 2
		InterPACK2019-6672	Novel Post-Process Cleaning Technique for Perfect Laser Debris Removal
		InterPACK2019-6705	Flow Boiling Heat Transfer in Embedded Micro-Pin Fin Arrays
		InterPACK2019-6712	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm2) Power Electronics Cooling
		InterPACK2019-6729	Pressure and Temperature in Simulations of Large-Footprint Manifold-Microchannel Cooling Devices
Jung	Sangwoo	InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
		InterPACK2019-6704	Enhanced Evaporative Cooling Using Electro-Spray of DI Water
Kalayeh	Kourosh	InterPACK2019-6347	Automated Method Using Finite Element Analysis to Identify Plated Through Holes and Microvia Stacks at Failure Risk in Complex PCB Designs
Kaler	Mike	InterPACK2019-6601	Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center
Kang	Junyong	InterPACK2019-6357	Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization
Kantharaj	Rajath	InterPACK2019-6462	Combined Experimental-Numerical Investigation of Microstructure and Thermal Conduction in Dispensed and Squeezed Thermal Interface Materials
		InterPACK2019-6689	Effect of Squeezing on Thermal Conductivity of Thermal Interface Materials

96

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Као	C.T.	InterPACK2019-6384	System ElectroThermal Transient Analysis of a High Current (40A) Synchronous Step Down Converter
Као	Feng	InterPACK2019-6354	Double Side System in Package Development Challenge for Heterogeneous Integration
Као	Nicholas	InterPACK2019-6450	The Assembly Solutions for Heterogeneous Integration Packaging Technology for High Performance Computing
Kaplar	Robert J.	InterPACK2019-6440	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics: Part 1
		InterPACK2019-6527	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics: Part 2
Kapusta	Christopher	InterPACK2019-6531	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology
Karatay	Elif	InterPACK2019-6747	Ultra-Low SWaP CO2 Sensing for Demand Control Ventilation
Kariya	Yoshiharu	InterPACK2019-6546	Strain Distribution in a Small Solder Specimen With Few Crystal Grains
Kasitz	Josh	InterPACK2019-6732	Evaluation of Thermal and Electrical Properties of Nano-Enhanced PCM for Usage in High- Voltage Systems
Kasitz	Joshua	InterPACK2019-6422	Evaluation of Thermal and Electrical Properties of Nano-Enhanced PCMs for Usage in High- Voltage Systems
Kasukurthy	Rajesh	InterPACK2019-6590	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
		InterPACK2019-6536	Development and Optimization of Control Strategy for a Dynamic Cold Plate to Save Pumping Power and Increase the Reliability
		InterPACK2019-6671	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
		InterPACK2019-6670	Development and Optimization of Control Strategy for Dynamic Cooling Technology to Save Pumping Power
		InterPACK2019-6677	Study of Hybrid Cooled Servers Using Warm Water Cooling and Comparing Distributed Pumping System With and Without Controlling Pumps
		InterPACK2019-6723	Comparative CFD Analysis of the Effect of Air and Liquid Cooling on the Form Factor of GPU Server
Kato	Koichi	InterPACK2019-6396	Prediction and Control Technique of the Paper Media Temperature After Fusing in Electrophotographic Process
Kaur	Sumanjeet	InterPACK2019-6658	Operando Measurements of the Dominant Thermal Resistance in Lithium-Ion Batteries
Kawakami	Takashi	InterPACK2019-6446	A Study on Relationship Between Low Cycle Fatigue Strength and Load Conditions for Lead Fee Solder Material
Kawasaki	Shunsuke	InterPACK2019-6396	Prediction and Control Technique of the Paper Media Temperature After Fusing in Electrophotographic Process
Kekelia	Bidzina	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
		InterPACK2019-6445	Experimentation and Simulation of Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
		InterPACK2019-6457	Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
Kelly	Brian	InterPACK2019-6733	Direct Bonding of Aluminum Foam With AlSiC for Rapid Fabrication of Power Electronic Packages
Kendig	Dustin	InterPACK2019-6425	Advances in Nanoscale Thermoreflectance Thermal Imaging Calibration
Keyser	Matt	InterPACK2019-6368	NREL Energy Storage Thermal Management
Khakpour	Yasmin	InterPACK2019-6534	Thermal Analysis of High Efficiency High Speed Drives
Khalfioui	Mohamed Al	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Khaligh	Alireza	InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 1
		InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 2
Khalili	Sadegh	InterPACK2019-6430	Feedback Control System for Airflow Management in Data Centers Using Active Air Dampers
		InterPACK2019-6463	An Experimental Investigation on the Fluid Distribution in a Two-Phase Cooled rack Under Steady and Transient IT Load
		InterPACK2019-6648	Local Airflow Delivery in Data Centers Using Air Dampers
Kharangate	Chirag R.	InterPACK2019-6400	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa
		InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Kibushi	Risako	InterPACK2019-6494	Two-Phase Immersion Cooling of a SiC on-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers
		InterPACK2019-6543	Evaluation of Contact Thermal Resistance of Metal Material in Low Contact Pressure Region
Kim	Hyungtak	InterPACK2019-6438	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs
		InterPACK2019-6440	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics: Part 1
		InterPACK2019-6527	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics: Part 2
		InterPACK2019-6537	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs
Kim	Jeho	InterPACK2019-6391	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components: Part 1
		InterPACK2019-6758	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components: Part 2
Kim	Jeong Hwan	InterPACK2019-6675	Replication of Hairy Surface Nanostructures on Elastomer Films for Flexible Pressure Sensors
Kim	Jinsub	InterPACK2019-6505	Surface Temperature Measurements Using Infrared Thermometry Considering Background Radiation from High-Temperature Environment
Kim	Kwanoh	InterPACK2019-6675	Replication of Hairy Surface Nanostructures on Elastomer Films for Flexible Pressure Sensors
		InterPACK2019-6706	A Study on Fabrication of Molds for Microlens Array Using Arrangement of Microparticles in a Liquid Droplet
Kim	Mingeon	InterPACK2019-6505	Surface Temperature Measurements Using Infrared Thermometry Considering Background Radiation from High-Temperature Environment
Kim	Minsung	InterPACK2019-6704	Enhanced Evaporative Cooling Using Electro-Spray of DI Water
Kim	Samuel	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
		InterPACK2019-6728	Thermal Management of Beta-Ga2O3 Transistors: Part 1
		InterPACK2019-6749	Thermal Management of Beta-Ga ₂ O ₃ Transistors: Part 2
Kim	Soyeon	InterPACK2019-6704	Enhanced Evaporative Cooling Using Electro-Spray of DI Water
Kim	Sung Jin	InterPACK2019-6360	Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization
Kim	Tae Kyoung	InterPACK2019-6426	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature
Kim	Yunseo	InterPACK2019-6704	Enhanced Evaporative Cooling Using Electro-Spray of DI Water
King	William P.	InterPACK2019-6738	Thermal-Switch-Enabled Power Electronics Isothermalization: Part 1
		InterPACK2019-6761	Thermal-Switch-Enabled Power Electronics Isothermalization: Part 2
Kinoshita	Takahiro	InterPACK2019-6446	A Study on Relationship Between Low Cycle Fatigue Strength and Load Conditions for Lead Fee Solder Material
Klamkin	Jonathan	InterPACK2019-6610	Laser Integration Technologies for Silicon Photonics
Koganemaru	Masaaki	InterPACK2019-6546	Strain Distribution in a Small Solder Specimen With Few Crystal Grains
		InterPACK2019-6486	Application of X-Ray CT Images and Phase-Shifted Sampling Moiré Method to Residual Strain Measurement in Electronic Packages
Kong	Daeyoung	InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
		InterPACK2019-6705	Flow Boiling Heat Transfer in Embedded Micro-Pin Fin Arrays
Kotecha	Ramchandra	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
Kothari	Nakul	InterPACK2019-6569	Process Capability of Aerosol-Jet Additive Processes for Long-Runs up to 10 Hours
		InterPACK2019-6574	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry: Part 1
		InterPACK2019-6716	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry: Part 2
Kou	Jianquan	InterPACK2019-6310	Recent Progress on the Development of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes
Krishna	Anirudh	InterPACK2019-6628	Stretchable and Wearable Emitters Based on Corrugated Nickel for Personal Thermal Management
		InterPACK2019-6402	Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Management
Krusor	Brent	InterPACK2019-6306	An RF-Powered Self-Locating Flexible Building Environment Sensor System
Kulkarni	Devdatta	InterPACK2019-6530	Enabling Thermal Management of High Powered Server Processors Using Passive Thermosiphon Heat Sink

			TITLE
LAST NAME	FIRST NAME	PAPER NUMBER	IIILE
Kuramoto	Shinichi	InterPACK2019-6396	Prediction and Control Technique of the Paper Media Temperature After Fusing in Electrophotographic Process
Kurosawa	Kengo	InterPACK2019-6464	Mechanical Properties of Polyethylene Based Heat Storage Composite Containing Phase Change Material and Copper Sheet
Kwak	Joon Seop	InterPACK2019-6426	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature: Part 1
		InterPACK2019-6529	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature: Part 2
Kwon	Heungdong	InterPACK2019-6472	Design and Optimization of Silicon-Based Embedded Microchannel and 3D Manifold for High Heat Flux (>1 kW/cm2) Power Electronics Cooling Applications
		InterPACK2019-6712	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm2) Power Electronics Cooling
Ladan	Shabnam	InterPACK2019-6306	An RF-Powered Self-Locating Flexible Building Environment Sensor System
Lall	Pradeep	InterPACK2019-6576	High Strain Rate Mechanical Properties of SAC-Q With Sustained Elevated Temperature Storage at 100°C
		InterPACK2019-6584	Folding-Reliability of Flexible Electronics in Wearable Applications
		InterPACK2019-6579	Flexure and Twist Test Reliability Assurance of Flexible Electronics
		InterPACK2019-6569	Process Capability of Aerosol-Jet Additive Processes for Long-Runs up to 10 Hours
		InterPACK2019-6570	Effect of Depth of Charge-Discharge Depth and Environment Use Conditions on Flexible Power Sources
		InterPACK2019-6574	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry
		InterPACK2019-6580	Acceleration Factors for Flexible Electronics in Wearable Applications From Actual Human Body Measurements
		InterPACK2019-6564	Aging Dependent Anand Parameters of SAC305 Lead Free Solder at Extreme High Temperatures
		InterPACK2019-6578	Health Monitoring of PCBs Under Mechanical Shock Loads
		InterPACK2019-6577	Evolution of Microstructure and Anand Parameters for SAC Leadfree Alloys
		InterPACK2019-6572	Fatigue Delamination Crack Growth of Potting Compounds in PCB/Epoxy Interfaces Under Flexure Loading
		InterPACK2019-6560	Evolution of the Microstructure of Lead Free Solders Subjected to Both Aging and Cyclic Loading
		InterPACK2019-6471	Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading
		InterPACK2019-6563	Effects of Thermal Cycling on the Mechanical and Microstructural Evolution of SAC305 Lead- Free Solder
		InterPACK2019-6571	Investigation of the Effects of High Temperature Aging on Mechanical Behavior and Microstructural Changes in Lead Free Solders
		InterPACK2019-6562	Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders
		InterPACK2019-6567	Effects of Shear Cycling on the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints
		InterPACK2019-6575	Effect of Drop Angle Variation and Restraint Mechanisms on Surface Mount Electronics Under High G Shock
		InterPACK2019-6561	Modeling of Underfilled PBGA Assemblies Using Both Viscoelastic and Elastic Material Properties
		InterPACK2019-6744	Folding Reliability Assessment of Flexible Electronics in Wearable
		InterPACK2019-6641	Mechanical Behavior of SAC Solder Joints Under Thermal Cycling Loading
		InterPACK2019-6644	Evolution of Cyclic Stress-Strain Behavior of Lead Free Solders Subjected to Different Test Temperature and Prior Aging
		InterPACK2019-6645	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solders Subjected to Shear Cycling
		InterPACK2019-6647	The Poisson's Ratio of Lead Free Solder: The Often Forgotten but Important Material Property
		InterPACK2019-6636	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints Subjected to Shear Cycling

99

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6639	Characterization and FEA Modeling of Underfilled Flip Chip Package Assemblies Using Both Viscoelastic and Elastic Material Properties
		InterPACK2019-6640	Evolution of the Mechanical Behavior of Lead Free Solders Exposed to Thermal Cyclic Loading
		InterPACK2019-6642	Microstructural Evolution in SAC+X Solders Subjected to Aging
		InterPACK2019-6649	Effects of Aging on the Damage Accumulation in Lead Free Solders Subjected to Cyclic Loading
		InterPACK2019-6714	Estimation of Acceleration Factor for Flexible Electronic Substrates From Human Motion Measurements
		InterPACK2019-6715	High Strain Rate Mechanical Properties of SAC-Q With Constant High Temperature Storage at 100 C
		InterPACK2019-6716	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry
		InterPACK2019-6717	Flexure and Twist Test Reliability Study of Flexible Electronics
		InterPACK2019-6718	Low Cycle Flexure Fatigue Life Prediction of Epoxy Potted PCB Interfaces Under Three Point Bending
		InterPACK2019-6719	Evolution of Anand Parameters for Thermally Aged SAC Leadfree Solder Alloys
		InterPACK2019-6727	Effect of Inclination of Drop on Surface Mount Electronics Under High G Shock Conditions
		InterPACK2019-6736	Effect of Shallow Charging on Flexible Lithium Ion Battery Capacity Subjected to Differing C-Rates and Various Temperatures
Leach	Jacob	InterPACK2019-6528	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
		InterPACK2019-6439	Thermal Management of Gallium Oxide Electronics via Hetero-Integration on High Thermal Conductivity Substrates
		InterPACK2019-6538	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
Lee	Bong Jae	InterPACK2019-6505	Surface Temperature Measurements Using Infrared Thermometry Considering Background Radiation From High-Temperature Environment
Lee	Chang-Chun	InterPACK2019-6541	Stress Evaluation of Flexible Displays With Multiple-Laminations Architecture Enabled by Experimental Measurement and Simulation Based Factorial Design
		InterPACK2019-6635	Stress-Induced Electric Resistance Change of Flexible Displays With Multiple-Laminations Architecture Enabled by Experimental Measurement and Simulation
Lee	Hyoungsoon	InterPACK2019-6400	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa
		InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
		InterPACK2019-6704	Enhanced Evaporative Cooling Using Electro-Spray of DI Water
		InterPACK2019-6705	Flow Boiling Heat Transfer in Embedded Micro-Pin Fin Arrays
Lee	Hyun Seop	InterPACK2019-6441	Time-Dependent Behavior of Epoxy Molding Compound Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment
		InterPACK2019-6409	Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-Based Molding Compounds
		InterPACK2019-6698	Time-Dependent Behavior of Epoxy Molding Compound Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment
Lee	Jaeho	InterPACK2019-6417	Thermal Analysis of 3D ICs With TSVs Placement Optimization
		InterPACK2019-6628	Stretchable and Wearable Emitters Based on Corrugated Nickel for Personal Thermal Management
		InterPACK2019-6402	Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Management
		InterPACK2019-6415	3D Architected Packaging Structures for Thermal Management
Lee	Jessica	InterPACK2019-6467	Design of Nanostructured Copper Surfaces for Thin Film Evaporation
Lee	Jonggyu	InterPACK2019-6674	Condensation Heat Transfer on Superhydrophobic Hierarchical Copper Inverse Opals
Lee	Joseph	InterPACK2019-6306	An RF-Powered Self-Locating Flexible Building Environment Sensor System
Lee	Jungho	InterPACK2019-6505	Surface Temperature Measurements Using Infrared Thermometry Considering Background Radiation from High-Temperature Environment
Lee	Yongduk	InterPACK2019-6534	Thermal Analysis of High Efficiency High Speed Drives

evine Leanna InterPACK2019-6774 Microfiluid: Devices for Health Monitoring ewis Ryan InterPACK2019-6683 Demonstration of 150-Micron Ultrathin Vapor Chambers for 5G Smartphones. Part 1 interPACK2019-6535 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones. Part 1 interPACK2019-6537 Review of U.S. Patents on Mechanical Failures in Foldable Smartphones. Part 2 interPACK2019-6537 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones. Part 2 interPACK2019-6537 High-Gain Solid State Photomultipler Based Medlum Voltage Motor Drive interPACK2019-6635 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones. Part 2 interPACK2019-6636 Multi-Scale Thermal Analysis for Design of SIC Based Medlum Voltage Motor Drive interPACK2019-6645 Evaporation of Microdropile Suspended on Periodic GaVIANI Hetero-Structures interPACK2019-6466 Microdialer Height on Tansport Performance interPACK2019-6467 Microdialer Shig Buence Evaporation Rate and Nancocating Thickness interPACK2019-6468 Microdialer Shig Buence Evaporation Rate and Nancocating Thickness interPACK2019-6469 Modeling and Analysis of a Shape Memory Alloy Based Adaptive Regulator for Thermal Maragement interPACK2019-6669 InterPACK2019-6669 Gene	LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
InterPACK2019 6351 Foldsble Themal Ground Pane for Cooling of Foldsble Smerphones Pat 1 InterPACX2019 6350 Revelaw of U.S. Pateris on Mechanics Fillures in Foldsble Smerphones InterPACX2019 6579 Revelaw of U.S. Pateris on Mechanics Fillures in Foldsble Smerphones InterPACX2019 6579 Revelaw of U.S. Pateris Relations / Assumance of Revelae Rections: InterPACX2019 6579 Revelaw of Twe Take Relations / Assumance of Revelae Rections: InterPACX2019 6579 Revelaw of Twe Take Relations / Assumance of Revelae Rections: InterPACX2019 6570 Revelaw of Twe Take Relations / Assumance of Revelae Rections: InterPACX2019 6571 Revelaw of Twe Take Relations / Assumance of Revelae Rections: InterPACX2019 6572 Revelaw of Twe Take Relations / Assumance of Revelae Rections: InterPACX2019 6574 Revelaw of Twe Take Relations / Status / Revelae Rections: InterPACX2019 6576 Revelaw of Twe Take Relations / Status / Revelae Rections: InterPACX2019 6576 Revelaw of Twe Take Relations / Status / Revelae Rections: InterPACX2019 6576 Revelaw of Twe Take Relations / Status / Revelae Rections: InterPACX2019 6576 Revelaw of Twe Take Relations / Status / Revelae Rections: InterPACX2019 6577 Revelaw of Twe Take Revelae Revelaw / Twe Take Revelae Revelaw / Twe Take Revelaw /	1			
InterPACI2019 6350 Review of U.S. Patento on Michanical Faluros in Foldable Smattphones InterPACI2019 6652 Foldable Thermal Recurs of Neural Pacified Pacifie	Lee	rung Cheng		
InterPACK2019-652 Foldable Thermal Ground Plane for Cooling of Foldable Smarphones: Part 2 eever Denjamin InterPACK2019-654 Foldable Thermal Cround Plane for Cooling of Foldable Smarphones: Part 2 interPACK2019-6569 Foldable Thermal Cround Plane for Cooling of Foldable Smarphones: Part 2 interPACK2019-6570 Foldable Thermal Cround Plane for Cooling of Foldable Smarphones: Part 2 interPACK2019-6574 Fleet of Degrh of Charge Descharge Degrh and Environment Use Conditions on Fleedbell interPACK2019-6576 Fleet of Pocess Planetes on Ancosol Jule Flinting of Multi-Layer Clicuity: Part 1 interPACK2019-6576 Fleet of Pocess Planetes on Ancosol Jule Flinting of Multi-Layer Clicuity: Part 2 interPACK2019-6576 Fleet of Pocess Planetes on Ancosol Jule Flinting of Multi-Layer Clicuity: Part 2 interPACK2019-6576 Fleet of Charge On Floetable Electroncs interPACK2019-6578 Fleet of Charge On Floetable Smarphones Part 2 interPACK2019-6574 Fleet of Charge On Floetable Smarphones Part 1 interPACK2019-6551 Foldable Therma Ground Plane for Cooling of Floidable Smarphones Part 2 interPACK2019-6516 Foldable Therma Ground Plane for Cooling of Floidable Smarphones Part 2 interPACK2019-6516 Foldable Therma Ground Plane for Cooling of Floidable Smarphones Part 2				
eever Benjamin InterPACI2019-659 For Carabity of Fextbe Electronics in Wearable Applications InterPACI2019-659 For Society Carabity of Across Ust Additive Process for Long Neuro up to 10 Hours InterPACI2019-659 Process Carabity of Across Ust Additive Process for Long Neuro up to 10 Hours InterPACI2019-659 Process Parameters on Across Ust Printing of Multi-Layer Circuitry, Part 1 InterPACI2019-659 Fire of Organ Process Parameters on Across Ust Printing of Multi-Layer Circuitry, Part 2 InterPACI2019-659 Fire of Organ Process Parameters on Across Ust Printing of Multi-Layer Circuitry, Part 2 InterPACI2019-659 Fire of Organ Process Parameters on Across Ust Printing of Multi-Layer Circuitry, Part 2 InterPACI2019-659 Fire of Organ Process Parameters on Across Ust Printing of Multi-Layer Circuitry, Part 2 InterPACI2019-659 Fire of Organ Process Parameters on Across Ust Printing of Multi-Layer Circuitry, Part 2 InterPACI2019-659 Fire of Organ Process Parameters on Across Ust Printing Of Multi-Layer Circuitry, Part 2 InterPACI2019-659 Fire of Organ Process Parameters on Menositient on Utariation Durabity of SACIDS Interconnects evine Leanna InterPACI2019-6639 Print Print of Organ Process Parameters on Menositient on Utariation Durabity of SACIDS Interconnects InterPACI2019-6639 Print Print of Distribution Printing Part Part 1 InterPACI2019-6639 Print Print Organ Part 1 InterPACI2019-6639 Print Print Organ Part 1 InterPACI2019-6631 InterPACI2019-6631 InterPACI2019-6				
InterPACK2019-6557 Reverse Capability of Aerosol-44 Additive Processes for Long-Runs up to 10 Hours InterPACK2019-6559 Ender Orbein of Chapter Chapter Depth and Environment Use Conditions on Flexible Prover Sources InterPACK2019-6577 Effect of Pocess Parameters on Aerosol Lef Mather Processes for Long-Runs up to 10 Hours InterPACK2019-6577 Effect of Pocess Parameters on Aerosol Lef Mather policity Part 1 InterPACK2019-6577 Effect of Pocess Parameters on Aerosol Lef Mather policity Part 2 InterPACK2019-6577 Flexer and Twist Test Reliability Study of Flexible Electronics InterPACK2019-6577 Flexer of Vecess Parameters on Aerosol Lef Mather Policity Subjected to Differing Crates and Vecess Test Provide Subject Parameters etile David InterPACK2019-6539 The Effect of Vecess Parameters on Aerosol Lef Mather Parameters etile David InterPACK2019-6531 Elect of Vecess Parameters on Aerosol Lef Mather Parameters etile David InterPACK2019-6531 Flexet of Veces Parameters on Aerosol Lef Mather Parameters etile David InterPACK2019-6531 Flexet of Veces Parameters on Aerosol Lef Mather Parameters etile David InterPACK2019-6531 Morefliation Evocol Parameters etintrePACK2019-6532 Fleatad Nove Transpor	Loovor	Roniamin		
Intel®ACK2019-6569 Process Capability of Aerosol-Jet Additive Processes for Long-Runs up to 10 Hours Intel®ACK2019-6570 Four Sources Intel®ACK2019-6574 Effect of Deg/n of Charge-Discharge Deg/n and Environment Use Conditions on Flexible (Process Parameters on Aerosol Jet Printing of Multi-Layer Circuity, Part 2 Intel®ACK2019-6577 Four early Conditions on Aerosol Jet Printing of Multi-Layer Circuity, Part 2 Intel®ACK2019-6577 Four early Conditions on Aerosol Jet Printing of Multi-Layer Circuity, Part 2 Intel®ACK2019-6577 Four early Conditions on Aboot Duability Of Acrosol Jet Printing of Multi-Layer Circuity, Part 2 Intel®ACK2019-6577 Effect of Padieon Charging on Floxible Deteroints Intel®ACK2019-6578 Effect of Padieon Charging on Floxible Deteroints Intel®ACK2019-6580 Process of Health Montoning ewis Ryon Intel®ACK2019-6580 Intel®ACK2019-6580 Part Social Count Rane for Cooling of Foldable Smartphones. Part 1 Intel®ACK2019-6561 Fadable Thermal Ground Rane for Cooling of Foldable Smartphones. Part 2 Intel®ACK2019-6562 Four Social State PhotomutityBet Deced In Part Cooling of Poldable Smartphones. Part 2 Intel®ACK2019-6561 Intel®ACK2019-6562 Concensation Flox Social State PhotomutityBet Deced Intel®ACMANI Hearos Sourceurs Intel®A	Leever	Denjamin		
Inter/ACX019-6570 Effect of Dopth of Charge Discharge Depth and Environment Use Conditions on Flexible Proves Sources Inter/ACX019-6776 Flect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuity: Part 1 Inter/ACX019-6776 Flect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuity: Part 2 Inter/ACX019-6776 Flect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuity: Part 2 Inter/ACX019-6776 Flect of Shallow Charging on Floxibe Electronics Inter/ACX019-6776 Micro Temperature Exeline David Inter/ACX019-6778 Evel Conditions on Vibration Durability of SACI05 Interconnects Evel Conditions on Vibration Durability of SACI05 Interconnects Evel Ray and Inter/ACX019-6683 Demonstration of 150 Micron Utrathin Vapor Chambers for 5G Smatphones Evel Ray and Inter/ACX019-6652 Foldable Thermal Ground Plane for Cooling of Foldable Smatphones: Part 2 Inter/ACX019-6652 Foldable Thermal Analysis for Design of SC Based Medium Votage Motor Drive Inter/ACX019-6653 Null-Scale Thermal Analysis for Design of SC Based Medium Votage Motor Drive Inter/ACX019-6654 Condensation Microdripel Singerchice on Partox Micropical Singerchice Inter/ACX019-6655 Foldable Thermal Analysis for Design of SC Based Medium Votage Motor Drive Inter/ACX019-6656 Multi-Scale Thermal				
interfact.collecture Interfact.collecture Finder Sources Interfact.collecture interfact.collecture Fifted of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuity: Part 1 interfact.collecture Fifted of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuity: Part 2 interfact.collecture Fifted of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuity: Part 2 interfact.collecture Fifted of Shellow Charging on Floable Utilium fon Battery Capacity Subjected to Differing Circuity: Part 2 cellecture Leanna InterfAct.collecture interfAct.collecture Microfinatic Devices for Health Monitoring evine Leanna InterfAct.collecture interfact.collecture Fifted of MicroFitter Fifted Shellow Thermal Khanoting evine Leanna InterfAct.collecture Fifted Shellow Thermal Cound Plane for Cooling of Foldable Smarphones: Part 1 interfact.collecture InterfAct.collecture Condensation Heat Transfer on Supertry dirophobic Herarchical Copper Inverse Opals interfact.collecture InterfAct.collecture Fifted Shellower Parametal Shellower interfAct.collecture InterfAct.collecture Condensation of Microdoplet Supendobic Herarchical Collecture				
InterPACK2019-6716 Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Clicuity: Part 2 InterPACK2019-6737 Februe and Twist Test Reliability Study of Pexible Electronics InterPACK2019-6738 Februe and Twist Test Reliability Study of Pexible Electronics InterPACK2019-6734 Februe and Twist Test Reliability Study of Pexible Electronics InterPACK2019-6734 Microfluids Converse for Health Monitoring InterPACK2019-6735 Februe and Towins Test Monitoring InterPACK2019-6736 Review of U.S. Patterist on Microfluids Day Of Didable Smartphones: Part 1 InterPACK2019-6737 Holdbale Thermal Ground Plane for Cooling of Foldbale Smartphones: Part 1 InterPACK2019-6637 Feddabe Thermal Ground Plane for Cooling of Foldbale Smartphones: Part 2 InterPACK2019-6637 Feddabe Thermal Analysis for Design of SIC Based Medium Voltage Motor Drive InterPACK2019-6637 Feddabe Thermal Analysis for Design of SIC Based Medium Voltage Motor Drive InterPACK2019-6636 Mulis-Scale Thermal Analysis for Design of SIC Based Medium Voltage Motor Drive InterPACK2019-6636 Mulis-Scale Thermal Analysis for Design of SIC Based Medium Voltage Motor Drive InterPACK2019-6646 Feorolation of Microflipet Supportation Review and Nanocoting Thickness InterPACK2019-6646 Necorolation String Deviewon Poweration of Thin-Film Eleptontance Solar-				Power Sources
InterPACK2019-6717 Rexue and Twest Test Reliability Study of Pexuble Electronics interPACK2019-6738 Effect of Shallow Charging on Flexible Liblium lon Battery Capacity Subjected to Differing cesile David InterPACK2019-6736 Effect of Shallow Charging on Flexible Liblium lon Battery Capacity Subjected to Differing cesile David InterPACK2019-6535 The Effect of Low Temperature Conditions on Vibration Durability of SAC105 Interconnects evine Leanna InterPACK2019-6535 Rodable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 1 ewis Ryan InterPACK2019-6535 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2 ci InterPACK2019-6547 Condensation Heat Transfer on Superfyridophobic Hierarchical Cooper Inverse Opals ci Heat InterPACK2019-6547 MulticScale Thermal Analysis for Dealed Converse Marton Network Netwo				
InterPACK2019-673 Effect of Shallow Charging on Peckbe Lithium Ion Battery Capacity Subjected to Differing CRates and Various Temperatures exile David InterPACK2019-650 The Effect of Cive Temperatures Conditions on Vibration Durability of SAC105 Interconnects evine Leanna InterPACK2019-650 The Effect of Cive Temperatures Conditions on Vibration Durability of SAC105 Interconnects evise Ryan InterPACK2019-6505 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 1 interPACK2019-6515 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 1 interPACK2019-6525 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2 interPACK2019-6531 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2 interPACK2019-6532 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2 interPACK2019-6534 Multi-Scale Thermal Analysis for Design of SIC Based Medium Voltage Moto Drive interPACK2019-6545 InterPACK2019-6545 Evaporation of Microdropiet Suspended on Porous Micropiller Structure: The Effect of Micropiller Head and Nanocoated Surfaces. The Micropiller Head Analysis of a Shup Part on Thermal Mandpart Performance interPACK2019-6540 Nodeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Polarization interPAC				
esile David InterPACK2019-6509 C-Rates and Valous Temperatures C-Rates and Valous Temperature Conditions on Vibration Durability of SACI05 InterConnects evia Leanna InterPACK2019-6574 Microfluidic Devices for Health Monitoring evias Ryan InterPACK2019-6535 Foldable Thermal Ground Pane for Cooling of Foldable Smartphones; Part 1 InterPACK2019-6535 Foldable Thermal Ground Pane for Cooling of Foldable Smartphones; Part 2 InterPACK2019-6536 Review of U.S. Patents on Mechanical Failures in Foldable Smartphones; Part 2 InterPACK2019-6537 Foldable Thermal Ground Pane for Cooling of Foldable Smartphones; Part 2 InterPACK2019-6537 Foldable Thermal Ground Pane for Cooling of Foldable Smartphones; Part 2 InterPACK2019-6537 High-Gain Solid State Photomultipler Based Medium Voltage Motor Drive High-Gain Solid State Photomultipler Based Device GaiVAIN Hetero-Structures Parparation of Microdropile Suspended on Porous Micropilar Structure; The Effect of Micropilar Height on Tamaport Parformance Solar-Blind Photocetectors Micropilar Structure; The Effect of Micropilar Structure; The Parfox 2019-6645 Photomatics Part 1 The Par			InterPACK2019-6717	Flexure and Twist Test Reliability Study of Flexible Electronics
evineLeanaInterPACK2019-6771Microfluid: Devices for Health MonitoringevisiRyanInterPACK2019-6683Demonstration of ISO-Micron Ultrathin Vapor Chambers for SG SmartphonesinterPACK2019-6630Review of U.S. Patents on Mechanical Failures in Foldable Smartphones: Part 1interPACK2019-6631InterPACK2019-6632Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2interPACK2019-6631InterPACK2019-6631Condensation I teat Transfer on Superhydrophobic Hierarchical Copper Inverse OpalsinterPACK2019-6631High-Scale Thermal Analysis for Design of SIC Based Medium Voltage Motor DriveinterPACK2019-6631High-Scale State Photomultipler Based on Perioda GaVANN Hetero-StructuresinterPACK2019-6641Evaporation of Microdrople1 Suspended on Poros Micropallar Structure: The Effect of Microdrople1 Suspended on Poros Micropallar Structure: The Effect of Symptotic Relationship Between Evaporation Rea and Nanoccating ThicknessinterPACK2019-6641InterPACK2019-6645Kondicular Dynamics Simulation of Thin-Filler Suspended on Poros Micropallar FleidstonindegShupingInterPACK2019-6649Condensationship Between Evaporation Rea and Nanoccating ThicknessiaadHuanyuInterPACK2019-6649Cenerating Ultra-Packed Thermal Greases With Ellipsoidal Filers and Evaluation of Thermal Gearset 1iaadHuanyuInterPACK2019-6649Cenerating Ultra-Packed Thermal Greases With Ellipsoidal Filers and Evaluation of Ther fifective Properties: Part 1iaadHuanyuInterPACK2019-6657Cenerating Ultra-Packed Thermal Greases With Ellipsoidal Filers and Evaluation of Ther fifective Properties			InterPACK2019-6736	
ewis Ryan InterPACK2019-6683 Demonstration of 150 Micron Ultrathin Vajor Chambers for 5G Smartphones interPACK2019-6351 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 1 interPACK2019-6525 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2 i Baiheng InterPACK2019-6652 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2 i Baiheng InterPACK2019-6631 Multi-Scale Thermal Analysis for Design of SIC Based Medium Votage Motor Drive i He InterPACK2019-6635 High-Gain Solid State Photomultipler Based on Periodic GaN/AIN Hetero Structures i Junhul InterPACK2019-6466 Evaporation of Microfolier Mediation of Parcos Micropilar Structure: The Effect of Microfolier Micropilar Mediation of Thin-Flim Evaporation From Nanocoating Thickness i Junhul InterPACK2019-6466 Molecular Dynamics Simulation of Thin-Flim Evaporation Rate and Nanocoating Thickness i Mingkai InterPACK2019-6467 Molecular Dynamics Simulation of Thin-Flim Evaporation From Nanocoating Theorems i Mingkai InterPACK2019-6637 Photonic Engineering in AIGAN-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization iaaag Gary InterPACK2019-66697	Leslie	David	InterPACK2019-6509	The Effect of Low Temperature Conditions on Vibration Durability of SAC105 Interconnects
InterPACK2019-6351 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 1 InterPACK2019-6350 Review of U.S. Patents on Mechanical Failures in Foldable Smartphones: Part 2 I Baiheng InterPACK2019-6652 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2 I Baiheng InterPACK2019-6674 Condensation Heat Transfer on Superhydrophobic Hierarchical Copper Inverse Opals I He InterPACK2019-6371 High-Gain Sold-State Photomultiplier Based on Periodic GaNAIN Hetero-Structures I Junhui InterPACK2019-6465 Evaporation of Microdrophet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance InterPACK2019-6465 Vaporation of Microdrophet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance InterPACK2019-6465 Vaporation of Microdrophet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance Solar-Blind Photodetectors InterPACK2019-6466 Molecular Dynamics Simulation of Thin-Fline Evaporation From Nanocoated Surfaces. The Asymptotic Relationship Between Evaporation Rate and Nanocoating Thickness I InterPACK2019-6469 Photonic Engineening in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization Iaaa Huanyu InterPACK2019-6669 Generating Ultra-Packed Thermal	Levine	Leanna	InterPACK2019-6774	Microfluidic Devices for Health Monitoring
InterPACK2019-6350 Review of U.S. Patents on Mechanical Failures in Foldable Smartphones InterPACK2019-6652 Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2 InterPACK2019-6631 Multi-Scale Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2 InterPACK2019-6631 Multi-Scale Thermal Analysis for Design of SIC Based Medium Voltage Motor Drive InterPACK2019-6631 Hulti-Scale Thermal Analysis for Design of SIC Based Medium Voltage Motor Drive InterPACK2019-6646 Evaporation of Microdropel Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance InterPACK2019-6466 Evaporation of Microdropel Suspended on Porous Micropillar Structure: The Effect of Micropillar Structure: The Effect of Micropillar Structure: The Effect of Micropillar Height on Transport Performance InterPACK2019-6467 On the Development of Bta-Ga,O, Based High-Performance Solar-Blind Photodetectors InterPACK2019-6470 Modelling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Management Iaag Gary InterPACK2019-6657 Endotic Engineering in AlGan-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization Iaag Huanyu InterPACK2019-6607 Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1 Iaag Huanyu InterPACK2019-6575 Compara	Lewis	Ryan	InterPACK2019-6683	Demonstration of 150-Micron Ultrathin Vapor Chambers for 5G Smartphones
InterPACK2019-6552Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2iBaihengInterPACK2019-6674Condensation Heat Transfer on Superhydrophobic Hierarchical Copper Inverse OpalsiHeInterPACK2019-6631Multi-Scale Thermal Analysis for Design of SiC Based Medium Voltage Motor DriveiHongtaoInterPACK2019-6631High-Gain Solid-State Photomultipler Based on Periodic GaV/AN Hetero-StructuresiJunhuiInterPACK2019-6465Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport PerformanceiJunhuiInterPACK2019-6466Molecular Dynamics Simulation of Thin-Film Evaporation From Nanocoated Surfaces/The Asymptotic Relationship Between Evaporation Rate and Nanocoating ThicknessiMingkaiInterPACK2019-6467On the Development of Beta-Ga,O, Based High-Performance Solar-Blind Photodetectors PolarizationiangGaryInterPACK2019-6649Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal ManagementiaoHuanyuInterPACK2019-6657Encerating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1iaoHuenyuInterPACK2019-6657Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective BehavioriaoWeizhiInterPACK2019-6657Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foam Designing an Ultra-Lichtweight, Comparative Evaluation of Interpacked Thermal Greases: Microstructural Models and Effective Behavioriao			InterPACK2019-6351	Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 1
Image: InterPACK2019-6674 Condensation Heat Transfer on Superfydiophobic Hierarchical Copper Inverse Opals Image: Imag			InterPACK2019-6350	Review of U.S. Patents on Mechanical Failures in Foldable Smartphones
Idea InterPACK2019-6631 Multi-Scale Thermal Analysis for Design of SIC Based Medium Voltage Motor Drive Idea Hongtao InterPACK2019-6371 High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures Idea Junhui InterPACK2019-6466 Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance Mingkai InterPACK2019-6466 Asymptotic Relationship Between Evaporation Rate and Nanocoated Surfaces:The Asymptotic Relationship Between Evaporation Rate and Nanocoated Surfaces:The Polarization Mingkai InterPACK2019-6464 On the Development of Beta-Ga, O ₃ -Based High-Performance Solar-Blind Photodetectors Iang Gary InterPACK2019-6432 Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Management Iao Huanyu InterPACK2019-6660 Generating Ultra-Packed Thermal Greases With Ellipsoidal Filters and Evaluation of Their Effective Properties: Part 1 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: InterPACK2019-6667 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Iao Huanyu InterPACK2019-6667 Effective Roperties: Part 2 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Iao Weizhi InterPACK2019-6667 E			InterPACK2019-6652	Foldable Thermal Ground Plane for Cooling of Foldable Smartphones: Part 2
iii Hongtao InterPACK2019-6371 High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures iii Junhui InterPACK2019-6465 Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance iii Mingkai InterPACK2019-6466 Asymptotic Relationship Between Evaporation Rate and Nanocoated Surfaces:The Asymptotic Relationship Between Evaporation Rate and Nanocoating Thickness iii Mingkai InterPACK2019-6467 Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization iia Shuping InterPACK2019-6402 Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Management iiao Huanyu InterPACK2019-6609 Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1 iiao Huanyu InterPACK2019-6650 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior iiao Weizhi InterPACK2019-6657 Ervironmental Testing of a Chneprature Regulator Based on Compressible Graphene Foam Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior iiao Weizhi InterPACK2019-6657 Ervironmental Testing of a Emperature Regulator Bas	Li	Baiheng	InterPACK2019-6674	Condensation Heat Transfer on Superhydrophobic Hierarchical Copper Inverse Opals
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Li	He	InterPACK2019-6631	Multi-Scale Thermal Analysis for Design of SiC Based Medium Voltage Motor Drive
InterPACK2019-0445 Micropillar Height on Transport Performance Micropillar Height on Transport Performance InterPACK2019-6466 Molecular Dynamics Simulation of Thin-Film Exaporation From Nanocoated Surfaces. The Asymptotic Relationship Between Exaporation Rate and Nanocoating Thickness A Mingkai InterPACK2019-6446 On the Development of Beta-Ga_O_Based High-Performance Solar-Bind Photodetectors A Shuping InterPACK2019-6357 Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization A Gary InterPACK2019-6609 Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1 A Huanyu InterPACK2019-6609 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Nitrostructural Models and Effective Behavior I InterPACK2019-6609 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Nitrostructural Models and Effective Behavior I InterPACK2019-6697 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Nitrostructural Models and Effective Behavior I InterPACK2019-6697 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Nitrostructural Models and Effective Behavior I InterPACK2019-6657 Environmental Testing of a Temperature Regulator Based on Compressible Graphene Fo	Li	Hongtao	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Asymptotic Relationship Between Evaporation Rate and Nanocoating Thicknessi MingkaiInterPACK2019-6414On the Development of Beta-Ga_0_3-Based High-Performance Solar-Blind Photodetectorsi MingkaiInterPACK2019-6357Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and PolarizationiangGaryInterPACK2019-6602Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal ManagementiaoHuanyuInterPACK2019-6669Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1iaoInterPACK2019-6669Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1iaoInterPACK2019-6669Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 2iaoInterPACK2019-6657Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective BehavioriaoWeizhiInterPACK2019-6557Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foam InterPACK2019-6569iaoJonghyunInterPACK2019-6575Environmental Testing of a Pulsating Heat Pipe Using Topology OptimizationianJonghyunInterPACK2019-6569Persging an Ultra-Lipower DensityinterPACK2019-6568Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Pluorescence DyesinterPACK2019-6569Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures Fuorescence Thermometry	Li	Junhui	InterPACK2019-6465	
iShupingInterPACK2019-6357Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and PolarizationiangGaryInterPACK2019-6402Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal ManagementiaoHuanyuInterPACK2019-6609Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1iaoHuanyuInterPACK2019-6607Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 2iaoInterPACK2019-6677Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 2iaoWeizhiInterPACK2019-6657Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective BehavioriaoWeizhiInterPACK2019-6657Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foam Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power DensityimJonghyunInterPACK2019-6360Analysis of Channel Layout of a Pulsating Temperature-Sensitive Fluorescence DyesinterPACK2019-6665Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry			InterPACK2019-6466	
InterPACK2019-6357PolarizationPolarizationPolarizationPolarizationPolarizationPolarizationModeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal ManagementIaoHuanyuInterPACK2019-6669InterPACK2019-6669Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1InterPACK2019-6677Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective BehaviorInterPACK2019-6697Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 2InterPACK2019-6697InterPACK2019-6697IaoWeizhiInterPACK2019-6697IaoVeizhiInterPACK2019-657IaoInterPACK2019-657InterPACK2019-657Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foam Designing an Ultra-Lightweight, Compact Thermal Management System for a 66 kW Electric Charger With Extreme Power DensityImJonghyunInterPACK2019-6360InterPACK2019-6360Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology OptimizationInterPACK2019-6666Pressure-Dependent Thermal Characterization of Inverse Opal Copper StructuresInterPACK2019-6665Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry	Li	Mingkai	InterPACK2019-6414	On the Development of Beta- Ga_2O_3 -Based High-Performance Solar-Blind Photodetectors
Hang Gdry InterPACK2019-6402 Management Management Huanyu InterPACK2019-6669 Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1 InterPACK2019-6501 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior InterPACK2019-6697 Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 2 InterPACK2019-6698 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior Iao Meizhi InterPACK2019-6557 Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foam Charger With Extreme Power Density iao Zitao InterPACK2019-6360 Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization in Jonghyun InterPACK2019-6372 Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes in InterPACK2019-66666 Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures in InterPACK2019-6665 Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry	Li	Shuping	InterPACK2019-6357	
Iao Huanyu InterPACK2019-6669 Effective Properties: Part 1 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior InterPACK2019-6697 Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 2 InterPACK2019-6696 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior Iao Weizhi InterPACK2019-6557 Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foam Charger With Extreme Power Density Image: Algorithm Jonghyun InterPACK2019-6360 Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization InterPACK2019-6360 InterPACK2019-63630 Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization InterPACK2019-6360 Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures Fluorescence Dyes Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures Fluorescence Thermometry	Liang	Gary	InterPACK2019-6402	
InterPACK2019-6501 Microstructural Models and Effective Behavior InterPACK2019-6697 Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 2 InterPACK2019-6696 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior iao Weizhi InterPACK2019-6557 Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foam iao Zitao InterPACK2019-6765 Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electrice Charger With Extreme Power Density im Jonghyun InterPACK2019-6360 Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization in Cheng-Hui InterPACK2019-6372 Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes InterPACK2019-6666 Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures InterPACK2019-6675 Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry	Liao	Huanyu	InterPACK2019-6669	5
InterPACK2019-6697 Effective Properties: Part 2 InterPACK2019-6696 Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior Iao Weizhi InterPACK2019-6557 Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foam Iao Zitao InterPACK2019-6765 Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density Imm Jonghyun InterPACK2019-6360 Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization InterPACK2019-6372 Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes InterPACK2019-6666 Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures InterPACK2019-6655 Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry			InterPACK2019-6501	
interPACK2019-6656 Microstructural Models and Effective Behavior iao Weizhi InterPACK2019-6557 Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foam iao Zitao InterPACK2019-6765 Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric im Jonghyun InterPACK2019-6360 Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization in Cheng-Hui InterPACK2019-6372 Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes InterPACK2019-6666 Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures InterPACK2019-6655 Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry			InterPACK2019-6697	
LiaoZitaoInterPACK2019-6765Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power DensityLimJonghyunInterPACK2019-6360Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology OptimizationLinCheng-HuiInterPACK2019-6372Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence DyesLinterPACK2019-6606Pressure-Dependent Thermal Characterization of Inverse Opal Copper StructuresLinterPACK2019-6655Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry			InterPACK2019-6696	· · · · · · · · · · · · · · · · · · ·
InterPACK2019-6765 InterPACK2019-6765 Charger With Extreme Power Density Image: With Extreme Power Density InterPACK2019-6360 Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization Image: With Extreme Power Density InterPACK2019-6360 Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization Image: With Extreme Power Density InterPACK2019-6360 Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes Image: With Extreme Power Density InterPACK2019-6606 Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures InterPACK2019-6655 Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry	Liao	Weizhi	InterPACK2019-6557	Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foams
Line InterPACK2019-6372 Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes InterPACK2019-6606 Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures InterPACK2019-6655 Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry	Liao	Zitao	InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
InterPACK2019-6372 Fluorescence Dyes InterPACK2019-6606 Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures InterPACK2019-6655 Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry	Lim	Jonghyun	InterPACK2019-6360	Analysis of Channel Layout of a Pulsating Heat Pipe Using Topology Optimization
InterPACK2019-6655 Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry	Lin	Cheng-Hui	InterPACK2019-6372	
Fluorescence Thermometry			InterPACK2019-6606	Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures
			InterPACK2019-6655	· · · · · · · · · · · · · · · · · · ·
			InterPACK2019-6762	Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Lin	Chich Sheng	InterPACK2019-6450	The Assembly Solutions for Heterogeneous Integration Packaging Technology for High Performance Computing
Lin	Kevin	InterPACK2019-6470	Thermal Assessment and In-Situ Monitoring of Insulated Gate Bipolar Transistors in Power Electronic Modules
Lin	Wei	InterPACK2019-6357	Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization
Lin	Xiao	InterPACK2019-6504	Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation: Part 1
		InterPACK2019-6667	Effect of Nonlinear Response of Printed Circuit Boards (PCBs) Under Multiaxial Vibration Excitation: Part 2
Linder	Stephen	InterPACK2019-6304	Dynamic Control of Airflow Balance in Data Centers
Lintereur	Azaree	InterPACK2019-6537	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs
Liu	Bin	InterPACK2019-6406	Hybrid Nitride-Based Micro-/Nano-LEDS With Quantum Dots for High Performance RGB/ White Emissions
		InterPACK2019-6321	Study on the Precise Measurement of LED Thermal Resistance Based on LEDs With an Internal Sensor Unit
Liu	Cheng	InterPACK2019-6370	Polarization Engineering of III-Nitride Photonic Devices
Liu	Guozhen	InterPACK2019-6326	Large Roll Hexagonal Bn Monolayer: Synthesis, Modulation Doping and 2D Emitter
Liu	Lanbing	InterPACK2019-6393	Evaluation of a Lead Glass for Encapsulating High-Temperature Power Modules for Aerospace Application
Liu	Wei	InterPACK2019-6580	Acceleration Factors for Flexible Electronics in Wearable Applications From Actual Human Body Measurements
		InterPACK2019-6714	Estimation of Acceleration Factor for Flexible Electronic Substrates From Human Motion Measurements
Liu	Yanghe	InterPACK2019-6525	Analysis of Thermal Stress in High Temperature Transient Liquid Phase Bonding of Power Electronics
Locker	David	InterPACK2019-6576	High Strain Rate Mechanical Properties of SAC-Q With Sustained Elevated Temperature Storage at 100°C
		InterPACK2019-6577	Evolution of Microstructure and Anand Parameters for SAC Leadfree Alloys
		InterPACK2019-6715	High Strain Rate Mechanical Properties of SAC-Q With Constant High Temperature Storage at 100°C
		InterPACK2019-6719	Evolution of Anand Parameters for Thermally Aged SAC Leadfree Solder Alloys
Long	Hanling	InterPACK2019-6340	Improvement of DUV LEDs Light Extraction Efficiency by Novel Microstructures
		InterPACK2019-6341	Strain Effect on AlGaN Anisotropic Ultraviolet Light Emitting Characteristic
		InterPACK2019-6337	Improving Performance and Reliability of GaN-Based Flip-Chip Light Emitting Diodes by Reflective Bonding Pads
Lövberg	Andreas	InterPACK2019-6487	Prognostication of Failure in Packaged Power Devices for Automotive Applications
Love	Corey T.	InterPACK2019-6432	Lithium Plating and Dendrites in Li-Ion Batteries Under Thermal Gradient
Lovelace	Kirsten	InterPACK2019-6499	Quantitative Characterization of Sapphire and Silicon Nitride for Space Applications Circuit Subassemblies Using Cryogenic Cycling
Lowe	Ryan	InterPACK2019-6572	Fatigue Delamination Crack Growth of Potting Compounds in PCB/Epoxy Interfaces Under Flexure Loading
		InterPACK2019-6575	Effect of Drop Angle Variation and Restraint Mechanisms on Surface Mount Electronics Under High G Shock
		InterPACK2019-6727	Effect of Inclination of Drop on Surface Mount Electronics Under High G Shock Conditions
Lu	Guo-Quan	InterPACK2019-6393	Evaluation of a Lead Glass for Encapsulating High-Temperature Power Modules for Aerospace Application
Lu	Mei-Chien	InterPACK2019-6443	Comparative Study on Power Module Architectures for Modularity and Scalability
Lu	Shiqiang	InterPACK2019-6357	Photonic Engineering in AlGaN-Based Deep Ultraviolet Devices: Symmetry, Strain, and Polarization
Lu	Xi	InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
Lubner	Sean	InterPACK2019-6658	Operando Measurements of the Dominant Thermal Resistance in Lithium-Ion Batteries

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Lundh	James Spencer	InterPACK2019-6426	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature
		InterPACK2019-6440	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics: Part 1
		InterPACK2019-6527	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics: Part 2
		InterPACK2019-6529	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature
Luo	Fang	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
Luo	Xiaobing	InterPACK2019-6325	A Statistical Study to Evaluate the Performance of Liquid Cooling Garments Considering Thermal Comfort
Luo	Yi	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Ма	Binjian	InterPACK2019-6465	Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance
		InterPACK2019-6466	Molecular Dynamics Simulation of Thin-Film Evaporation From Nanocoated Surfaces:The Asymptotic Relationship Between Evaporation Rate and Nanocoating Thickness
		InterPACK2019-6449	Experimental Investigation of Asymmetrical Microdroplet Evaporation on Heated Porous Pillar Array Structures
Ма	Bo-Hao	InterPACK2019-6450	The Assembly Solutions for Heterogeneous Integration Packaging Technology for High Performance Computing
Ма	Tengfei	InterPACK2019-6313	Effect of Inclined Angle of Heat Sink on Natural Convective Heat Dissipation Performance
Mahaney	Vic	InterPACK2019-6444	Thermal and Mechanical Design of the Fastest Supercomputer of the World in Cognitive Systems: IBM POWER AC 922
Maize	Kerry	InterPACK2019-6413	Thermoreflectance Imaging of Electromigration in Aluminum Interconnects at Different Ambient Temperatures
Major	Joshua	InterPACK2019-6456	Degradation Modeling and Reliability Assessment of Capacitors
		InterPACK2019-6678	Reliability Evaluation of Bonded Interfaces for High-Temperature Power Electronics Packages
Malone	Chris	InterPACK2019-6539	Addressing the Challenges in Laser Micro-Machining and Bonding of Silicon Microchannel Cold-Plate and 3D-Manifold for Embedded Cooling Applications
		InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
		InterPACK2019-6705	Flow Boiling Heat Transfer in Embedded Micro-Pin Fin Arrays
Mandel	Raphael	InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 1
		InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 2
Mantese	Joseph	InterPACK2019-6558	Performance of an Electrocaloric Heat Pump Device
Mantooth	Alan	InterPACK2019-6738	Thermal-Switch-Enabled Power Electronics Isothermalization: Part 1
		InterPACK2019-6761	Thermal-Switch-Enabled Power Electronics Isothermalization: Part 2
Marcinichen	Jackson Braz	InterPACK2019-6386	Design of Passive Two-Phase Thermosyphons for Server Cooling
Marconnet	Amy	InterPACK2019-6412	Thermal Characterization of Composite Ultra-High Molecular Weight Polyethylene Fabrics
		InterPACK2019-6462	Combined Experimental-Numerical Investigation of Microstructure and Thermal Conduction in Dispensed and Squeezed Thermal Interface Materials
		InterPACK2019-6554	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams
		InterPACK2019-6557	Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foams
		InterPACK2019-6743	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams
		InterPACK2019-6689	Effect of Squeezing on Thermal Conductivity of Thermal Interface Materials
		InterPACK2019-6688	Flexible High Thermal Conductivity Ultra-High Molecular Weight Polyethylene Fabrics: Fabrication and Metrology
Marques	Miguel A.L.	InterPACK2019-6378	Double Perovskites as p-Type Conducting Transparent Semiconductors: A High-Throughput Search
Marroquin	Chris	InterPACK2019-6444	Thermal and Mechanical Design of the Fastest Supercomputer of the World in Cognitive Systems: IBM POWER AC 922
Mather	Barry	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
Matsushima	Michiya	InterPACK2019-6403	Effect of Low Melting Point Bridge With High Melting Point Fine Filler on the Conductivity of Conductive Adhesive

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
McCluskey	Patrick	InterPACK2019-6470	Thermal Assessment and In-Situ Monitoring of Insulated Gate Bipolar Transistors in Power Electronic Modules
		InterPACK2019-6435	Simulating the Effect of Elastic Particle Inclusion on the Mechanical Properties of Transient Liquid Phase Sintered (TLPS) Alloys
		InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 1
		InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 2
McGray	Craig	InterPACK2019-6439	Thermal Management of Gallium Oxide Electronics via Hetero-Integration on High Thermal Conductivity Substrates
Mehta	Vishal	InterPACK2019-6576	High Strain Rate Mechanical Properties of SAC-Q With Sustained Elevated Temperature Storage at 100°C
		InterPACK2019-6715	High Strain Rate Mechanical Properties of SAC-Q With Constant High Temperature Storage at 100°C
Mei	Ping	InterPACK2019-6306	An RF-Powered Self-Locating Flexible Building Environment Sensor System
Meier	Karsten	InterPACK2019-6509	The Effect of Low Temperature Conditions on Vibration Durability of SAC105 Interconnects
Mercan	Cem Ahmet	InterPACK2019-6309	Thermal Profiling of a Small Operational Data Center
Metzger	Wyatt	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
Miljkovic	Nenad	InterPACK2019-6738	Thermal-Switch-Enabled Power Electronics Isothermalization
		InterPACK2019-6665	Modular Heat Sinks for Enhanced Thermal Management of Electronics
		InterPACK2019-6664	Additive Manufactured Hybrid Cold Plates for Efficient Thermal Management of High Power Density Electronics
		InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6761	Thermal-Switch-Enabled Power Electronics Isothermalization
		InterPACK2019-6766	Realizing Enhanced CPU and GPU Performance With Directed Cooling on Scalable Coatings
		InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
		InterPACK2019-6662	Light-Weight Hybrid Cold Plates for Isothermalization of Electronics
		InterPACK2019-6663	Modular Heat Sinks for Localized Thermal Management of High Gravimetric Power Density Electronics
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
Miller	Scott	InterPACK2019-6584	Folding-Reliability of Flexible Electronics in Wearable Applications
		InterPACK2019-6579	Flexure and Twist Test Reliability Assurance of Flexible Electronics
		InterPACK2019-6569	Process Capability of Aerosol-Jet Additive Processes for Long-Runs up to 10 Hours
		InterPACK2019-6570	Effect of Depth of Charge-Discharge Depth and Environment Use Conditions on Flexible Power Sources
		InterPACK2019-6574	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry: Part 1
		InterPACK2019-6716	Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry: Part 2
		InterPACK2019-6717	Flexure and Twist Test Reliability Study of Flexible Electronics
		InterPACK2019-6736	Effect of Shallow Charging on Flexible Lithium Ion Battery Capacity Subjected to Differing C-Rates and Various Temperatures
Minami	Shogo	InterPACK2019-6403	Effect of Low Melting Point Bridge With High Melting Point Fine Filler on the Conductivity of Conductive Adhesive
Miner	Steven	InterPACK2019-6381	Evaluation of Low Order Stress Models for Use in Co-Design Analysis of Electronics Packaging
Misrak	Abel	InterPACK2019-6568	Impact of Immersion Cooling on Thermo-mechanical Properties of PCBs and Reliability of Electronic Packages
Mistry	Aashutosh	InterPACK2019-6432	Lithium Plating and Dendrites in Li-Ion Batteries Under Thermal Gradient
Miyazawa	Risa	InterPACK2019-6395	CFD Analysis of Molten Solder Flow Behavior and Bridging Mechanism During Solder Bump Formation
Mogera	Umesha	InterPACK2019-6550	Power Delivery and Thermal Management for the Silicon Interconnect Fabric: Part 1
		InterPACK2019-6754	Power Delivery and Thermal Management for the Silicon Interconnect Fabric: Part 2
Mohammad Nafis	Bakhtiyar	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6429	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles: Part 1
		InterPACK2019-6730	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles: Part 2
Mohsenian	Ghazal	InterPACK2019-6430	Feedback Control System for Airflow Management in Data Centers Using Active Air Dampers
		InterPACK2019-6648	Local Airflow Delivery in Data Centers Using Air Dampers
Momen	Ayyoub	InterPACK2019-6387	Applying Ultrasonic Dehumidification Technology for Water Rejection in Wearable Electronics
		InterPACK2019-6623	Magnetocaloric Refrigeration
Montazeri	Kimia	InterPACK2019-6467	Design of Nanostructured Copper Surfaces for Thin Film Evaporation
Montazeri	Mahsa	InterPACK2019-6424	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design
		InterPACK2019-6742	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design
Moon	Jongkeun	InterPACK2019-6420	Numerical/Experimental Hybrid Approach to Predict Warpage of Thin Substrates
Moreno	Fernando	InterPACK2019-6422	Evaluation of Thermal and Electrical Properties of Nano-Enhanced PCMs for Usage in High- Voltage Systems: Part 1
		InterPACK2019-6732	Evaluation of Thermal and Electrical Properties of Nano-Enhanced PCM for Usage in High- Voltage Systems: Part 2
Moreno	Gilberto	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
		InterPACK2019-6445	Experimentation and Simulation of Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
		InterPACK2019-6457	Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
Mori	Hiroyuki	InterPACK2019-6395	CFD Analysis of Molten Solder Flow Behavior and Bridging Mechanism During Solder Bump Formation
Moriwaki	Takeshi	InterPACK2019-6408	Damage of Flexible Electronic Line Printed With Ag Nanoparticle Ink Due to High-Current Density
Morris	Aaron	InterPACK2019-6462	Combined Experimental-Numerical Investigation of Microstructure and Thermal Conduction in Dispensed and Squeezed Thermal Interface Materials
		InterPACK2019-6689	Effect of Squeezing on Thermal Conductivity of Thermal Interface Materials
Motalab	Mohammad	InterPACK2019-6521	Numerical Investigation on Electromigration Oriented Failure of Lead Free Solder Joints With Aging Effects
Mou	Yun	InterPACK2019-6616	Direct Ink Writing of 3D Direct Plated Copper Ceramic Substrates With Kaolin Composites Pastes
Mu	Fengwen	InterPACK2019-6607	Ultrahigh Thermal Boundary Conductance Across GaN-SiC Heterogeneous Interfaces by Surface Activated Bonding
Muhr	Alex	InterPACK2019-6599	Reducing CTE Mismatch and Maximizing Heat Transport on Single Emitter Laser Diodes Using Diamond Heat Spreaders
Mukherjee	Partha	InterPACK2019-6432	Lithium Plating and Dendrites in Li-Ion Batteries Under Thermal Gradient
Murai	Yuki	InterPACK2019-6446	A Study on Relationship Between Low Cycle Fatigue Strength and Load Conditions for Lead Fee Solder Material
Murakami	Masaaki	InterPACK2019-6494	Two-Phase Immersion Cooling of a SiC On-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers
Murugan	Rajen	InterPACK2019-6384	System ElectroThermal Transient Analysis of a High Current (40A) Synchronous Step Down Converter
Na	Risha	InterPACK2019-6631	Multi-Scale Thermal Analysis for Design of SiC Based Medium Voltage Motor Drive
Nadler	Emily	InterPACK2019-6688	Flexible High Thermal Conductivity Ultra-High Molecular Weight Polyethylene Fabrics: Fabrication and Metrology
Nagarkar	Kaustubh	InterPACK2019-6531	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology
Nagato	Sho	InterPACK2019-6486	Application of X-Ray CT Images and Phase-Shifted Sampling Moiré Method to Residual Strain Measurement in Electronic Packages
Nakamura	Yuta	InterPACK2019-6356	Numerical Analysis of Pulse Laser Assisted Curing Region of Photocurable Resins
Nam	David	InterPACK2019-6393	Evaluation of a Lead Glass for Encapsulating High-Temperature Power Modules for Aerospace Application

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Narangaparambil	Jinesh	InterPACK2019-6579	Flexure and Twist Test Reliability Assurance of Flexible Electronics
		InterPACK2019-6580	Acceleration Factors for Flexible Electronics in Wearable Applications From Actual Human Body Measurements
		InterPACK2019-6714	Estimation of Acceleration Factor for Flexible Electronic Substrates From Human Motion Measurements
		InterPACK2019-6717	Flexure and Twist Test Reliability Study of Flexible Electronics
Narayanan	Shankar	InterPACK2019-6760	Moving Boundary Model for Dynamic Control of Two Microchannel Evaporator Cooling System: Part 1
		InterPACK2019-6763	Moving Boundary Model for Dynamic Control of Two Microchannel Evaporator Cooling System: Part 2
Narayanasamy	Balaji	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
Narumanchi	Sreekant	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
		InterPACK2019-6445	Experimentation and Simulation of Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
		InterPACK2019-6457	Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
		InterPACK2019-6678	Reliability Evaluation of Bonded Interfaces for High-Temperature Power Electronics Packages
Nasr	Miad	InterPACK2019-6434	Understanding the Effect of the Cooling Architecture and PCB Layout Design on the Concurrent Thermal and Electrical Performance on an On-Board Electric Vehicle Charger
		InterPACK2019-6700	Effects of Cooling Architecture and PCB Layout Co-Design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger
Nave	Gilad	InterPACK2019-6435	Simulating the Effect of Elastic Particle Inclusion on the Mechanical Properties of Transient Liquid Phase Sintered (TLPS) Alloys
Nazari	Masoumeh	InterPACK2019-6428	Capillary Evaporation in Graphene Coated Nanochannels: Part 1
		InterPACK2019-6734	Capillary Evaporation in Graphene Coated Nanochannels: Part 2
Nelson	George	InterPACK2019-6477	Effects of Non-Uniform Temperature Distributions on Lithium-Ion Battery Degradation
Nematollahisarvestani	Ali	InterPACK2019-6351	Foldable Thermal Ground Plane for Cooling of Foldable Smartphones
		InterPACK2019-6350	Review of U.S. Patents on Mechanical Failures in Foldable Smartphones
		InterPACK2019-6652	Foldable Thermal Ground Plane for Cooling of Foldable Smartphones
Nemoz	Maud	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Ng	Daniel	InterPACK2019-6450	The Assembly Solutions for Heterogeneous Integration Packaging Technology for High Performance Computing
Niedbalski	Nicholas	InterPACK2019-6772	Multi-Scale Multi-Fidelity Approaches to Power and Thermal System Engineering Challenges
Nishi	Којі	InterPACK2019-6390	Investigation regarding Transient Compact Thermal Model for Microprocessor Packages
Nishiguchi	Kenji	InterPACK2019-6650	Characterization of a Topside Cooled Epoxy-Resin Composite Dielectric (ERCD) Package for Bi-Directional Power Switch
Nomura	Hikaru	InterPACK2019-6494	Two-phase Immersion Cooling of a SiC on-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers
Nomura	Tsuyoshi	InterPACK2019-6526	Topology Optimization of Time-Transient Heat Conduction for Thermo-Optic Devices
Numata	Tomiyuki	InterPACK2019-6494	Two-phase Immersion Cooling of a SiC on-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers
Obeloer	Thomas	InterPACK2019-6599	Reducing CTE Mismatch and Maximizing Heat Transport on Single Emitter Laser Diodes Using Diamond Heat Spreaders
Ochmann	Maximilian	InterPACK2019-6509	The Effect of Low Temperature Conditions on Vibration Durability of SAC105 Interconnects
O'Connor	Kevin	InterPACK2019-6391	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components: Part 1
		InterPACK2019-6758	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components: Part 2
O'Connor	Nathaniel	InterPACK2019-6746	Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling
Ogushi	Tetsuro	InterPACK2019-6494	Two-Phase Immersion Cooling of a SiC On-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Ohadi	Michael	InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 1
Childa	Michael	InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 2
Ohguchi	Ken-ichi	InterPACK2019-6464	Mechanical Properties of Polyethylene Based Heat Storage Composite Containing Phase Change Material and Copper Sheet
Ohkawa	Kazuhiro	InterPACK2019-6362	Red InGaN LEDs Grown by Micro-Flow Channel MOVPE
Okamoto	Keishi	InterPACK2019-6395	CFD Analysis of Molten Solder Flow Behavior and Bridging Mechanism During Solder Bump Formation
Okumura	Dai	InterPACK2019-6546	Strain Distribution in a Small Solder Specimen With Few Crystal Grains
Ooi	Boon S.	InterPACK2019-6737	High Brightness White Laser Module Enabling Gbps Li-Fi Link for High-Speed Visible Light Communications
Ouroua	Abdelhamid	InterPACK2019-6311	Assessing the Performance of Advanced Cooling Techniques on Thermal Management of Next-Generation Power Electronics
Ozpineci	Burak	InterPACK2019-6436	Design, Analysis and Comparison of Insulated Metal Substrates for High Power Wide- Bandgap Power Modules
Padilla	Jorge	InterPACK2019-6449	Experimental Investigation of Asymmetrical Microdroplet Evaporation on Heated Porous Pillar Array Structures
Pahinkar	Darshan	InterPACK2019-6733	Direct Bonding of Aluminum Foam With AISiC for Rapid Fabrication of Power Electronic Packages
Pan	Junyou	InterPACK2019-6374	Printed OLED Display and Soluble Materials
Pan	Liang	InterPACK2019-6389	Demonstration of a Compliant Micro-Spring Array as a Thermal Interface Material for Pluggable Optoelectronic Transceiver Modules: Part 1
		InterPACK2019-6666	Demonstration of a Compliant Micro-Spring Array as a Thermal Interface Material for Pluggable Optoelectronic Transceiver Modules: Part 2
Pandurangan	Aathi Raja Ram	InterPACK2019-6575	Effect of Drop Angle Variation and Restraint Mechanisms on Surface Mount Electronics Under High G Shock
		InterPACK2019-6727	Effect of Inclination of Drop on Surface Mount Electronics Under High G Shock Conditions
Parekh	Jay	InterPACK2019-6724	Comparative Rack Level CFD Analysis of Air to Hybrid Cooling
Paret	Paul	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
-		InterPACK2019-6678	Reliability Evaluation of Bonded Interfaces for High-Temperature Power Electronics Packages
Parida	Pritish	InterPACK2019-6532	Thermal Challenges in Servers
Park	John	InterPACK2019-6759	EDA Design and Analysis Methodology for Flexible Circuits
Park	Yongwan	InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 1
Dettineti	Krishaa	InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 2
Pattipati	Krishna Matthew R.	InterPACK2019-6524	Data-Driven Approaches for Fault Prognosis of SiC MOSFETs
Pearson Peng	Yang	InterPACK2019-6534 InterPACK2019-6616	Thermal Analysis of High Efficiency High Speed Drives Direct Ink Writing of 3D Direct Plated Copper Ceramic Substrates With Kaolin Composites Pastes
Peng	Yarui	InterPACK2019-6429	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles: Part 1
		InterPACK2019-6730	System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities in the Next Generation of Electric and Hybrid Electric Vehicles: Part 2
Pense	Dustin	InterPACK2019-6416	Thermo-Mechanical Degradation of Thermal Interface Materials: Accelerated Test Development and Reliability Analysis: Part 1
		InterPACK2019-6720	Thermo-Mechanical Degradation of Thermal Interface Materials: Accelerated Test Development and Reliability Analysis: Part 2
Peoples	Joseph	InterPACK2019-6557	Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foams
Peraza Hernandez	Edwin	InterPACK2019-6402	Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Management
Petrik	Douglas	InterPACK2019-6766	Realizing Enhanced CPU and GPU Performance With Directed Cooling on Scalable Coatings
Pham	Quang	InterPACK2019-6307	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings: Part 1
		InterPACK2019-6659	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings: Part 2
		InterPACK2019-6618	Nucleate Boiling Heat Transfer Using Well-Ordered Microporous Patterns for Controlled Bubble Dynamics

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Phansalkar	Sukrut Prashant	InterPACK2019-6420	Numerical/Experimental Hybrid Approach to Predict Warpage of Thin Substrates
		InterPACK2019-6441	Time-Dependent Behavior of Epoxy Molding Compound Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment: Part 1
		InterPACK2019-6682	Numerical/Experimental Hybrid Approach to Predict Warpage of Thin Substrates
		InterPACK2019-6698	Time-Dependent Behavior of Epoxy Molding Compound Subjected to Hydrostatic Loading: Characterization and Its Effect on Reliability Assessment: Part 2
Piazza	Alisha	InterPACK2019-6472	Design and Optimization of Silicon-Based Embedded Microchannel and 3D Manifold for High Heat Flux (>1 kW/cm²) Power Electronics Cooling Applications
		InterPACK2019-6712	Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (>1 kW/cm²) Power Electronics Cooling
		InterPACK2019-6729	Pressure and Temperature in Simulations of Large-Footprint Manifold-Microchannel Cooling Devices
Pilawa-Podgurski	Robert	InterPACK2019-6665	Modular Heat Sinks for Enhanced Thermal Management of Electronics
		InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
		InterPACK2019-6663	Modular Heat Sinks for Localized Thermal Management of High Gravimetric Power Density Electronics
Popovic	Geroge	InterPACK2019-6765	Designing an Ultra-Lightweight, Compact Thermal Management System for a 6.6 kW Electric Charger With Extreme Power Density
Potty	Karun	InterPACK2019-6631	Multi-Scale Thermal Analysis for Design of SiC Based Medium Voltage Motor Drive
Prasher	Ravi	InterPACK2019-6658	Operando Measurements of the Dominant Thermal Resistance in Lithium-Ion Batteries
Prisacaru	Alexandru	InterPACK2019-6506	Study of Thermal Aging Behavior of Epoxy Molding Compound for Applications in Harsh Environments
Qiao	Hansen	InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
Quintero	Pedro	InterPACK2019-6385	Metallic PCMs Microstructural Stability and Compatibility Analysis Under Repetitive Melting/ Solidification Cycles
Rachakonda	Amrutha Valli	InterPACK2019-6536	Development and Optimization of Control Strategy for a Dynamic Cold Plate to Save Pumping Power and Increase the Reliability
		InterPACK2019-6670	Development and Optimization Of Control Strategy for Dynamic Cooling Technology to Save Pumping Power
Rachamreddy	Pranavi	InterPACK2019-6600	CFD Analysis of Thermal Shadowing and Optimization of Heat Sinks in Third-Generation Open Compute Server for Single-Phase Immersion Cooling
		InterPACK2019-6602	Computational Form Factor Study of a Third-Generation Open Compute Server for Single- Phase Immersion Cooling
Radmard	Vahideh	InterPACK2019-6459	Minimizing the Effects of On-Chip Hot-Spots Using Multi-Objective Optimization of Flow Distribution in Water-Cooled Parallel Micro-Channel Heat Sinks
Rajmane	Pavan	InterPACK2019-6568	Impact of Immersion Cooling on Thermo-mechanical Properties of PCBs and Reliability of Electronic Packages
Ramakrishnan	Bharath	InterPACK2019-6741	Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro- Channel Heat Sinks
Ramdas	Shrinath	InterPACK2019-6568	Impact of Immersion Cooling on Thermo-mechanical Properties of PCBs and Reliability of Electronic Packages
Rangarajan	Srikanth	InterPACK2019-6455	Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro- Channel Heat Sinks
		InterPACK2019-6334	Optimal Arrangement of Multiple Heat Sources in Vertically Stacked Two-Layer 3D IC Using Genetic Algorithm
		InterPACK2019-6463	An Experimental Investigation on the Fluid Distribution in a Two-Phase Cooled rack Under Steady and Transient IT Load
Ren	Zongqing	InterPACK2019-6417	Thermal Analysis of 3D ICs With TSVs Placement Optimization
Rencz	Marta	InterPACK2019-6547	Modeling of Light Emitting Device Populations in the Electrical, Thermal and Optical Domain for Luminaire Design
Rikako	Tsuji	InterPACK2019-6494	Two-phase Immersion Cooling of a SiC on-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers
Rioux	William	InterPACK2019-6558	Performance of an Electrocaloric Heat Pump Device

Franklin John	InterPACK2019-6745	Gravity Effects in Two-Phase Microgap Flow
John		Sidwig Enecis in two thuse microgap flow
	InterPACK2019-6329	Soft Electronic and Microfluidic Systems for the Skin
Artur	InterPACK2019-6621	Moisture Transport through Housing Materials Enclosing Critical Automotive Electronics
Arighna	InterPACK2019-6456	Degradation Modeling and Reliability Assessment of Capacitors
Xiulin	InterPACK2019-6456	
Alulin	InterPACK2019-6554	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams
		Environmental Testing of a Temperature Regulator Based on Compressible Graphene Foams
	InterPACK2019-6743	Continuously Tunable Thermal Switch Based on Compressible Graphene Foams
Jae-Hyun	InterPACK2019-6528	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
	InterPACK2019-6538	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
Boon	InterPACK2019-6739	High-Speed Visible Laser Light Communication (VLLC) Enabled Using RGB Laser Module for Gbps Li-Fi Links
Ashkan	InterPACK2019-6402	Modeling and Analysis of a Shape Memory Alloy-Based Adaptive Regulator for Thermal Management
Satyam	InterPACK2019-6601	Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center
	InterPACK2019-6590	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
	InterPACK2019-6587	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
	InterPACK2019-6602	Computational Form Factor Study of a Third-Generation Open Compute Server for Single- Phase Immersion Cooling
Daiki	InterPACK2019-6408	Damage of Flexible Electronic Line Printed With Ag Nanoparticle Ink Due to High-Current Density
Hiroyuki	InterPACK2019-6404	Analysis of the Relation Between Grain Size of Tin and Wettability in View Point of Strength of Material
Martí	InterPACK2019-6628	Stretchable and Wearable Emitters Based on Corrugated Nickel for Personal Thermal Management
Bahgat	InterPACK2019-6455	Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro- Channel Heat Sinks
	InterPACK2019-6459	Minimizing the Effects of On-Chip Hot-Spots Using Multi-Objective Optimization of Flow Distribution in Water-Cooled Parallel Micro-Channel Heat Sinks
	InterPACK2019-6334	Optimal Arrangement of Multiple Heat Sources in Vertically Stacked Two-Layer 3D IC Using Genetic Algorithm
	InterPACK2019-6430	Feedback Control System for Airflow Management in Data Centers Using Active Air Dampers
	InterPACK2019-6463	An Experimental Investigation on the Fluid Distribution in a Two-Phase Cooled rack Under Steady and Transient IT Load
	InterPACK2019-6648	Local Airflow Delivery in Data Centers Using Air Dampers
	InterPACK2019-6741	Performance Analysis and Shape Optimization of Manifold in Liquid-Cooled Parallel Micro- Channel Heat Sinks
Jackson	InterPACK2019-6462	Combined Experimental-Numerical Investigation of Microstructure and Thermal Conduction in Dispensed and Squeezed Thermal Interface Materials
	InterPACK2019-6689	Effect of Squeezing on Thermal Conductivity of Thermal Interface Materials
Azeem	InterPACK2019-6423	Stator Diagnosis in Permanent Magnet Synchronous Motor
	InterPACK2019-6408	Damage of Flexible Electronic Line Printed With Ag Nanoparticle Ink Due to High-Current Density
Katsuhiko	InterPACK2019-6464	Mechanical Properties of Polyethylene Based Heat Storage Composite Containing Phase Change Material and Copper Sheet
Takumi	InterPACK2019-6546	Strain Distribution in a Small Solder Specimen With Few Crystal Grains
		NREL Energy Storage Thermal Management
Joseph	InterPACK2019-6382	Single-Phase Thermal and Hydraulic Performance of Embedded Micro-Pin Fin Using R245fa
Joseph		ongren nose memoriana nyaraalien enormanee or Embedded Microm III nii Osiliy R2401a
	Jae-Hyun Boon Ashkan Satyam Daiki Daiki Martí Bahgat Bahgat Jackson Jackson Azeem Azeem Kazuhiko Takumi	InterPACK2019-6538BoonInterPACK2019-6538AshkanInterPACK2019-6402SatyamInterPACK2019-6601InterPACK2019-6590InterPACK2019-6590InterPACK2019-6597InterPACK2019-6508DaikiInterPACK2019-6602PaikiInterPACK2019-6602MartíInterPACK2019-6404MartíInterPACK2019-6404BahgatInterPACK2019-6458InterPACK2019-6459InterPACK2019-6459InterPACK2019-6459InterPACK2019-6459InterPACK2019-6450InterPACK2019-6463InterPACK2019-6463InterPACK2019-6463JacksonInterPACK2019-6468AzeemInterPACK2019-6468KatsuhikoInterPACK2019-6468TakumiInterPACK2019-64646AronInterPACK2019-6464

			TITLE
LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Schultz	Mark	InterPACK2019-6532	Thermal Challenges in Servers
		InterPACK2019-6444	Thermal and Mechanical Design of the Fastest Supercomputer of the World in Cognitive Systems: IBM POWER AC 922
Schwartz	David	InterPACK2019-6306	An RF-Powered Self-Locating Flexible Building Environment Sensor System
		InterPACK2019-6747	Ultra-Low SWaP CO ² Sensing for Demand Control Ventilation
Sepúlveda Jiménez	Eduardo	InterPACK2019-6585	Data Center Thermal Efficiency Improvement by Cooling Flow Vectoring Using Synthetic Jets
Shah	Jimil M.	InterPACK2019-6601	Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center
		InterPACK2019-6590	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
		InterPACK2019-6600	CFD Analysis of Thermal Shadowing and Optimization of Heat Sinks in Third-Generation Open Compute Server for Single-Phase Immersion Cooling
		InterPACK2019-6604	Viability of Two Phase Immersion Cooling by Performing Thermal Testing Vehicle Experiments Using Enhanced Boilers
		InterPACK2019-6587	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6602	Computational Form Factor Study of a Third-Generation Open Compute Server for Single- Phase Immersion Cooling
		InterPACK2019-6651	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6671	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
Shah	Ujash	InterPACK2019-6550	Power Delivery and Thermal Management for the Silicon Interconnect Fabric: Part 1
		InterPACK2019-6754	Power Delivery and Thermal Management for the Silicon Interconnect Fabric: Part 2
Shahi	Pardeep	InterPACK2019-6651	Computational Analysis for Thermal Optimization of Server for Single-Phase Immersion Cooling
		InterPACK2019-6671	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
		InterPACK2019-6677	Study of Hybrid Cooled Servers Using Warm Water Cooling and Comparing Distributed Pumping System With and Without Controlling Pumps
Shakouri	Ali	InterPACK2019-6425	Advances in Nanoscale Thermoreflectance Thermal Imaging Calibration
		InterPACK2019-6413	Thermoreflectance Imaging of Electromigration in Aluminum Interconnects at Different Ambient Temperatures
Shamberger	Patrick	InterPACK2019-6751	Lamellar Phase Change Material Composites for Power Electronics Thermal Management
		InterPACK2019-6656	Characterizing Dynamic Response of Phase Change Materials: Part 1
		InterPACK2019-6657	Characterizing Dynamic Response of Phase Change Materials: Part 2
Shan	Li	InterPACK2019-6465	Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance
		InterPACK2019-6466	Molecular Dynamics Simulation of Thin-Film Evaporation From Nanocoated Surfaces: The Asymptotic Relationship Between Evaporation Rate and Nanocoating Thickness
		InterPACK2019-6449	Experimental Investigation of Asymmetrical Microdroplet Evaporation on Heated Porous Pillar Array Structures
Shao	Bowen	InterPACK2019-6307	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings: Part 1
		InterPACK2019-6659	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings: Part 2
Shao	Hua	InterPACK2019-6310	Recent Progress on the Development of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes
Shen	Chao	InterPACK2019-6488	GaN White Lasers and lii-Nitride Integrated Photonics for Visible Light Communications
		InterPACK2019-6739	High-Speed Visible Laser Light Communication (VLLC) Enabled Using RGB Laser Module for Gbps Li-Fi Links
		InterPACK2019-6737	High Brightness White Laser Module Enabling Gbps Li-Fi Link for High-Speed Visible Light Communications
Shen	Yu-Lin	InterPACK2019-6355	Mechanical Instability in Organic Optoelectronics: Surface Wrinkling and Its Prediction
Shi	Jingjing	InterPACK2019-6728	Thermal Management of Beta-Ga ₂ O ₃ Transistors

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6608	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga ₂ O ₄ -Diamond Interfaces
		InterPACK2019-6748	The Effect of Anisotropy on Thermal Boundary Conductance at Metal-Semiconductor Interface
Shin	Dong Hwan	InterPACK2019-6505	Surface Temperature Measurements Using Infrared Thermometry Considering Background Radiation From High-Temperature Environment
Shinde	Pravin	InterPACK2019-6590	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
		InterPACK2019-6671	Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
Shoemaker	Daniel	InterPACK2019-6426	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature: Part 1
		InterPACK2019-6529	Correlated Effects of Self-Heating, Light Output, and Efficiency of GaN Light-Emitting Diodes on Junction Temperature: Part 2
Shu	Weicheng	InterPACK2019-6325	A Statistical Study to Evaluate the Performance of Liquid Cooling Garments Considering Thermal Comfort
Siddarth	Ashwin	InterPACK2019-6653	Artificial Neural Network Based Prediction of Control Strategies for Multiple Air Cooling Units in a Raised Floor Data Center
Silva-Llanca	Luis	InterPACK2019-6585	Data Center Thermal Efficiency Improvement by Cooling Flow Vectoring Using Synthetic Jets
Simon	Vibin Shalom	InterPACK2019-6653	Artificial Neural Network Based Prediction of Control Strategies for Multiple Air Cooling Units in a Raised Floor Data Center
Singh	Akanksha	InterPACK2019-6411	Packaging and Integration of an Additively Manufactured Photovoltaic Inverter
Singh	Prabjit	InterPACK2019-6601	Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center
Singh	Yuvraj	InterPACK2019-6507	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads
		InterPACK2019-6510	Medium to High Strain-Rate Characterization of Lead Free Solder Alloys Through Metal Cutting Experiments: Part 1
		InterPACK2019-6613	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads
		InterPACK2019-6686	Medium to High Strain-Rate Characterization of Lead Free Solder Alloys Through Metal Cutting Experiments: Part 2
Sitaraman	Suresh	InterPACK2019-6498	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements
Sivapurapu	Sridhar	InterPACK2019-6498	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements
Smith	Clinton	InterPACK2019-6306	An RF-Powered Self-Locating Flexible Building Environment Sensor System
Smith	Sonya	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
		InterPACK2019-6499	Quantitative Characterization of Sapphire and Silicon Nitride for Space Applications Circuit Subassemblies Using Cryogenic Cycling
Sokalski	Peter	InterPACK2019-6766	Realizing Enhanced CPU and GPU Performance With Directed Cooling on Scalable Coatings
Song	Yiwen	InterPACK2019-6438	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs: Part 1
		InterPACK2019-6528	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
		InterPACK2019-6439	Thermal Management of Gallium Oxide Electronics via Hetero-Integration on High Thermal Conductivity Substrates
		InterPACK2019-6440	Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
		InterPACK2019-6537	Radiation Effects on the Self-Heating of AlGaN/GaN HEMTs: Part 2
		InterPACK2019-6538	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques
Soni	Ved	InterPACK2019-6570	Effect of Depth of Charge-Discharge Depth and Environment Use Conditions on Flexible Power Sources
		InterPACK2019-6736	Effect of Shallow Charging on Flexible Lithium Ion Battery Capacity Subjected to Differing C-Rates and Various Temperatures

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE	
Soroush	Farid	InterPACK2019-6692	Experimental Investigation of Capillary Rising in Micro Pin Fin Structures	
Spinella	Laura	InterPACK2019-6520	Application of Electronics Packaging Fundamentals to Photovoltaic Interconnects And Packaging	
Stanley	June	InterPACK2019-6710	Li-Ion Battery Impact Testing	
Stillwell	Andrew	InterPACK2019-6665	Modular Heat Sinks for Enhanced Thermal Management of Electronics	
		InterPACK2019-6663	Modular Heat Sinks for Localized Thermal Management of High Gravimetric Power Density Electronics	
Storz	Tamara	InterPACK2019-6509	The Effect of Low Temperature Conditions on Vibration Durability of SAC105 Interconnects	
Strank	Shannon	InterPACK2019-6311	Assessing the Performance of Advanced Cooling Techniques on Thermal Management of Next-Generation Power Electronics	
Su	Peng	InterPACK2019-6507	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads: Part 1	
		InterPACK2019-6613	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads: Part 2	
Subbarayan	Ganesh	InterPACK2019-6507	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads: Part 1	
		InterPACK2019-6510	Medium to High Strain-Rate Characterization of Lead Free Solder Alloys Through Metal Cutting Experiments: Part 1	
		InterPACK2019-6669	Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 1	
		InterPACK2019-6501	Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior: Part 1	
		InterPACK2019-6613	Fatigue Life of Sn3.0Ag0.5Cu Solder Alloys Under Combined Shear and Compressive Loads: Part 2	
		InterPACK2019-6697	Generating Ultra-Packed Thermal Greases With Ellipsoidal Fillers and Evaluation of Their Effective Properties: Part 2	
		InterPACK2019-6686	Medium to High Strain-Rate Characterization of Lead Free Solder Alloys Through Metal Cutting Experiments: Part 2	
		InterPACK2019-6696	Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior: Part 2	
Sudhakar	Srivathsan	InterPACK2019-6367	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers: Part 1	
		InterPACK2019-6695	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers: Part 2	
Suenaga	Shohei	InterPACK2019-6548	Integration Challenges of SiC Power Module for High Temperature and High Frequency Operation	
Suga	Tadatomo	InterPACK2019-6607	Ultrahigh Thermal Boundary Conductance Across GaN-SiC Heterogeneous Interfaces by Surface Activated Bonding	
Sugimoto	Yuuki	InterPACK2019-6464	Mechanical Properties of Polyethylene Based Heat Storage Composite Containing Phase Change Material and Copper Sheet	
Suh	Youngjoon	InterPACK2019-6307	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings: Part 1	
		InterPACK2019-6659	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings: Part 2	
		InterPACK2019-6372	Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes	
		InterPACK2019-6606	Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures	
		InterPACK2019-6618	Nucleate Boiling Heat Transfer Using Well-Ordered Microporous Patterns for Controlled Bubble Dynamics	
		InterPACK2019-6655	Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry	
Suhir	Ephraim	InterPACK2019-6302	Significance of Failure-Oriented-Accelerated-Testing (FOAT) in Making an Electron Device Into a Product	
		InterPACK2019-6318	Design-for-Reliability of Solder Joint Interconnections in Aerospace Electronics	
		InterPACK2019-6301	Making a Viable Electronic or a Photonic Device Into a Reliable Product: Application of the Probabilistic Design for Reliability Concept	
Suhling	Jeffrey	InterPACK2019-6576	High Strain Rate Mechanical Properties of SAC-Q With Sustained Elevated Temperature Storage at 100°C: Part 1	

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Suhling	Jeffrey C.	InterPACK2019-6461	Piezoresistive Theory for 4H Silicon Carbide Stress Sensors on Four-Degree Off-Axis Wafers
0		InterPACK2019-6564	Aging Dependent Anand Parameters of SAC305 Lead Free Solder at Extreme High Temperatures
		InterPACK2019-6578	Health Monitoring of PCBs Under Mechanical Shock Loads
		InterPACK2019-6521	Numerical Investigation on Electromigration Oriented Failure of Lead Free Solder Joints With Aging Effects
		InterPACK2019-6577	Evolution of Microstructure and Anand Parameters for SAC Leadfree Alloys
		InterPACK2019-6572	Fatigue Delamination Crack Growth of Potting Compounds in PCB/Epoxy Interfaces Under Flexure Loading
		InterPACK2019-6560	Evolution of the Microstructure of Lead Free Solders Subjected to Both Aging and Cyclic Loading
		InterPACK2019-6471	Nanoindentation Testing of SAC305 Solder Joints Subjected to Thermal Cycling Loading
		InterPACK2019-6563	Effects of Thermal Cycling on the Mechanical and Microstructural Evolution of SAC305 Lead- Free Solder
		InterPACK2019-6562	Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders
		InterPACK2019-6567	Effects of Shear Cycling on the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints
		InterPACK2019-6575	Effect of Drop Angle Variation and Restraint Mechanisms on Surface Mount Electronics Under High G Shock
		InterPACK2019-6561	Modeling of Underfilled PBGA Assemblies Using Both Viscoelastic and Elastic Material Properties
		InterPACK2019-6641	Mechanical Behavior of SAC Solder Joints Under Thermal Cycling Loading
		InterPACK2019-6644	Evolution of Cyclic Stress-Strain Behavior of Lead Free Solders Subjected to Different Test Temperature and Prior Aging
		InterPACK2019-6645	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solders Subjected to Shear Cycling
		InterPACK2019-6647	The Poisson's Ratio of Lead Free Solder: The Often Forgotten but Important Material Property
		InterPACK2019-6636	Evolution of the Mechanical Properties of SAC and SAC+X Lead Free Solder Joints Subjected to Shear Cycling
		InterPACK2019-6639	Characterization and FEA Modeling of Underfilled Flip Chip Package Assemblies Using Both Viscoelastic and Elastic Material Properties
		InterPACK2019-6640	Evolution of the Mechanical Behavior of Lead Free Solders Exposed to Thermal Cyclic Loading
		InterPACK2019-6642	Microstructural Evolution in SAC+X Solders Subjected to Aging
		InterPACK2019-6643	A Study on the Impact of Four-Degree Off-Axis Wafers on 4H-SiC Stress Sensors
		InterPACK2019-6649	Effects of Aging on the Damage Accumulation in Lead Free Solders Subjected to Cyclic Loading
		InterPACK2019-6715	High Strain Rate Mechanical Properties of SAC-Q With Constant High Temperature Storage at 100°C: Part 2
		InterPACK2019-6719	Evolution of Anand Parameters for Thermally Aged SAC Leadfree Solder Alloys
		InterPACK2019-6727	Effect of Inclination of Drop on Surface Mount Electronics Under High G Shock Conditions Investigation of the Effects of High Temperature Aging on Mechanical Behavior and
		InterPACK2019-6571	Microstructural Changes in Lead Free Solders
Sun	Changzheng	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Sun	Haiding	InterPACK2019-6322	AlGaN Nanowire Light Emitting Diodes on Metal Substrates
Sun	Qinglei	InterPACK2019-6616	Direct Ink Writing of 3D Direct Plated Copper Ceramic Substrates With Kaolin Composites Pastes
Sung	Myung Ki	InterPACK2019-6660	Thermal Management of Fast Charging Systems for Electrified Vehicles
		InterPACK2019-6661	Thermal Management Approaches for Next-Generation Fast Charging of Electric Vehicles
Sur	Aritra	InterPACK2019-6566	Thermal Management of a Highly Optimized Power Dense Non-Rare Earth Permanent Magnet Based Electric Traction Motor

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
		InterPACK2019-6558	Performance of an Electrocaloric Heat Pump Device
Sutaria	Ankit	InterPACK2019-6522	Optimal Design and Modeling of Server Cabinets With In-Row Coolers and Air Conditioning Units in a Modular Data Center
		InterPACK2019-6723	Comparative CFD Analysis of the Effect of Air and Liquid Cooling on the Form Factor of GPU Server
Swaminathan	Madhavan	InterPACK2019-6498	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements
Tadjer	Marko	InterPACK2019-6608	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga ₂ O ₃ -Diamond Interfaces
Takai	Kio	InterPACK2019-6494	Two-phase Immersion Cooling of a SiC on-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers
Takeda	Takuya	InterPACK2019-6404	Analysis of the Relation Between Grain Size of Tin and Wettability in View Point of Strength of Material
Takken	Todd	InterPACK2019-6444	Thermal and Mechanical Design of the Fastest Supercomputer of the World in Cognitive Systems: IBM POWER AC 922
Tamraparni	Achutha	InterPACK2019-6751	Lamellar Phase Change Material Composites for Power Electronics Thermal Management
Tamura	Asato	InterPACK2019-6356	Numerical Analysis of Pulse Laser Assisted Curing Region of Photocurable Resins
Tan	Guixiang	InterPACK2019-6530	Enabling Thermal Management of High Powered Server Processors Using Passive Thermosiphon Heat Sink
Tan	Jiahui	InterPACK2019-6374	Printed OLED Display and Soluble Materials
Tangudu	Jagadeesh K.	InterPACK2019-6566	Thermal Management of a Highly Optimized Power Dense Non-Rare Earth Permanent Magnet Based Electric Traction Motor
Tayyara	Omri	InterPACK2019-6434	Understanding the Effect of the Cooling Architecture and PCB Layout Design on the Concurrent Thermal and Electrical Performance on an On-Board Electric Vehicle Charger
		InterPACK2019-6700	Effects of Cooling Architecture and PCB Layout Co-Design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger
Thomas	Tony	InterPACK2019-6580	Acceleration Factors for Flexible Electronics in Wearable Applications From Actual Human Body Measurements
		InterPACK2019-6578	Health Monitoring of PCBs Under Mechanical Shock Loads
		InterPACK2019-6714	Estimation of Acceleration Factor for Flexible Electronic Substrates From Human Motion Measurements
Thome	John Richard	InterPACK2019-6386	Design of Passive Two-Phase Thermosyphons for Server Cooling
Tian	Kangkai	InterPACK2019-6310	Recent Progress on the Development of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes
Tian	Renbao	InterPACK2019-6321	Study on the Precise Measurement of LED Thermal Resistance Based on LEDs With an Internal Sensor Unit
Tian	Shurong	InterPACK2019-6444	Thermal and Mechanical Design of the Fastest Supercomputer of the World in Cognitive Systems: IBM POWER AC 922
Tomerlin	Jeff	InterPACK2019-6445	Experimentation and Simulation of Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
		InterPACK2019-6457	Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid
Trescases	Olivier	InterPACK2019-6434	Understanding the Effect of the Cooling Architecture and PCB Layout Design on the Concurrent Thermal and Electrical Performance on an On-Board Electric Vehicle Charger
		InterPACK2019-6700	Effects of Cooling Architecture and PCB Layout Co-Design on the Concurrent Thermal and Electrical Performance of an On-Board Electric Vehicle Charger
Tsai	Jensen	InterPACK2019-6354	Double Side System in Package Development Challenge for Heterogeneous Integration
Tsai	Mike	InterPACK2019-6354	Double Side System in Package Development Challenge for Heterogeneous Integration
Tunuguntla	Priyanka	InterPACK2019-6530	Enabling Thermal Management of High Powered Server Processors Using Passive Thermosiphon Heat Sink
Tuominen	Risto	InterPACK2019-6531	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology
Turkmen	Ismail	InterPACK2019-6309	Thermal Profiling of a Small Operational Data Center
Twitchen	Daniel	InterPACK2019-6599	Reducing CTE Mismatch and Maximizing Heat Transport on Single Emitter Laser Diodes Using Diamond Heat Spreaders

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Uchino	Masakazu	InterPACK2019-6486	Application of X-Ray CT Images and Phase-Shifted Sampling Moiré Method to Residual Strain Measurement in Electronic Packages
Udupa	Anirudh	InterPACK2019-6510	Medium to High Strain-Rate Characterization of Lead Free Solder Alloys Through Metal Cutting Experiments: Part 1
		InterPACK2019-6686	Medium to High Strain-Rate Characterization of Lead Free Solder Alloys Through Metal Cutting Experiments: Part 2
Unno	Noriyuki	InterPACK2019-6494	Two-phase Immersion Cooling of a SiC on-Vehicle Inverter by Self-Cooling Effect Using Lotus Porous Coppers
Upot	Nithin Vinod	InterPACK2019-6664	Additive Manufactured Hybrid Cold Plates for Efficient Thermal Management of High Power Density Electronics
		InterPACK2019-6662	Light-Weight Hybrid Cold Plates for Isothermalization of Electronics
Uvodich	Kevin	InterPACK2019-6766	Realizing Enhanced CPU and GPU Performance With Directed Cooling on Scalable Coatings
Vaisband	Boris	InterPACK2019-6550	Power Delivery and Thermal Management for the Silicon Interconnect Fabric: Part 1
		InterPACK2019-6754	Power Delivery and Thermal Management for the Silicon Interconnect Fabric: Part 2
van de Burgt	Yoeri	InterPACK2019-6375	Organic Electronics for Neuromorphic Computing
VanGilder	Jim	InterPACK2019-6304	Dynamic Control of Airflow Balance in Data Centers
Vass Varnai	Andras	InterPACK2019-6547	Modeling of Light Emitting Device Populations in the Electrical, Thermal and Optical Domain for Luminaire Design
Venkatanarayanan	Adithya	InterPACK2019-6424	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design: Part 1
		InterPACK2019-6742	Thermomechanical Stress and Warpage Augmentation Using Auxetic Features in Electronic Design: Part 2
Venkatasubramanian	Vijay	InterPACK2019-6306	An RF-Powered Self-Locating Flexible Building Environment Sensor System
Wang	Chi-Wei	InterPACK2019-6541	Stress Evaluation of Flexible Displays With Multiple-Laminations Architecture Enabled by Experimental Measurement and Simulation Based Factorial Design
		InterPACK2019-6635	Stress-Induced Electric Resistance Change of Flexible Displays With Multiple-Laminations Architecture Enabled by Experimental Measurement and Simulation
Wang	Davidlion	InterPACK2019-6354	Double Side System in Package Development Challenge for Heterogeneous Integration
Wang	Haichen	InterPACK2019-6378	Double Perovskites as p-Type Conducting Transparent Semiconductors: A High-Throughput Search
Wang	Jian	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Wang	Jiawen	InterPACK2019-6325	A Statistical Study to Evaluate the Performance of Liquid Cooling Garments Considering Thermal Comfort
Wang	Jin	InterPACK2019-6631	Multi-Scale Thermal Analysis for Design of SiC Based Medium Voltage Motor Drive
Wang	Lai	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Wang	Qile	InterPACK2019-6414	On the Development of Beta-Ga $_2\mathrm{O_3}\text{-}Based$ High-Performance Solar-Blind Photodetectors
Wang	Shuai	InterPACK2019-6340	Improvement of DUV LEDs Light Extraction Efficiency by Novel Microstructures
Wang	Weijie	InterPACK2019-6528	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques: Part 1
		InterPACK2019-6538	The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Synthesized via Diverse Growth Techniques: Part 2
Wang	Wen	InterPACK2019-6313	Effect of Inclined Angle of Heat Sink on Natural Convective Heat Dissipation Performance
Wang	Yating	InterPACK2019-6352	On-Chip Detection From Directly Modulated Quantum Dot Microring Lasers on Si
Wang	Yu Po	InterPACK2019-6450	The Assembly Solutions for Heterogeneous Integration Packaging Technology for High Performance Computing
		InterPACK2019-6354	Double Side System in Package Development Challenge for Heterogeneous Integration
Wang	Yuejin	InterPACK2019-6326	Large Roll Hexagonal Bn Monolayer: Synthesis, Modulation Doping and 2D Emitter
Warzoha	Ronald	InterPACK2019-6609	Thermal Contact Resistance at DBC Interfaces
Wassgren	Carl	InterPACK2019-6462	Combined Experimental-Numerical Investigation of Microstructure and Thermal Conduction in Dispensed and Squeezed Thermal Interface Materials
		InterPACK2019-6689	Effect of Squeezing on Thermal Conductivity of Thermal Interface Materials

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Weibel	Justin	InterPACK2019-6308	The Critical Role of Dynamic Surface Wettability on Bubble Dynamics and Boiling Performance: Part 1
		InterPACK2019-6389	Demonstration of a Compliant Micro-Spring Array as a Thermal Interface Material for Pluggable Optoelectronic Transceiver Modules: Part 1
		InterPACK2019-6412	Thermal Characterization of Composite Ultra-High Molecular Weight Polyethylene Fabrics
		InterPACK2019-6367	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers
		InterPACK2019-6622	The Critical Role of Dynamic Surface Wettability on Bubble Dynamics and Boiling Performance: Part 2
		InterPACK2019-6666	Demonstration of a Compliant Micro-Spring Array as a Thermal Interface Material for Pluggable Optoelectronic Transceiver Modules: Part 2
		InterPACK2019-6688	Flexible High Thermal Conductivity Ultra-High Molecular Weight Polyethylene Fabrics: Fabrication and Metrology
		InterPACK2019-6695	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers
Welschinger	Fabian	InterPACK2019-6409	Constitutive Modeling and Experimental Characterization of Volumetric and Isochoric Nonlinear Viscoelasticity for Epoxy-Based Molding Compounds
Wen	John T.	InterPACK2019-6760	Moving Boundary Model for Dynamic Control of Two Microchannel Evaporator Cooling System: Part 1
		InterPACK2019-6763	Moving Boundary Model for Dynamic Control of Two Microchannel Evaporator Cooling System: Part 2
Wheeler	Virginia	InterPACK2019-6608	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga ₂ O ₃ -Diamond Interfaces
Whitt	Reece	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
Won	Yoonjin	InterPACK2019-6307	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings: Part 1
		InterPACK2019-6659	Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings: Part 2
		InterPACK2019-6372	Evaporation Rate Measurement at Multiple Scales Using Temperature-Sensitive Fluorescence Dyes
		InterPACK2019-6606	Pressure-Dependent Thermal Characterization of Inverse Opal Copper Structures
		InterPACK2019-6467	Design of Nanostructured Copper Surfaces for Thin Film Evaporation
		InterPACK2019-6618	Nucleate Boiling Heat Transfer Using Well-Ordered Microporous Patterns for Controlled Bubble Dynamics
		InterPACK2019-6655	Evaporation Rate Measurement at the Sub-Micron Level Using Temperature-Sensitive Fluorescence Thermometry
		InterPACK2019-6674	Condensation Heat Transfer on Superhydrophobic Hierarchical Copper Inverse Opals
Wu	Jing	InterPACK2019-6571	Investigation of the Effects of High Temperature Aging on Mechanical Behavior and Microstructural Changes in Lead Free Solders
		InterPACK2019-6642	Microstructural Evolution in SAC+X Solders Subjected to Aging
Wu	Qianying	InterPACK2019-6701	Exploring the Limits of Cooling for Extreme Heat Flux Applications
Wu	Xingzhao	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Xie	Zili	InterPACK2019-6321	Study on the Precise Measurement of LED Thermal Resistance Based on LEDs With an Internal Sensor Unit
Xiong	Bing	InterPACK2019-6371	High-Gain Solid-State Photomultiplier Based on Periodic GaN/AIN Hetero-Structures
Xiong	Hui	InterPACK2019-6338	Design of Diffractive Beam Splitters by Indirect Construction of Diffraction Pattern Based on Sampling Theory
Xu	Linlin	InterPACK2019-6341	Strain Effect on AIGaN Anisotropic Ultraviolet Light Emitting Characteristic
		InterPACK2019-6337	Improving Performance and Reliability of GaN-Based Flip-Chip Light Emitting Diodes by Reflective Bonding Pads
Xu	Longya	InterPACK2019-6631	Multi-Scale Thermal Analysis for Design of SiC Based Medium Voltage Motor Drive
Yadav	Om Prakash	InterPACK2019-6456	Degradation Modeling and Reliability Assessment of Capacitors
Yadav	Vikas	InterPACK2019-6580	Acceleration Factors for Flexible Electronics in Wearable Applications From Actual Human Body Measurements
		InterPACK2019-6577	Evolution of Microstructure and Anand Parameters for SAC Leadfree Alloys

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE	
			Estimation of Acceleration Factor for Flexible Electronic Substrates From Human Motion	
		InterPACK2019-6714	Measurements	
		InterPACK2019-6719	Evolution of Anand Parameters for Thermally Aged SAC Leadfree Solder Alloys	
Yagoobi	Jamal	InterPACK2019-6746	Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling	
Yamazaki	Kimiharu	InterPACK2019-6396	Prediction and Control Technique of the Paper Media Temperature After Fusing in Electrophotographic Process	
Yanase	Atushi	InterPACK2019-6546	Strain Distribution in a Small Solder Specimen With Few Crystal Grains	
Yang	Chuanbo	InterPACK2019-6594	The Role of Interfacial Thermal Resistance in Li-Ion Battery Thermal Management	
Yang	Liqiang	InterPACK2019-6531	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology	
Yang	Peiyan	InterPACK2019-6391	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components	
		InterPACK2019-6758	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components	
Yang	Tianyu	InterPACK2019-6738	Thermal-Switch-Enabled Power Electronics Isothermalization: Part 1	
		InterPACK2019-6761	Thermal-Switch-Enabled Power Electronics Isothermalization: Part 2	
Yang	Xi	InterPACK2019-6374	Printed OLED Display and Soluble Materials	
Yang	Yu-Hsiang	InterPACK2019-6419	Silicon-Based Piezoresistive Stress Sensor as a Load Counter for Automotive Electronic Systems	
		InterPACK2019-6681	In-Situ Service Load Monitoring of Automotive Electronic Systems Using Silicon-Based Piezoresistive Stress Sensor	
Yates	Luke	InterPACK2019-6608	Surface-Pretreatment-Dependent High Thermal Boundary Conductance Across Heterogeneous Atomic-Layer-Deposited Ga ₂ O ₃ -Diamond Interfaces	
Yazawa	Kazuaki	InterPACK2019-6425	Advances in Nanoscale Thermoreflectance Thermal Imaging Calibration	
Yelekli	Ecem	InterPACK2019-6713	Textured Superoleophobic Surfaces: Fabrication and Characterization	
Yeo	Eunju	InterPACK2019-6675	Replication of Hairy Surface Nanostructures on Elastomer Films for Flexible Pressure Sensor	
		InterPACK2019-6706	A Study on Fabrication of Molds for Microlens Array Using Arrangement of Microparticles in Liquid Droplet	
Yin	Liang	InterPACK2019-6531	A Reliability Study of Silicon Carbide Power Modules Using POL-kW Packaging Technology	
Yoda	Minami	InterPACK2019-6565	Comparison of Data Driven Modeling Approaches for Temperature Prediction in Data Centers	
Yoo	Yeong-Eun	InterPACK2019-6675	Replication of Hairy Surface Nanostructures on Elastomer Films for Flexible Pressure Sensor	
		InterPACK2019-6706	A Study on Fabrication of Molds for Microlens Array Using Arrangement of Microparticles in Liquid Droplet	
Yoon	Gil Ho	InterPACK2019-6526	Topology Optimization of Time-Transient Heat Conduction for Thermo-Optic Devices	
Yoon	Jae Sung	InterPACK2019-6675	Replication of Hairy Surface Nanostructures on Elastomer Films for Flexible Pressure Sensor	
		InterPACK2019-6706	A Study on Fabrication of Molds for Microlens Array Using Arrangement of Microparticles in Liquid Droplet	
Yu	Ziqi	InterPACK2019-6628	Stretchable and Wearable Emitters Based on Corrugated Nickel for Personal Thermal Management	
Yuan	Chao	InterPACK2019-6728	Thermal Management of Beta-Ga ₂ O ₃ Transistors: Part 1	
		InterPACK2019-6748	The Effect of Anisotropy on Thermal Boundary Conductance at Metal-Semiconductor Interface	
		InterPACK2019-6749	Thermal Management of Beta-Ga $_2O_3$ Transistors: Part 2	
Yuan	Zhao	InterPACK2019-6442	Additive Manufactured, Low EMI, Non-Metallics Convective Heat Spreader Design and Optimization	
Yuki	Kazuhisa	InterPACK2019-6494	Two-phase Immersion Cooling of a SiC on-Vehicle Inverter by Self-Cooling Effect Using Lotu Porous Coppers	
Yuksel	Anil	InterPACK2019-6444	Thermal and Mechanical Design of the Fastest Supercomputer of the World in Cognitive Systems: IBM POWER AC 922	
Yun	He	InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 1	
		InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 2	
Yuruker	Sevket Umut	InterPACK2019-6559	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 1	

LAST NAME	FIRST NAME	PAPER NUMBER	TITLE
Zalutara	A malain.	InterPACK2019-6753	Advanced Packaging and Thermal Management of High-Power DC-DC Converters: Part 2
Zakutayev	Andriy	InterPACK2019-6453	Electro-Thermal Modeling and Analysis of Gallium Oxide Power Switching Devices
Zhang	Chi	InterPACK2019-6701	Exploring the Limits of Cooling for Extreme Heat Flux Applications
Zhang	Guangsheng	InterPACK2019-6477	Effects of Non-Uniform Temperature Distributions on Lithium-Ion Battery Degradation
71	lin e	InterPACK2019-6757	In-Situ Diagnosis of Li-Ion Battery Internal Short Circuit
Zhang	Jing	InterPACK2019-6370	Polarization Engineering of III-Nitride Photonic Devices
Zhang	Jun	InterPACK2019-6340	Improvement of DUV LEDs Light Extraction Efficiency by Novel Microstructures
Zhang	Lingyi	InterPACK2019-6524	Data-Driven Approaches for Fault Prognosis of SiC MOSFETs
Zhang	Rong	InterPACK2019-6321	Study on the Precise Measurement of LED Thermal Resistance Based on LEDs With an Internal Sensor Unit
Zhang	Runzhi	InterPACK2019-6465	Evaporation of Microdroplet Suspended on Porous Micropillar Structure: The Effect of Micropillar Height on Transport Performance
		InterPACK2019-6449	Experimental Investigation of Asymmetrical Microdroplet Evaporation on Heated Porous Pilla Array Structures
Zhang	Shuang	InterPACK2019-6340	Improvement of DUV LEDs Light Extraction Efficiency by Novel Microstructures
Zhang	Xinfeng	InterPACK2019-6325	A Statistical Study to Evaluate the Performance of Liquid Cooling Garments Considering Thermal Comfort
Zhang	Yan	InterPACK2019-6304	Dynamic Control of Airflow Balance in Data Centers
Zhang	Yonghui	InterPACK2019-6310	Recent Progress on the Development of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes
Zhang	Yunli	InterPACK2019-6744	Folding Reliability Assessment of Flexible Electronics in Wearable
Zhang	Zhuomin	InterPACK2019-6391	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components: Part 1
		InterPACK2019-6758	Vandal Glass Heat Distribution and the Effect of Glass Gap Adjustments in Outdoor Digital Display Components: Part 2
Zhang	Zi-Hui	InterPACK2019-6310	Recent Progress on the Development of III-Nitride Based DUV Light-Emitting Diodes and Micro-/Nano-Structured Light Emitting Diodes
Zhao	Yue	InterPACK2019-6738	Thermal-Switch-Enabled Power Electronics Isothermalization: Part 1
		InterPACK2019-6761	Thermal-Switch-Enabled Power Electronics Isothermalization: Part 2
Zhao	Yuji	InterPACK2019-6323	III-Nitride UV-Visible Integrated Photonics for Quantum and Biomedical Applications
		InterPACK2019-6335	High Performance Nonplar M-Plane InGaN Multiple-Quantum-Well Solar Cells With Improved Carrier Collection and High Temperature Spectral Response
Zheng	Youdou	InterPACK2019-6321	Study on the Precise Measurement of LED Thermal Resistance Based on LEDs With an Internal Sensor Unit
Zholbaryssov	Madi	InterPACK2019-6423	Stator Diagnosis in Permanent Magnet Synchronous Motor
Zhou	Feng	InterPACK2019-6400	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa: Part 1
		InterPACK2019-6367	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers: Part 1
		InterPACK2019-6399	Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R245fa: Part 2
		InterPACK2019-6695	Demonstration of Two-Layer Wicks for High-Heat-Flux Dissipation in Vapor Chambers: Part 2
Zhou	Rui	InterPACK2019-6466	Molecular Dynamics Simulation of Thin-Film Evaporation From Nanocoated Surfaces:The Asymptotic Relationship Between Evaporation Rate and Nanocoating Thickness
Zhou	Xiangyang	InterPACK2019-6478	Effect of Transition Metal Prussian Blue Analogues as Mediators on the Performance of Mediator Supercapacitor
		InterPACK2019-6481	Three-Dimensional Modeling of Mediator-Enhanced Solid-State Supercapacitors
		InterPACK2019-6480	Development of Structural Supercapacitors With Epoxy Based Adhesive Polymer Electrolyte
		InterPACK2019-6479	A High-Performance Polymer Electrolyte Membrane Based On Poly (Vinylidene Fluoride) and Graphene Oxide Doped With Redox Species
Zhou	Yi	InterPACK2019-6498	Mechanical and Electrical Modeling and Characterization of Flexible Printed Electronic Elements
Zhou	Yugang	InterPACK2019-6321	Study on the Precise Measurement of LED Thermal Resistance Based on LEDs With an

ORGANIZING COMMITTEE

Sreekant Narumanchi General Conference Chair National Renewable Energy Laboratory

Xiaobing Luo General Conference Vice-Chair Huazhong University of Science and Technology

Samuel Graham General Conference Vice-Chair Georgia Institute of Technology

Ankur Jain Conference Program Chair University of Texas at Arlington

Jin Yang Conference Program Co-Chair Intel Corporation

Kazuyoshi Fushinobu Conference Program Co-Chair Tokyo Institute of Technology

Tomoyuki Hatakeyama Conference Program Co-Chair Toyama Prefectural University

COMMUNICATIONS & WEBSITE CHAIR

Douglas DeVoto National Renewable Energy Laboratory

AWARDS COORDINATION CHAIR

Yoonjin Won University of California, Irvine

SPONSORSHIP & ADVISORY COMMITTEE

Mehdi Asheghi Stanford University

Ravi Mahajan Intel Corporation

Yogendra Joshi Georgia Institute of Technology

Kaustubh Nagarkar General Electric

TRACK 1: HETEROGENEOUS INTEGRATION

Gamal Refai-Ahmed Xilinx, Inc.

Leila Choobineh SUNY Polytechnic Institute

Fabian Welschinger Robert Bosch GmbH

Winston Zhang Novark Technologies, Inc.

TRACK 2: SERVERS OF THE FUTURE, EDGE AND CLOUD COMPUTING

Saket Karajgikar Facebook Inc.

Baris Dogruoz Cisco Systems Inc.

Timothy Chainer

Joshua Gess Oregon State University

TRACK 3: INTERNET OF THINGS

Baris Dogruoz Cisco Systems Inc.

Damena Agonafer Washington University in St. Louis

TRACK 4: FLEXIBLE AND WEARABLE ELECTRONICS

Valerie Marty Connected Micro LLC

E. Yegan Erdem Bilkent University

Janos Veres PARC

Benjamin Leever Air Force Research Laboratory

Baris Dogruoz Cisco Systems Inc.

TRACK 5: PHOTONICS AND OPTICS

Changqing Chen Huazhong University of Science and Technology

Haiding Sun University of Science and Technology of China

Photo Not Available

Ping Zhou LDX Optronics

TRACK 6: POWER ELECTRONICS

Lauren M. Boteler U.S. Army Research Laboratory

Damena Agonafer Washington University in St. Louis

Sukwon Choi Pennsylvania State University

Ram Ranjan United Technologies Research Center

TRACK 7: ENERGY CONVERSION AND STORAGE

Guangsheng Zhang University of Alabama in Huntsville

Xuemin Li A123 Systems

Ayyoub Momen Oak Ridge National Laboratory

Partha Mukherjee Purdue University

Aritra Sur United Technologies Research Center

ies

TRACK 8: AUTONOMOUS, HYBRID, AND ELECTRIC VEHICLES

Przemyslaw Jakub Gromala Robert Bosch GmbH

Ercan Dede Toyota Research Institute of North America

Gopi Krishnan Tesla

Sven Rzepka Fraunhofer ENAS

TRACK 9: INDUSTRY, NATIONAL LABORATORY, AND ACADEMIA POSTERS

Kyle R. Gluesenkamp Oak Ridge National Laboratory

Yoonjin Won University of California, Irvine

SESSION #	SESSION ORGANIZER NAME	SESSION ORGANIZER COMPANY	SESSION ORGANIZER ROLE
1-2	Srikanth Rangarajan	Binghamton University	Session Organizer
1-2	Leila Choobineh	SUNY Polytechnic Institute	Session Co-Organizer
1-3	Tuhin Sinha	IBM Corporation	Session Organizer
1-3	Shima Hajimirza	Texas A&M University	Session Co-Organizer
1-4	Nirup Nagabandi	Incendium Technologies	Session Organizer
1-4	Yuling Niu	State University of New York at Binghamton	Session Co-Organizer
1-5	Sandeep Mallampati	GLOBALFOUNDRIES	Session Organizer
1-5	Fabian Welschinger	Robert Bosch Gmbh	Session Co-Organizer
1-6	Subhasis Mukherjee	Apple Inc.	Session Organizer
1-6	Subramanyaravi Annapragada	United Technologies Research	Session Co-Organizer
1-7	Shankar Narayanan	Rensselaer Polytechnic Institute	Session Organizer
1-7	Shima Hajimirza	Texas A&M University	Session Co-Organizer
1-8	Yuling Niu	State University of New York at Binghamton	Session Organizer
1-8	Leila Choobineh	SUNY Polytechnic Institute	Session Co-Organizer
2-1	Cheng Chen	Facebook Inc.	Session Organizer
2-1	Prakriti Choudhary	Facebook Inc.	Session Co-Organizer
2-1	Brent Goren	Eaton Corporation	Session Co-Organizer
2-2	Emad A. Poshtan	Bosch	Session Organizer
2-2	Mark Schultz	IBM Corporation	Session Co-Organizer
2-3	Emad A. Poshtan	Bosch	Session Organizer
2-3	Mark Schultz	IBM Corporation	Session Co-Organizer
2-4	Jimil M. Shah	University of Texas at Arlington	Session Organizer
2-4	Steve Moon	3M Company	Session Co-Organizer
2-4	Pavan Rajmane	Qualcomm	Session Co-Organizer
2-5	Prakriti Choudhary	Facebook Inc.	Session Organizer
2-5	Cheng Chen	Facebook Inc.	Session Co-Organizer
2-5	Brent Goren	Eaton Corporation	Session Co-Organizer
2-6	Nikhil Lakhkar	Emerson Climate Technologies	Session Organizer
2-6	Steve Moon	3M Company	Session Co-Organizer
2-7	Nikhil Lakhkar	Emerson Climate Technologies	Session Organizer
2-7	Steve Moon	3M Company	Session Co-Organizer
3-1	Baris Dogruoz	Cisco Systems Inc.	Session Organizer
3-1	Damena Agonafer	Washington University in St.Louis	Session Co-Organizer
4-1	Philip Buskohl	Air Force Research Laboratory	Session Organizer
4-1	Tsung-Ching Jim Huang	Hewlett Packard Labs	Session Co-Organizer
4-2	Azar Alizadeh	General Electric Company	Session Organizer
4-2	E. Yegan Erdem	Bilkent University	Session Co-Organizer
4-3	Pradeep Lall	Auburn University	Session Organizer
4-3	Baris Dogruoz	Cisco Systems Inc.	Session Co-Organizer
4-4	Vaibhav Agrawal	Intel Corporation	Session Organizer
4-4	Benjamin Leever	Air Force Research Laboratory	Session Co-Organizer

SESSION #	SESSION ORGANIZER NAME	SESSION ORGANIZER COMPANY	SESSION ORGANIZER ROLE
4-5	David Schwartz	PARC	Session Organizer
4-5	Janos Veres	PARC	Session Co-Organizer
4-5	Vaibhav Agrawal	Intel Corporation	Session Co-Organizer
4-6	Tsung-Ching Jim Huang	Hewlett Packard Labs	Session Organizer
4-6	Philip Buskohl	Air Force Research Laboratory	Session Co-Organizer
5-1	Yuji Zhao	Arizona State University	Session Organizer
5-1	Jonathan Klamkin	University of California Santa Barbara	Session Co-Organizer
5-2	Zi-Hui Zhang	Hebei University of Technology	Session Organizer
5-2	Haiding Sun	University of Science and Technology of China	Session Co-Organizer
5-3	Jing Zhang	Rochester Institute of Technology	Session Organizer
5-3	Bin Liu	Nanjing University	Session Co-Organizer
5-4	Junyou Pan	Guangzhou ChinaRay Optoelectronic Materials Co., Ltd	Session Co-Organizer
5-4	Klaus Müllen	Max-Planck Institute for Polymer Research	Session Co-Organizer
5-5	Lai Wang	Tsinghua University	Session Co-Organizer
5-5	Changqing Chen	Huazhong University of Science and Technology	Session Co-Organizer
5-6	Zhenghua An	Fudan University	Session Organizer
5-6	Chao Shen	SaNoor Technologies Inc.	Session Co-Organizer
5-7	Malte Gather	University of St Andrews	Session Organizer
5-7	Yunbin He	Hubei University	Session Co-Organizer
5-8	Firooz Faili	Element Six	Session Organizer
5-8	Duanjun Cai	Xiamen University	Session Co-Organizer
5-9	Niamh Richardson	University of Limerick	Session Organizer
5-9	Ercan Dede	Toyota Research Institute of North America	Session Co-Organizer
6-1	Jae-Hyun Ryou	University of Houston	Session Organizer
6-1	Richard Thomas	Army Research Laboratory	Session Co-Organizer
6-1	Anil Yuksel	IBM Corporation	Session Co-Organizer
6-2	Jungwan Cho	Kyunghee University	Session Organizer
6-2	Mandar Kulkarni	Amazon	Session Co-Organizer
6-3	Shubhodeep Goswami	Global Research Center, General Electric Company	Session Organizer
6-3	Lauren Kegley	Cree Wolfspeed	Session Co-Organizer
6-4	Ronald Warzoha	United States Naval Academy	Session Organizer
6-4	Brian Foley	Pennsylvania State University	Session Co-Organizer
6-5	Douglas DeVoto	National Renewable Energy Laboratory	Session Organizer
6-5	Christina Dimarino	Virginia Tech	Session Co-Organizer
6-6	Fang Luo	University of Arkansas	Session Organizer
6-6	Pedro Quintero	University of Puerto Rico Mayaguez	Session Co-Organizer
6-7	Ruander Cardenas	Intel Corporation	Session Organizer
6-7	Franklin Robinson	NASA Goddard Space Flight Center	Session Co-Organizer
6-8	Hyoungsoon Lee	Chung-Ang University	Session Organizer
6-8	Bladimir Ramos Alvarado	Pennsylvania State University	Session Co-Organizer
6-9	Michael Fish	U.S. Army Research Laboratory	Session Organizer

SESSION #	SESSION ORGANIZER NAME	SESSION ORGANIZER COMPANY	SESSION ORGANIZER ROLE
6-9	Jorge Padilla	Google LLC	Session Co-Organizer
6-10	Xuhui Feng	National Renewable Energy Laboratory	Session Organizer
6-10	Dinesh P.R. Thanu	Intel Corporation	Session Co-Organizer
6-11	Todd Bandhauer	Colorado State University	Session Organizer
6-11	David Huitink	University of Arkansas	Session Co-Organizer
6-12	Nicholas Niedbalski	U.S. Air Force	Session Organizer
6-12	Kristen Hines	Johns Hopkins University	Session Co-Organizer
6-13	Ramchandra Kotecha	National Renewable Energy Laboratory	Session Organizer
6-13	Sangbeom Cho	Qualcomm	Session Co-Organizer
6-14	Douglas Hopkins	North Carolina State University	Session Organizer
6-14	Stephen Lynch	Penn State University	Session Co-Organizer
6-15	Paul Paret	National Renewable Energy Laboratory	Session Organizer
6-15	Patrick McCluskey	University of Maryland	Session Co-Organizer
7-1	Amy Marconnet	Purdue University	Session Organizer
7-1	June Stanley	Sandia National Laboratories	Session Co-Organizer
7-2	Menglong Hao	University of California, Berkeley	Session Organizer
7-2	Sean Lubner	Lawrence Berkeley National Laboratory	Session Co-Organizer
7-3	Marc Dunham	ЗМ	Session Organizer
7-3	Kyle Gluesenkamp	Oak Ridge National Laboratory	Session Co-Organizer
7-4	Michael Benedict	PARC	Session Organizer
7-4	Aritra Sur	United Technologies Research Center	Session Co-Organizer
7-6	Laura Spinella	National Renewable Energy Laboratory	Session Organizer
7-6	Kazuaki Yazawa	Purdue University	Session Co-Organizer
7-7	Ayyoub Momen	Oak Ridge National Laboratory	Session Organizer
7-7	Aritra Sur	United Technologies Research Center	Session Co-Organizer
7-8	Menglong Hao	University of California, Berkeley	Session Organizer
7-8	Sean Lubner	Lawrence Berkeley National Laboratory	Session Co-Organizer
7-9	Aritra Sur	United Technologies Research Center	Session Organizer
7-9	Ayyoub Momen	Oak Ridge National Laboratory	Session Co-Organizer
7-10	Xiangyang Zhou	University of Miami	Session Organizer
7-10	Chuanbo Yang	National Renewable Energy Laboratory	Session Co-Organizer
8-1	Ercan Dede	Toyota Research Institute of North America	Session Organizer
8-1	Hyun Seop Lee	University of Maryland	Session Co-Organizer
8-2	Azeem Sarwar	General Motors	Session Organizer
8-2	Przemyslaw Jakub Gromala	Robert Bosch GmbH	Session Co-Organizer
8-4	Xuhui Feng	National Renewable Energy Laboratory	Session Organizer
8-4	Klas Brinkfeldt	RISE IVF AB	Session Co-Organizer
8-5	Adam Boros	Robert Bosch Kft	Session Organizer
8-5	Anna Prakash	Intel Corporation	Session Co-Organizer
8-6	Przemyslaw Jakub Gromala	Robert Bosch GmbH	Session Organizer
8-6	Bongtae Han	University of Maryland	Session Co-Organizer

SESSION #	SESSION ORGANIZER NAME	SESSION ORGANIZER COMPANY	SESSION ORGANIZER ROLE
8-7	Fabian Welschinger	Robert Bosch Gmbh	Session Organizer
8-7	David Huitink	University of Arkansas	Session Co-Organizer
9-1	Kyle Gluesenkamp	Oak Ridge National Laboratory	Session Organizer
9-1	Yoonjin Won	University of California, Irvine	Session Co-Organizer

A New York State Center of Excellence BINGHAMTON UNIVERSITY

Partnering with industry for **economic impact**

Partnering with academia for **research impact**

Industry-driven R&D focused on:

- Electronics Packaging
- Energy-Smart Electronic Systems
- Flexible Electronics
- Energy Harvesting and Storage

Come partner with us!

epsymposium.com

September 18-19, 2018 Binghamton University Binghamton, NY

binghamton.edu/s3ip

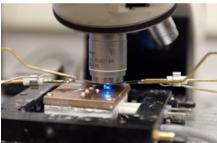
Advertisements

50 YEARS OF AMAZING AND WE'RE JUST GETTING STARTED

47 million gallons of

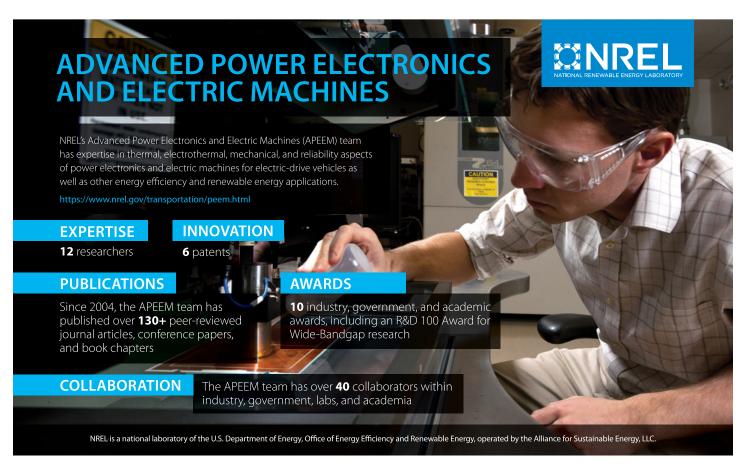
water restored to the community each year

CUMMUNITY 275,000 volunteer hours at California nonprofits each year


intel

www.intel.com/California

Copyright © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.



www.heat.gatech.edu

Advertisements

Design | Production | Testing | Heat pipes | Heat Sinks | Cold Plates

128

We Can Take The Heat

UNIVERSITY OF MARYLAND / FEARLESS IDEAS

DESIGN REVIEW FAILURE ANALYSIS VIRTUAL QUALIFICATION COUNTERFEIT PART DETECTION LITHIUM-ION BATTERY TESTING PROGNOSTICS AND HEALTH MANAGEMENT AND MORE

CALCE CENTER FOR ADVANCED LIFE CYCLE ENGINEERING

Performance you can rely on.

Infineum transmission e-fluids. The future is electric.

Electric vehicles depend on revolutionary transmission e-fluids. Right now, Infineum e-fluid technology is in more than 70% of the world's electrified vehicles. If you're part of the electric future, make Infineum part of your journey.

Visit InfineumInsight.com/Transmissions

'INFINEUM', the interlocking Ripple Device, the corporate mark comprising INFINEUM and the interlocking Ripple Device and 润英联, are trademarks of Infineum International Limited. © 2019 Infineum International Limited. All rights reserved. 2019139.

Innovative IC, SiP, and MEMS packaging portfolio to serve dynamic mobility, IoT, high performance computing, and automotive markets.

PoP • Flip Chip • SiP • WLP • Fanout • FOCoS 2.5D • TSV • Flex • AoP • AiP • Shielding Wire Bond • Embedded • Substrate • Co-Design

Package it.

🕑 @asegroup_global

🔇 aseglobal.com

Advertisements

Washington University in St. Louis JAMES MCKELVEY SCHOOL OF ENGINEERING

Study Materials Science & Engineering at Washington University:

The Institute of Materials Science and Engineering (IMSE) and the McKelvey School of Engineering bring together more than 50 faculty and student researchers from engineering, the physical and natural sciences, and the medical school to discover new materials, understand how they behave, and envision innovative applications. IMSE supports extensive shared user facilities for micro/nanofabrication and materials characterization, and is home to an interdisciplinary, cross-school PhD program.

McKelvey Engineering just opened a new academic building, Jubel Hall, that is home to the Department of Mechanical Engineering & Materials Science (MEMS). Jubel Hall features a state-of-the-art makerspace in addition to laboratories that foster collaboration. Research in MEMS focuses on fundamental mechanical engineering and materials science at the interfaces between disciplines such as biology, nantotechnology, aerospace engineering and energy.

IMSE Research Areas:

- » Nanomaterials and Glasses
- » Thin Film and 2D Materials
- » Biomedical, Bioderived, and Bioinspired Materials and Applications
- Materials for Energy Generation, Harvesting and Storage
- Materials for Environmental Technologies and Sustainability
- Materials for Sensors and Imaging

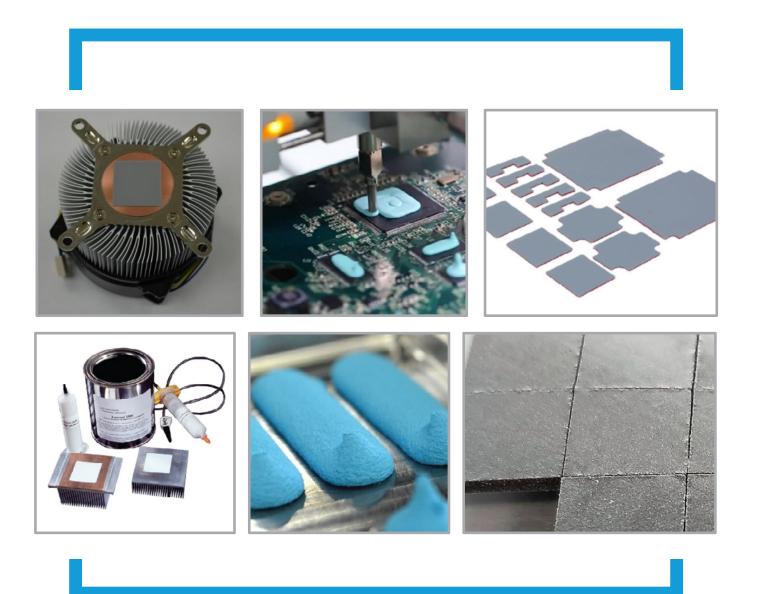
engineering.wustl.edu · imse.wustl.edu

Word-class faculty experts in Power and Energy Research spanning Engineering and Science Disciplines, jointly working to deliver next generation EVs, renewable energy systems, grid infrastructure and cybersecurity.

- Simon Ang, power packaging, power converters
- Juan Balda, power systems and power electronics
- Zhong Chen, devices and fabrication
- Jia Di, asynchronous digital IC design, cybersecurity, hardware security
- i Jeff Dix, analog IC design, artificial neural networks
- i David Huitink, thermal management, packaging, and reliability
- I Qinghua Li, cybersecurity
- **Fang Luo**, power conversion and packaging
- Alan Mantooth, semiconductor device modeling, CAD, packaging, power & analog IC design, and cybersecurity
- Roy McCann, motor drives, storage, and controls
- + Yarui Peng, design automation tools
- i Greg Salamo, materials and devices
- i Morgan Ware, wide bandgap devices, capacitors
- Yue Zhao, motors, machines and drives

FIND YOUR PLACE AT CANADA'S #1-RANKED ENGINEERING SCHOOL

U of T Engineering is home to a global community of innovators and makers. We are preparing the engineers of tomorrow to unlock the future's boundless potential.


- » All major international rankings place U of T as one of the top public universities in the world
- » U of T graduates consistently rank in the top 12 for global employability
- » Campus is located in the heart of Toronto, a diverse city known for its booming tech scene and vibrant culture

gradstudies.engineering.utoronto.ca

PERFORMANCE MATERIALS THAT PROTECT ELECTRONICS

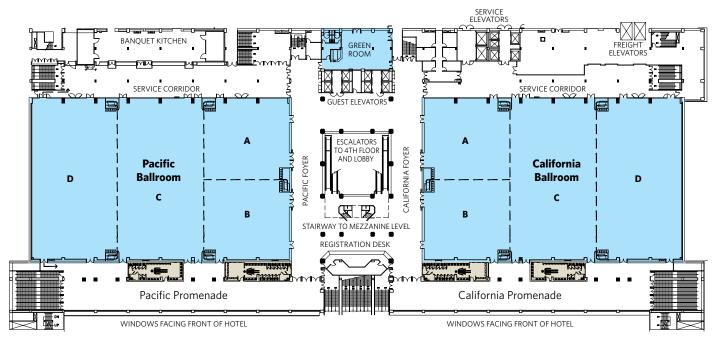
WWW.LAIRD.COM

InterPACK, EPPD, ASME Leadership and Personnel

2019 INTERPACK CONFERENCE LEADERSHIP

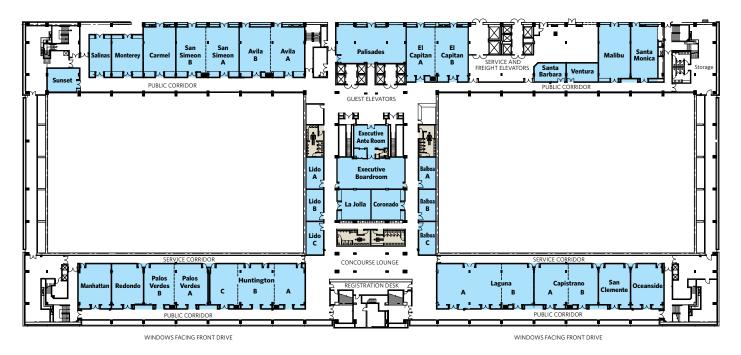
General Chair	Sreekant Narumanchi, National Renewable Energy Laboratory	TEAM (SLT)		
		SLT Leader	Gloria Wiens, University of Florida	
General Vice-Chairs	Samuel Graham, Georgia Institute of Technology	Sector Council Representative	Stephen Reese, Idaho National Laboratory	
	Xiaobing Luo, <i>Huazhong</i> University of Science and Technology	Member-at-Large	Ying-Feng Pang, Intel	
Technical Program Chair	Ankur Jain, University of Texas, Arlington	Member	Abhijit Dasgupta, University of Maryland	
	5	Member	Larry Dickinson, 3F LLC	
Technical Program Co-Chairs	Jin Yang, Intel Corporation	Member	Dean Bartles, NCDMM	
	Kazuyoshi Fushinobu, Tokyo Institute of Technology	Member	Diann Brei, University of Michigan	
	Tomoyuki Hatakeyama, Toyama Prefectural University	Member	Pierre Larochelle, South Dakota School of Mines & Technology	
Communications & Website Chair	Douglas DeVoto, National Renewable Energy Laboratory	Member	Nathan Taylor, Keurig Dr. Pepper	
Awards Coordination Chair	Yoonjin Won, University of California, Irvine	Ad-hoc Position - Special Project Lead	K. (Subbu) Subramanian, STIMS Institute, Inc.	
Sponsorship & Advisory Committee	Mehdi Asheghi, Stanford University	ASME Business Development Director	Raj Manchanda	
		ASME Senior Manager, Segment	Barbara Zlatnik	
	Ravi Mahajan, Intel Corporation	Operations		
	Yogendra Joshi, Georgia Institute of Technology	ASME Manager Conferences & Events	Mary Jakubowski, CMP	
	Kaustubh Nagarkar, <i>General</i> Electric	2019–2020 ASME OFFICERS		
		President	Richard Laudenat	
ELECTRONIC & PHOTONIC PACKAG	ING DIVISION LEADERSHIP	Past President	Said Jahanmir	

President-Elect

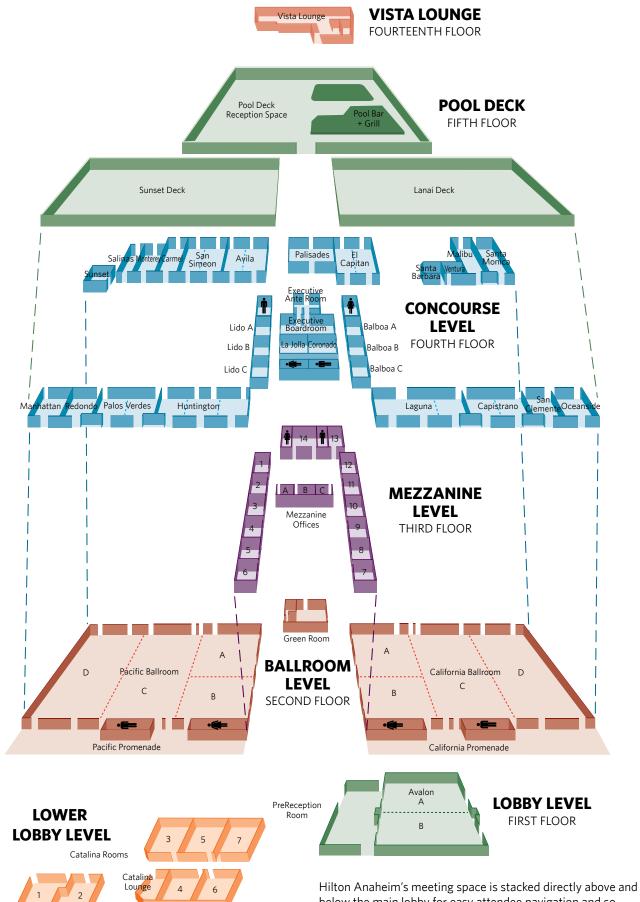

Executive Director

Chair	Milena Vujosevic, TDK Invensense
Vice-Chair	Amy Fleischer, Cal Poly
Past-Chair	Mehdi Asheghi, Stanford University
Treasurer	Kaushik Mysore, AMD
Secretary	S.B. Park, SUNY Binghamton

DESIGN, MATERIALS AND MANUFACTURING SEGMENT LEADERSHIP TEAM (SLT)


Bryan Erler

Thomas Costabile



BALLROOM LEVEL SECOND FLOOR

CONCOURSE LEVEL

Floor Plans

Hilton Anaheim's meeting space is stacked directly above and below the main lobby for easy attendee navigation and so planners can create separation between their sessions.

ASME® 2019 InterPACK® International Technical Conference on

Packaging and Integration of Electronic and Photonic Microsystems Conference

See you in 2020

