Table of Contents

Welcome from the Organizers Page 3
Program at a Glance Page 4
Keynote Speakers Page 8
Author’s Index Page 9
Sponsor Listings Page 17
Dear IOWTC participants, authors and committee members,

We are pleased to welcome you to the Third International Offshore Wind Technical Conference (https://event.asme.org/IOWTC), an online event on February 16-17, 2021. This conference replaces the in-person event that was planned for October 18 – 21, 2020 in Boston, USA. The conference follows on the successful past conferences held in San Francisco (2018) and in Malta (2019). We have 26 technical papers and an additional 6 technical presentations of very high-quality representing advances to the state-of-the-art in several topics relevant to the field of offshore wind energy. We are also especially honored to welcome our keynote speakers, Prof. Dr. Mario Garcia-Sanz, Program Director for Advanced Research Projects Agency, US Department of Energy, and Dr. Leif Delp, Head of Floating Offshore Wind Technology, Equinor ASA, Norway.

We would like to express our sincere appreciation to our Gold sponsors MARIN and Principle Power.

This conference would not have been made possible without our very loyal organizing committee, comprise of: Daniel Barcarolo, Michael Borg, Erik-Jan De Ridder, Konstantinos Gryllias, Gus Jeans, Jason Jonkman, Sam Kanner, Alex Koltsidopoulos-Papatzimos, Arjen Koop, Daniel Micalef, Amir R. Nejad, Senol Ozmutlu, Flavia Rezende, Amy Roberston, Kevin Tian, and Nathan Tom. They served as topic and session organizers, ensuring all the papers are peer-reviewed on time. This conference could not happen without this group. We are also very grateful for the volunteer support and all the reviewers.

We also acknowledge the great support from ASME staff Jamie Hart, Kim Williams and Stacey Cooper.

The presentations will be uploaded prior to the conference and you will have access to them as soon as you register. Please make sure you watch them prior to the actual session to maximize your experience. Only a quick summary of the presentations will be presented during the session, which will focus entirely on Q&A with the authors.

We hope you enjoy the presentations and the live interactions and look forward to seeing you virtually in February and meeting you in person at the Fourth IOWTC in 2022.

Sincerely,

Krish Thiagarajan Sharman (Conference Chair)
Dominique Roddier (Technical Program Chair)
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Session Description</th>
<th>Presenter</th>
</tr>
</thead>
</table>
| 8:00AM | Welcome | Keynote by Professor Mario Garcia-Sanz
"Unveiling ATLANTIS: Control Co-Design of Floating Offshore Wind" | |
| 8:45AM | Break | | |
| 9:00AM | Session Title | Session Description | Presenter |
| | IOWTC2021-3503 | A Reduced Order Mathematical Model for the Current-Induced Motion of a Floating Offshore Wind Turbine | Everton L. de Oliveira |
| | IOWTC2021-3536 | Modeling the Dynamics of Freely-Floating Offshore Wind Turbine Subjected to Waves With an Open-Source Overset Mesh Method | Romain Pinguet |
| | IOWTC2021-3501 | Numerical Research on the Interaction of Multidirectional Random Waves With a Large-Scale Offshore Wind Turbine Foundation | Xinran Ji |
| | IOWTC2021-3511 | Study of Motion Performance of a Floating System With Four Moonpools and Twin Vawts | TAN Lei |
| | IOWTC2021-3561 | Concept for a Wind-Yawing Shallow-Draft Floating Turbine | Jim Papadopoulos |
| 9:50AM | Break | | |
| 10:00AM | Session Title | Session: Aero-Hydro and Model tests
Presentations focusing on aero-hydro dynamics modeling and performance, including model testing. | |
| | IOWTC2021-3537 | Investigation of Nonlinear Difference-Frequency Wave Excitation on a Semisubmersible Offshore-Wind Platform With Bichromatic-Wave Cfd Simulations | Lu Wang |
| | IOWTC2021-3558 | Verification Study on Cfd Simulation of Semi-Submersible Floating Offshore Wind Turbine Under Regular Waves | Yu Wang |
| | IOWTC2021-3515 | A Cfd Study for Floating Offshore Wind Turbine Aerodynamics in Turbulent Inflow | Yang Zhou |
| | IOWTC2021-3508 | Experimental Validation of a Wave Elevation Observer on a Floating Wind Turbine Model | Di Carlo, Simone |
| | IOWTC2021-3542 * | The Focal Experimental Program | Robertson, Amy |
| 10:50AM | Break | | |

All Times Eastern Standard
11:00AM | 11:50AM | **Session: Mooring and Cable Systems**
| Presentations focusing on the mooring and cable systems of a FOWT |

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IOWTC2021-3553</td>
<td>Mooring Fatigue Verification of the Windcrete for a 15 Mw Wind Turbine</td>
<td>Trubat, Pau</td>
</tr>
<tr>
<td>IOWTC2021-3565</td>
<td>Implementation and Verification of Cable Bending Stiffness in Moordyn</td>
<td>Matthew Hall</td>
</tr>
<tr>
<td>IOWTC2021-3524</td>
<td>Prevention of Offshore Wind Power Cable Incidents by Employing Offshore Oil/gas Common Practices</td>
<td>David McLaurin</td>
</tr>
</tbody>
</table>

End of Day 1

All Times Eastern Standard
Wednesday, February 17, 2021

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Description</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00AM</td>
<td>Welcome</td>
<td>Welcome Keynote by Dr. Leif Delp "Executing large scale commercial floating offshore wind projects"</td>
<td></td>
</tr>
<tr>
<td>8:45AM</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00AM</td>
<td>Session Title</td>
<td>Session: Turbine design and modeling
Presentations focusing on the design and performance of wind Turbines</td>
<td></td>
</tr>
<tr>
<td>9:00AM</td>
<td>IOWTC2021-3527</td>
<td>Wind Turbine Anomaly Detection Based on Bi-Directional Long Short-Term Memory Neural Network</td>
<td>Gryllias, Konstantinos</td>
</tr>
<tr>
<td>9:00AM</td>
<td>IOWTC2021-3518</td>
<td>Numerical Design of a Floating Offshore Wind Turbine Large Scale Model for Control Purposes</td>
<td>Taruffi, Federico</td>
</tr>
<tr>
<td>9:00AM</td>
<td>IOWTC2021-3516</td>
<td>Simplified Aerodynamic Loading Model for Idling and Parked Conditions for Floating Wind Systems Design</td>
<td>Armando Alexandre</td>
</tr>
<tr>
<td>9:00AM</td>
<td>IOWTC2021-3533</td>
<td>Functional Requirements for the Weis Toolset to Enable Controls Co-Design of Floating Offshore Wind Turbines</td>
<td>Jason Jonkman</td>
</tr>
<tr>
<td>9:00AM</td>
<td>IOWTC2021-3522</td>
<td>Evaluation of Deep-Water Floating Wind Turbine to Power an Isolated Water Injection System</td>
<td>Salles, Mauricio</td>
</tr>
<tr>
<td>9:00AM</td>
<td>IOWTC2021-3567</td>
<td>Performance Analysis of Tacholess Rotation Speed Estimation Methods for Condition Monitoring of Gearboxes of Offshore Wind Farm</td>
<td>Peeters, Cédric</td>
</tr>
<tr>
<td>9:50AM</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00AM</td>
<td>Session Title</td>
<td>Session: Structural Design
Presentations focusing on the structural aspects of FOWTS</td>
<td></td>
</tr>
<tr>
<td>10:00AM</td>
<td>IOWTC2021-3532</td>
<td>A Multi-Dimensional Approach for Determination of Stress Concentration Factors in Offshore Jacket Structures</td>
<td>Kris Hectors</td>
</tr>
<tr>
<td>10:00AM</td>
<td>IOWTC2021-3552</td>
<td>A Comparison of Time Domain Seismic Analysis Methods for Offshore Wind Turbine Support Structures: Superelement Approach Versus Integrated Approach</td>
<td>William Collier</td>
</tr>
<tr>
<td>10:00AM</td>
<td>IOWTC2021-3554</td>
<td>Scour Effects on the Structural Integrity of Offshore Wind Turbine Monopiles</td>
<td>George E. Varelis</td>
</tr>
<tr>
<td>10:00AM</td>
<td>IOWTC2021-3531 *</td>
<td>Digifloat: Digifloat: Creating the 1st Digital Twin of a Fowt</td>
<td>Bruce Martins</td>
</tr>
<tr>
<td>10:50AM</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Session: Design basis requirements

Presentations focusing on the inputs to the design of FOWTS

<table>
<thead>
<tr>
<th>Presentations</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigation of the Capacity Factor of Weather-Routed Energy Ships Deployed in the Near-Shore</td>
<td>Roshamida Binti Abd Jamil</td>
</tr>
<tr>
<td>Noaa-Cfsr Offshore Wind Validation</td>
<td>Claudia Pizzigalli</td>
</tr>
<tr>
<td>Geo-Hazards to Floating Offshore Wind Farms in the U.S. Pacific Waters</td>
<td>Dr. Tayebeh Tajalli Bakhsh</td>
</tr>
<tr>
<td>Large-Scale Model Investigation for Monopile Decommissioning of Offshore Wind Turbines – Overpressure and Vibratory Pile Extraction</td>
<td>Nils Hinzmann</td>
</tr>
<tr>
<td>Latest Updates to the Abs Floating Offshore Wind Turbine Guide</td>
<td>Yu, Qing</td>
</tr>
</tbody>
</table>

Note Presentation only, no manuscript in proceedings

End of Day 2

All Times Eastern Standard
Principle Power
Globalizing floating wind

Floating wind: ready for deployment

Deep water offshore wind holds a great promise for North America as it will create local jobs, revitalize coastal communities and enhance energy independence, all while accelerating the energy transition.

Principle Power, the market leader in floating wind, is headquartered in California and uniquely positioned to help its clients unlock deep water sites with its WindFloat® technology solution and design services.

www.principlepowerinc.com
Keynote Speakers

Professor Mario Garcia-Sanz

Keynote Topic: "Unveiling ATLANTIS: Control Co-Design of Floating Offshore Wind"

Biography: Prof. Mario Garcia-Sanz is currently a Program Director at ARPA-E, with the U.S. Department of Energy. He is an expert on control systems, and a veteran of the European wind energy industry. He has straddled academia and industry, having held appointments at the University of Manchester, Oxford University, NASA Jet Propulsion Laboratory, the European Space Agency, the Public University of Navarra, CEIT research center and Case Western. He worked as a Senior Advisor for many European wind energy companies, electrical utilities, and corporations, and holds over 20 patents, published over 250 research papers, and written three books. He has been the principal investigator of over 50 industry research projects. At ARPA-E he proposed and developed the ATLANTIS Program on floating offshore wind, the SHARKS Program on tidal and riverine energy, and is leading the efforts on grid technology with the NODES Program and microgrid research.

Leif Delp

Keynote Topic: "Executing large scale commercial floating offshore wind projects"

Biography: Leif Delp is head of Floating Offshore Wind Technology at Equinor.
Our future is at sea. We believe that the oceans provide an opportunity to resolve the societal challenges of our time. This includes zero emission transport, renewable energy, sustainable food production and space to work and live. The key to achieve this is maritime knowledge and innovation.

BETTER SHIPS, BLUE OCEANS

With ‘Better Ships, Blue Oceans’ we set course to make ships cleaner, smarter and safer and to contribute to a sustainable use of the seas.

www.marin.nl
1-1 3rd International Offshore Wind Technical Conference

IOWTC2021-3511
Study of Motion Performance of a Floating System With Four Moonpools and a VAWT
Lei Tan — Nihon University
Satsuya Moritsu — Nihon University
Tomoki Ikoma — Nihon University
Yasuhiro Aida — Nihon University
Koichi Masuda — Nihon University

IOWTC2021-3522
Evaluation of Deep-Water Floating Wind Turbine to Power an Isolated Water Injection System
Khalid S. Khan — University of São Paulo
Isabelle V. M. dos Santos — University of São Paulo
Guilhemme B. dos Santos — University of São Paulo
Mauricio B. C. Salles — University of São Paulo
Renato M. Monaro — University of São Paulo

IOWTC2021-3545
Investigation of the Capacity Factor of Weather-Routed Energy Ships Deployed in the Near-Shore
Roshamida Abd Jamil — Ecole Centrale de Nantes
Jean-Christophe Gilloteaux — Ecole Centrale de Nantes
Philippe Lelong — MELTEMUS
Aurélien Babarit — Ecole Centrale de Nantes

1-2 Floating Concepts

IOWTC2021-3508
Experimental Validation of a Wave Elevation Observer on a Floating Wind Turbine Model
Simone Di Carlo — Politecnico di Milano
Alessandro Fontanella — Politecnico di Milano
Alan Facchinetti — Politecnico di Milano
Sara Muggiasca — Politecnico di Milano
Federico Taruffi — Politecnico di Milano
Marco Belloli — Politecnico di Milano

IOWTC2021-3561
Concept for a Wind-Yawing Shallow-Draft Floating Turbine
J. M. Papadopoulos — Northeastern University
C. Qiao — Northeastern University
A. T. Myers — Northeastern University
IOWT2021-3564
Potential Geo-Hazards to Floating Offshore Wind Farms in the US Pacific
 Tayebeh Tajalli Bakhsh — RPS Ocean Sciences
 Kent Simpson — RPS Energy
 Tony LaPiere — RPS Energy
 Mahmud Monim — RPS Ocean Sciences
 Jason Dahl — University of Rhode Island
 Malcolm Spaulding — University of Rhode Island
 Jill Rowe — RPS Ocean Sciences
 Jennifer Miller — Bureau of Ocean Energy Management
 Daniel O’Connell — Bureau of Ocean Energy Management

1-3 Mooring and Foundation Design

IOWT2021-3501
Numerical Research on the Interaction of Multidirectional Random Waves With a Large-Scale Offshore Wind Turbine Foundation
 Xinran Ji — Hainan University
 Daoru Wang — Hainan Academy of Ocean and Fisheries Sciences

IOWT2021-3553
Mooring Fatigue Verification of the WindCrete for a 15 MW Wind Turbine
 Pau Trubat — UPC-Barcelona-Tech
 Climent Molins — UPC-Barcelona-Tech
 Daniel Alarcon — UPC-Barcelona-Tech
 Valentin Arramounet — INNOSEA
 Mohammad Youssef Mahtouz — USTUTT

1-5 Aero-Hydro Modeling

IOWT2021-3503
A Reduced-Order Mathematical Model for the Current-Induced Motion of a Floating Offshore Wind Turbine
 Everton L. de Oliveira — University of Sao Paulo
 Celso P. Pesce — University of Sao Paulo
 Bruno Mendes — University of Sao Paulo
 Renato M. M. Orsino — University of Sao Paulo
 Guilherme R. Franzini — University of Sao Paulo

IOWT2021-3515
A CFD Study for Floating Offshore Wind Turbine Aerodynamics in Turbulent Wind Field
 Yang Zhou — University of Strathclyde
 Qing Xiao — University of Strathclyde
 Yuanchuan Liu — Ocean University of China
 Atilla Inciik — University of Strathclyde
 Christophe Peyrard — Universite Paris-Est
 Decheng Wan — Shanghai Jiao Tong University
 Sunwei Li — Tsinghua University
IOWTC2021-3518
Numerical Design of a Floating Offshore Wind Turbine Large Scale Model for Control Purposes

 Federico Taruffi — Politecnico di Milano
 Simone Di Carlo — Politecnico di Milano
 Sara Muggiasca — Politecnico di Milano
 Alessandro Fontanella — Politecnico di Milano

IOWTC2021-3533
Functional Requirements for the WEIS Toolset to Enable Controls Co-Design of Floating Offshore Wind Turbines

 Jason Jonkman — National Renewable Energy Laboratory
 Alan Wright — National Renewable Energy Laboratory
 Garrett Barter — National Renewable Energy Laboratory
 Matthew Hall — National Renewable Energy Laboratory
 James Allison — University of Illinois at Urbana-Champaign
 Daniel R. Herber — Colorado State University

IOWTC2021-3536
Modeling the Dynamics of Freely-Floating Offshore Wind Turbine Subjected to Waves With an Open-Source Overset Mesh Method

 Romain Pinguet — Aix Marseille University
 Sam Kanner — Principle Power Inc.
 Michel Benoit — Aix Marseille University
 Bernard Molin — Aix Marseille University

IOWTC2021-3537
Investigation of Nonlinear Difference-Frequency Wave Excitation on a Semisubmersible Offshore-Wind Platform With Bichromatic-Wave CFD Simulations

 Lu Wang — National Renewable Energy Laboratory
 Amy Robertson — National Renewable Energy Laboratory
 Jason Jonkman — National Renewable Energy Laboratory
 Yi-Hsiang Yu — National Renewable Energy Laboratory
 Arjen Koop — Maritime Research Institute Netherlands
 Adria Borràs Nadal — IFP Energies nouvelles
 Haoran Li — Norwegian University of Science and Technology
 Wei Shi — Dalian University of Technology
 Romain Pinguet — Principle Power, Inc.
 Yang Zhou — University of Strathclyde
 Qing Xiao — University of Strathclyde
 Rupesh Kumar — University of Ulsan
 Hamid Sarlak — Technical University of Denmark

IOWTC2021-3546
Integrated Modeling and Coupled Analysis of a New Hybrid Platform Combined With WEC Under Real Metocean Condition

 Swarnadip Dey — National Institute of Technology Durgapur
 Atul Krishna Banik — National Institute of Technology Durgapur
 Arghya Pramanik — National Institute of Technology Durgapur
 Sravya Anke — National Institute of Technology Durgapur
IWOTC2021-3558
Verification Study of CFD Simulation of Semi-Submersible Floating Offshore Wind Turbine Under Regular Waves

Yu Wang — Texas A&M University
Hann-Ching Chen — Texas A&M University
Guilherme Vaz — WavEC-Offshore Renewables
Simon Mewes — University of Duisburg-Essen

IWOTC2021-3565
Implementation and Verification of Cable Bending Stiffness in MoorDyn

Matthew Hall — National Renewable Energy Laboratory
Senu Srinivas — National Renewable Energy Laboratory
Yi-Hsiang Yu — National Renewable Energy Laboratory

1-6 Structural Analysis

IWOTC2021-3532
A Multidimensional FEA Approach for Determination of Hot Spot Stresses in Offshore Jacket Structures

Kris Hectors — SIM vzw
Hasan Saeed — Ghent University
Wim De Waele — Ghent University

IWOTC2021-3552
A Comparison of Time Domain Seismic Analysis Methods for Offshore Wind Turbine Structures: Superelement Approach Versus Integrated Approach

William Collier — DNV GL
Laurens Alblas — DNV GL
Jiang Hai Wu — DNV GL

IWOTC2021-3554
Scour Effects on the Structural Integrity of Offshore Wind Turbine Monopiles

George E. Varelis — Intecsea
Jun Ai — Intecsea
Prasad Kane — Intecsea
Hossam Ragheb — iMecha
Elie Dib — Intecsea

1-7 Metocean

IWOTC2021-3547
NOAA-CFSR Offshore Wind Validation

Claudia Pizzigelli — Saipem Spa
Giancarlo Giovanetti — Saipem Spa
Lisa Pedinelli — Università delle Marche
Roberto Padilla-Hernandez — IMSG-NOAA/NCEP/EMC
1-10 Offshore Wind Turbine Drivetrains

IOWTC2021-3527
An Improved 2DCNN With Focal Loss Function for Blade Icing Detection of Wind Turbines Under Imbalanced SCADA Data
 Dandan Peng — KU Leuven
 Chenyu Liu — KU Leuven
 Wim Desmet — KU Leuven
 Konstantinos Gryllias — KU Leuven

IOWTC2021-3567
Performance Analysis of Tacholess Rotation Speed Estimation Methods for Condition Monitoring of Gearboxes of Offshore Wind Farm
 Cédric Peeters — Vrije Universiteit Brussel
 Jérôme Antoni — INSA-Lyon
 Quentin Leclère — INSA-Lyon
 Jan Helsen — Vrije Universiteit Brussel
Project Development Track
(TRK-2)

2-2 Design and Operational Challenges

IOWTC2021-3516
Simplified Aerodynamic Loading Model for Non-Production Conditions for Floating Wind Systems Design
 Armando Alexandre — Naval Energies
 Raffaele Antonutti — Naval Energies
 Theo Gentils — Naval Energies
 Laurent Mutrley — Naval Energies
 Pierre Weyne — Naval Energies

IOWTC2021-3524
Prevention of Offshore Wind Power Cable Incidents by Employing Offshore Oil/Gas Common Practices
 David McLaurin — Intecsea (Worley)
 Alan Aston — Intecsea (Worley)
 John Brand — Intecsea (Worley)

2-3 REFOS

IOWTC2021-3539
Large-Scale Model Investigation for Monopile Decommissioning of Offshore Wind Turbines: Overpressure and Vibratory Pile
 Nils Hinzmann — Technische Universität Braunschweig
 Patrick Lehn — Technische Universität Braunschweig
 Jörg Gattermann — Technische Universität Braunschweig
Thank you to our Sponsors

American Bureau of Shipping - ABS, a leading provider of classification and technical advisory services to the marine and offshore industries, is committed to setting standards for safety and excellence in design, construction and operation. Focused on safe and practical application of advanced technologies and digital solutions, ABS works with industry and clients to develop cost-effective compliance, optimized performance and operational efficiency for marine and offshore assets.

From its world headquarters in Houston, ABS delivers survey and engineering services and solutions to clients through a network of local representatives working from more than 200 offices in 70 countries.

Global Maritime is a marine, offshore and engineering consultancy that specializes in marine warranty, dynamic positioning and engineering services. Known for innovation, practical experience, operational excellence, & safety, Global Maritime has a proven track record in delivering to many of the world’s most successful marine and offshore projects. Our outstanding teams, our practical knowledge and our business-oriented focus ensure a solution fully aligned with the business challenges and pressures our customers face. Global Maritime’s experienced staff includes civil and structural engineers, naval architects, mechanical and marine engineers, master mariners, crane inspectors and process and risk analysts.

The sea, a challenge to man and machine. As an independent research facility, MARIN conducts research for the maritime industry and for governments. We help to find innovative solutions from design through to operation and serve to bridge the gap between academic research and market demand. Our aim: the development of cleaner, safer and smarter ships and sustainable use of the sea. In this we work together with an extensive innovation and research network of customers and partners, using the latest calculation and test facilities, full-scale measurement and simulators. MARIN (Maritime Research Institute Netherlands) is based in Wageningen, with 370 staff working daily in advanced hydrodynamics and nautical expertise. MARIN was founded in 1932. MARIN, Better Ships, Blue Oceans

Principle Power is a global energy technology and services company. The Company’s proven and in-demand WindFloat® floating technology is unlocking offshore wind potential worldwide by enabling projects to harvest the best wind resource, irrespective of water depth or seabed condition. Principle Power acts as a trusted partner to developers, independent power producers, utilities and EPCs, supporting its customers throughout the entire lifecycle of their projects. With over 100 MW under construction and advanced development in Portugal, Scotland, and France, and a multi-GW commercial pipeline globally, Principle Power is the market leader in floating offshore wind technology.
Thank you for attending IOWTC 2021!