Program

Joint Rail Conference
Smart Technologies for Safer Railroads

CONFFEREnCE
May 13-15, 2024

University of South Carolina,
Columbia, SC

https://event.asme.org/Joint-Rail-Conference
Welcome Message From The Chairs

On behalf of the organizing committee, we are honored and delighted to welcome you to the Joint Rail Conference 2024. This year the conference comes back to the “famously hot” Columbia, the capital city of South Carolina where “beautiful places and smiling faces” is more than our state’s motto, it is our way of life. We believe we have chosen a venue that guarantees a successful technical conference amid the culture and scenery of a thriving metropolis with a rich history that has emerged as a destination for meetings, conferences, and conventions in the south. Columbia is home to the University of South Carolina (USC), who is hosting the event in the Swearingen Engineering Center. The department of Civil and Environmental Engineering at USC and the Advanced Railway Technology Group (ARTGroup) is home to one of the newer comprehensive programs in Railroad Engineering in the country. With activities in research, education, and technology transfer related to railways, the Railway Engineering at USC has been contributing to workforce development and the advancement of knowledge, preparing, and thus, the new generation of industry leaders.

The theme of the conference is “Smart Technologies for Safer Railroads” and aligns with the strategic goals of the Federal Railroad Administration, the U.S. Department of Transportation, and the industry in general. This is a truly multidisciplinary conference that attracts international participants and is co-sponsored by major technical organizations, the University Transportation Center for Railway Safety (UTCRS), and the University of South Carolina. Our technical program is rich and varied with two keynote speeches and nearly 100 technical papers, lecetern presentations, and student poster presentations split among three parallel sessions each day covering all aspects of railroad. We are pleased to have Michael Cahill, President Rolling Stock Siemens Mobility, and Matthew G. Dick, P.E., Chief of Strategy and Development, ENSCO, Inc., as our keynote speakers discussing topics on the Technology Transformation of the Rail Industry. We are also pleased to welcome Joey Rhine, NTSB; Cameron Stuart, FRA; Dr. Brent Wilson, Hum Industrial Technology; and Dr. Alan Calegari, MERMEC Inc. to the panel of industry executives and federal agency representatives that will stimulate the discussion on engaging University Faculty, research, and education to meet the Technology Transfer and Workforce Development needs of the railroad industry. The technical tour will provide technology demonstrations on the track of the historic SC Railroad Museum, as well as other opportunities that will give participants a platform for informal networking, to exchange ideas, and meet old and new friends.

As the JRC 2024 conference chairs, we know that the success of the conference depends on the delegates and ultimately on the many people who have worked diligently behind the scenes in planning and organizing both the technical program and supporting social arrangements. To all, we extend our sincere appreciation.

All of us at the JRC organizing committee, the University of South Carolina, the Advanced Railway Technology Group, and the local organizing committee are looking forward to welcoming you to Columbia and wish you a superb JRC 2024 conference experience and a memorable stay.
Contents

WELCOME MESSAGE ... 2
GENERAL INFORMATION .. 4
SCHEDULE AT-A-GLANCE ... 6
SOUTH CAROLINA RAIL MUSEUM/MERMEC TECHNICAL TOUR 8
PLENARY & KEYNOTES .. 9
CONFERENCE ORGANIZERS ... 11
STUDENT POSTERS ... 12
AUTHOR INDEX ... 18
2024 CO-OPERATING SOCIETY SPONSORS 21
JRC 2024 EXECUTIVE COMMITTEE ... 23
JRC 2024 TRACK CHAIRS ... 24
SPONSORS ... 25
SPONSOR ADS .. 30
THANK YOU ... 35
UNIVERSITY OF SOUTH CAROLINA SITE MAPS 36
ON SITE REGISTRATION AT THE UNIVERSITY OF SOUTH CAROLINA

HOURS:
Sunday, May 12
03:00 PM - 06:00 PM

Monday, May 13
12:30 PM - 04:30 PM

Tuesday, May 14
07:00 AM - 05:00 PM

Wednesday, May 15
07:00 AM - 05:00 PM

The following may register at the discounted Member rate(s) – Please contact Mary Jakubowski at jakubowskim@asme.org or onsite at the registration desk, if you are NOT a current ASME Member.

- ASME Members
- Authors, Session Chairs, Session Co-Chairs, Speakers
- ASME JRC Committee Members

Cooperating Societies include: APTA/IEEE/ASCE/AREMA

UNIVERSITY INTERNET
Network Name: USCGuest

After launching a browser, the WiFi registration page appears.

Alternatively:
Users can access the registration page directly by clicking here: https://wifi.sc.edu/guest/USCGuest_Cisco.php?_browser=1

AMERICAN SOCIETY OF MECHANICAL ENGINEERS INTERNATIONAL

ASME MISSION STATEMENT
ASME’s mission is to advance engineering for the benefit of humanity.

ASME VISION STATEMENT
ASME’s vision is to be the premier resource for the engineering community globally.

TECHNICAL CONFERENCE:

- Access to all Technical Sessions
- PDF of Final Program
- Program App
- Admission to the following networking events:
 - Session-Break Refreshments
 - Keynotes and Lunches
 - Reception and Awards Banquet
 - Opportunity to attend Technical Facility Tour

One-Day Includes:

- PDF of the Program
- Program App
- Meals on selected day
- Session-break refreshments on selected day

REGISTRATION REQUIREMENT:
Every published paper, presentation, and panel presentation must identify a designated presenter. Every presenter must register and pay the applicable conference fees. If not, the paper will not be included for publication in the proceedings and accompanying presentation information will be removed from the conference program.

CANCELLATIONS:
All cancellation requests must be made in writing and emailed. Cancellations made through April 12, 2024, will receive a full refund, less a $100 administration fee. Refunds will be made within four weeks of the end of the conference. Refunds are not available beginning April 13, 2024. “No shows” are not refundable and are liable for the full registration fee.

ASME TRAVEL POLICY:
ASME is not responsible for the purchase of non-refundable airline tickets, or the cancellation/change fees associated with canceling a flight. ASME retains the right to cancel a course/conference up until 3 weeks of the scheduled presentation date.

ASME PRESENTER ATTENDANCE POLICY:
Paper information should not be used for citation purposes. According to ASME’s presenter attendance policy, if a paper is not presented at the conference, the paper will not be published in the official Archival Proceedings, which are registered with the Library of Congress, and are abstracted and indexed. The paper also will not be published in the ASME Digital Library and may not be cited as a published paper.
MEMBERSHIP:
All new registrants to the conference will receive a 4-month trial membership. For everyone else, it is easy to apply, and the benefits include the fellowship and recognition from being associated with one of the largest engineering societies in the world. ASME members and student members, and members from select countries can receive a discount to the conference registration.

You can apply for ASME membership by registering online. Alternatively, you can call: 1-800-THE-ASME (800-843-2763) or outside North America 973-882-1167 and ASME will mail you an application, or you can e-mail to request an application.

For questions about the conference, hotel, and registration please contact:

Mary Jakubowski, CMP
Manager, Events Management
Tel: 212-591-7637
Email: jakubowskim@asme.org

“No shows” are not refundable and are liable for the full registration fee.

Please note: First time non-members who pay the full conference rate will be eligible for a 4-month trial membership in ASME. You can apply online by going to https://www.asme.org/about-asme/professional-membership.

PROFESSIONAL DEVELOPMENT HOURS
RECORD FORMS

Participation record forms will be provided upon request to conference attendees who need to track their number of professional development hours (PDHs). Forms are available at the conference registration desk. Conferees should check the rules of their appropriate State licensing body to see if participation in this conference will qualify for credit to maintain a P.E. license or other professional certification.

TAX DEDUCTIBILITY

Expenses of attending professional meetings have been held to be tax deductible as ordinary business expenses for U.S. citizens. Because of changes in the tax code, the current level of deduction is subject to change.

CONFERENCE EVENTS

All attendees are encouraged to meet and discuss ideas with industry peers at the Conference Keynote, Plenary, Panel, and Awards Banquet, which features guest speakers on Tuesday and Wednesday. See schedule at a glance starting on page 6.

TECHNICAL TOUR

South Carolina Rail Museum / MERMEC Demonstration Technical Tour

Date: Monday, May 13, 2024
Time: 12:30PM–5:15PM*
Cost: $35.00 – Can be purchased online through the registration portal.
Maximum Attendees: 30

*Please meet at the registration desk in the Lobby of Swearingen Engineering Center (SWGN Lobby and Atrium) to board the bus by 12:30PM for a prompt departure. We will be back at the University at approximately 5:15PM. Transportation will be provided to/from the University.

The tour to the SC Railroad Museum will give participants the opportunity to ride a vintage train along the line operated and maintained by the museum. The excursion includes a stop at a test site where participants will have the chance to engage in hand-on demonstrations of track inspection technologies by MERMEC Inc. engineers. The tour will conclude with a visit to the historic SC Railroad Museum.

The ASME Rail Transportation Division is entirely composed of volunteers from the railroad industry. If you are interested in participating, please contact Dimitris Rizos if you have any questions.

RECEPTION, AWARDS DINNER, AND KEYNOTE

KEYNOTE: MICHAEL CAHILL “THE ZONE” WILLIAMS-BRICE STADIUM
TUESDAY, MAY 14, 2024 6:00PM–9:00PM

Please join us for a very special evening including a one-hour reception, followed by a plated dinner, our Award Ceremony, and our special Keynote, Michael Cahill, President, Rolling Stock at Siemens Mobility, North America. Shuttles will be available starting at 5:30PM until 9:30PM to/from the University to the Stadium. Please meet at the University lobby by 5:30PM for a 5:45PM departure. The Reception and Dinner is from 6:00PM-9:00PM. Complimentary Self-Parking is also available.

CONFERENCE MEALS

Breakfast, Lunch and Coffee Breaks will be served on Tuesday, May 14 and Wednesday, May 15 in the SWGN Lobby and Atrium. See schedule on page 7 and page 8 for times.

SPEAKER READY ROOM B102

MONDAY, MAY 13, 2024 3:00PM–6:00PM
TUESDAY, MAY 14, 2024 7:00AM–5:00PM
WEDNESDAY, MAY 15, 2024 7:00AM–5:00PM

EXHIBITORS

TUESDAY, MAY 14, 2024 SWGN LOBBY AND ATRIUM 10:00AM–5:00PM
WEDNESDAY, MAY 15, 2024 10:00AM–3:30PM

Please remember to stop by our exhibitor tables and say hello, have a conversation and ask some questions. Their contributions to the conference were a tremendous help to make it sustainable. Let’s show them our appreciation!

PUBLICATION SALES

All JRC Technical Papers are available electronically to registered attendees only. Attendees will receive electronic access via their e-mail on record. Additional copies of the JRC Proceedings can be ordered from:

ASME Order Department
150 Clove Road, 6th FL
Little Falls, NJ 07424-2139
DAY 1: MONDAY, MAY 13, 2024

<table>
<thead>
<tr>
<th>Start Time</th>
<th>12:30PM</th>
<th>12:30PM</th>
<th>3:00PM</th>
<th>5:30PM</th>
<th>6:30PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Time</td>
<td>4:30PM</td>
<td>5:15PM</td>
<td>6:00PM</td>
<td>6:30PM</td>
<td>8:30PM</td>
</tr>
</tbody>
</table>

- **Registration SWGN Lobby and Atrium**
- **SC Rail Museum / MERMEC Demos Technical Tour**
 Meet at Registration Desk in SWGN Lobby and Atrium at 12:15 PM
- **Speaker Ready Room B103**
- **JRC Organizing Committee Meeting**
 300 Main C217
- **JRC Organizing Committee Dinner**
 By Invitation Only
<table>
<thead>
<tr>
<th>Start Time</th>
<th>7:15AM</th>
<th>7:00AM</th>
<th>8:00AM</th>
<th>9:00AM</th>
<th>10:00AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Time</td>
<td>7:55AM</td>
<td>5:00PM</td>
<td>8:55AM</td>
<td>10:20AM</td>
<td>5:00PM</td>
</tr>
<tr>
<td>Location</td>
<td>300 Main B213</td>
<td>Breakfast SWGN Lobby and Atrium</td>
<td>Speaker Ready Room B103</td>
<td>Welcome and Kickoff Plenary Session Matthew Dick (ENSCO)</td>
<td>Track 1-1A B213</td>
</tr>
<tr>
<td>Location</td>
<td>300 Main B103</td>
<td></td>
<td></td>
<td></td>
<td>Track 2-1 B103</td>
</tr>
<tr>
<td>Location</td>
<td>300 Main B201</td>
<td></td>
<td></td>
<td></td>
<td>Exhibits Open SWGN Lobby and Atrium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start Time</th>
<th>10:30AM</th>
<th>11:00AM</th>
<th>12:30PM</th>
<th>1:30PM</th>
<th>3:00PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Time</td>
<td>10:55AM</td>
<td>12:20PM</td>
<td>1:20PM</td>
<td>2:50PM</td>
<td>3:25PM</td>
</tr>
<tr>
<td>Location</td>
<td>300 Main B213</td>
<td>Track 1-2 B213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>300 Main B103</td>
<td>Coffee Break SWGN Lobby and Atrium</td>
<td>Track 2-2 B103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>300 Main B201</td>
<td></td>
<td>Track 3-1 B201</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start Time</th>
<th>3:30PM</th>
<th>6:00PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Time</td>
<td>5:00PM</td>
<td>9:00PM</td>
</tr>
<tr>
<td>Location</td>
<td>300 Main B213</td>
<td>Student Poster Session Faculty Lounge</td>
</tr>
<tr>
<td>Location</td>
<td>300 Main B103</td>
<td>Reception, Awards Dinner, and Keynote Michael Cahill (Siemens) “The Zone” Williams-Brice Stadium</td>
</tr>
<tr>
<td>Location</td>
<td>300 Main B201</td>
<td></td>
</tr>
</tbody>
</table>
Schedule-at-a-Glance

DAY 3: WEDNESDAY, MAY 15, 2024

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:15AM</td>
<td>7:55AM</td>
</tr>
<tr>
<td>7:00AM</td>
<td>5:00PM</td>
</tr>
<tr>
<td>8:00AM</td>
<td>8:55AM</td>
</tr>
<tr>
<td>9:00AM</td>
<td>10:20AM</td>
</tr>
<tr>
<td>10:00AM</td>
<td>3:30PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track/B103</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 Main B213</td>
</tr>
<tr>
<td>300 Main B103</td>
</tr>
<tr>
<td>300 Main B201</td>
</tr>
</tbody>
</table>

Breakfast SWGN Lobby and Atrium

Speaker Ready Room B103

Technology Transfer and Workforce Development Panel SWGN 1C01 Amoco Hall

Track 1-3 B213

Exhibits Open SWGN Lobby and Atrium

Start Time: 10:30AM

<table>
<thead>
<tr>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:55AM</td>
</tr>
<tr>
<td>12:20PM</td>
</tr>
<tr>
<td>1:20PM</td>
</tr>
<tr>
<td>2:50PM</td>
</tr>
<tr>
<td>3:25PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track/B103</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 Main B213</td>
</tr>
<tr>
<td>300 Main B103</td>
</tr>
<tr>
<td>300 Main B201</td>
</tr>
</tbody>
</table>

Coffee Break SWGN Lobby and Atrium

Track 3-2 B103

ASME Rail Transportation Division Meeting C217

Track 6-4 B201

Coffee Break SWGN Lobby and Atrium

<table>
<thead>
<tr>
<th>Track/B103</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 Main B213</td>
</tr>
<tr>
<td>300 Main B103</td>
</tr>
<tr>
<td>300 Main B201</td>
</tr>
</tbody>
</table>

Start Time: 3:30PM

<table>
<thead>
<tr>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:50PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track/B103</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 Main B213</td>
</tr>
<tr>
<td>300 Main B103</td>
</tr>
<tr>
<td>300 Main B201</td>
</tr>
</tbody>
</table>
2024 JOINT RAIL CONFERENCE WELCOME ADDRESS & PLENARY

Tuesday, May 14, 2024 - 8:00 AM – 8:55 AM
SWGN 1C01 Amoco Hall

Matthew Dick, P.E.
Chief of Strategy and Development, ENSCO, Inc.

Matthew Dick is the Chief of Strategy and Development at ENSCO. Matthew held previous roles during his fourteen years at ENSCO including Rail Division Manager. In the current role, Matthew is leading ENSCO’s development of expanded service and solution offerings including at the Transportation Technology Center (TTC) and ENSCO’s subsidiary KLD Labs, Inc. Matthew Dick received his B.S.M.E and M.S.M.E. from the University of Nebraska–Lincoln and has his professional engineering license. He has been involved with railroad research and technology for over 20 years in the areas of vehicle/track interaction, derailments, and inspection technology. Matthew is Chair Emeritus of AREMA Committee Two “Track Measurement and Assessment Systems” and is a previous Chair of the ASME Rail Transportation Division.

This plenary speech will discuss the critical role that academic research has in the railway industry, including discussion of case studies, lessons learned, and insights to career growth in the rail industry. Additionally, this plenary speech will discuss the next generation Transportation Technology Center (TTC) located in Pueblo Colorado and its new role in supporting academic institutions in their pursuit of advancing research in the railway industry. The speech will include discussion of capabilities, case histories, and future vision of the partnership between the TTC and academic institutions. The speech will include time for Q&A to provide additional insights and perspectives.

2024 JOINT RAIL CONFERENCE AWARDS DINNER & KEYNOTE SPEAKER

Tuesday, May 14, 6:00 PM – 9:00 PM
SWGN 1C01 Amoco Hall

Michael Cahill
President, Rolling Stock, Siemens Mobility, North America

Michael Cahill is president of Siemens Mobility’s Rolling Stock business for North America. In this role, he manages the operational and commercial activities across the entire spectrum of rolling stock including commuter and regional passenger trains, light rail and streetcars, metros, locomotives, passenger coaches, and high-speed trainsets.

With more than 25 years of experience at Siemens, Cahill began his career as a commissioning engineer working in Germany, the United States, Italy, and South Korea. He has held several leading positions in project management for the Siemens Transportation Systems business and currently oversees the activity of Siemens Mobility’s North American Manufacturing Headquarters for Rolling Stock based in Sacramento, California. With over 2400 employees and in operation for more than 30 years, the plant designs and manufactures advanced rail equipment for customers across the U.S. and North America.

Cahill studied electrical engineering at the University College Dublin

Abstract:
Across the globe and right here in the United States, rail travel is undergoing a transformation. With exciting new technologies like hydrogen and battery power, new innovations in passenger comfort and exciting expansions in rail manufacturing, Siemens Mobility is transforming rail right here in the USA. Hear from Siemens Mobility’s North America President of Rolling Stock, Michael Cahill, as he discusses what’s next in American rail.
2024 JOINT RAIL CONFERENCE PANEL SESSION

Wednesday, May 15, 2024 - 8:00 AM – 8:55 AM
SWGN 1C01 Amoco Hall

TECHNOLOGY TRANSFER AND WORKFORCE DEVELOPMENT PANEL

Moderator:
Constantine Tarawneh, PhD
University Transportation Center for Railway Safety (UTCRS)
The University of Texas Rio Grande Valley (UTRGV)

Panelists:
Joey Rhine
National Transportation Safety Board

Joshua Marschke
Director Standards & Capital Planning, CSX

Brent Wilson
CTO, Hum Industrial Technology

Alan Calegari
Chairman of the Board, President, MERMEC, Inc.
From 2013 to 2022, 1671 derailments have been reported by the Federal Railroad Administration (FRA), 8.2% of which were due to journal bearing defects. The University Transportation Center for Railway Safety (UTCRS) designed an onboard monitoring system that tracks vibration waveforms over time to assess bearing health through three analysis levels. However, the speed of the bearing, a fundamental parameter for these analyses, is often acquired from Global Positioning System (GPS) data, which is typically not available at the sensor location. To this end, this research proposes to employ Machine Learning (ML) algorithms to extract the speed and other essential features from existing vibration data, eliminating the need for additional speed sensors. Specifically, the proposed method tries to extract the speed information from the signatures that are embedded in the Power Spectral Density (PSD) plot, which enables rapid real-time analysis of bearings while the train is in motion. The rapid extraction of data could be sent to a cloud accessible by train dispatchers and railcar owners for assessment of bearings and scheduling of replacements before defects reach a dangerous size. Eventually, the developed algorithm will reduce derailments and unplanned field replacements and afford rail stakeholders more cost-effective preventive maintenance.

Train derailments like the one in East Palestine, Ohio, on February 3, 2023, result in costly economic damages and devastating societal effects. In the East Palestine incident, Hot Bearing Detectors (HBDs) captured the increase in bearing temperature at three separate locations ahead of the derailment site; however, the third reading which exceeded the threshold was not obtained until the bearing had started to catastrophically fail. HBDs are reactive in nature since they rely on temperature to access bearing health. Studies have shown that bearings exhibit high operating temperatures near catastrophic failure, allotting little time to implement preventative measures. Vibration-based sensors have been proven to detect early stages of bearing defect development. Hence, wireless onboard sensors pose a solution to prevent derailments by continuously monitoring rolling stock and allowing preventative measures to be scheduled. This project aims to develop the next-generation of sensors through optimal filters, higher resolution analog-to-digital conversion, and precision synchronization of all sensors on the same car compared to their previous counterpart. Precise synchronization enables separation of vibrations originating in one bearing from vibrations arising in adjacent bearings, wheels, brakes, track, and couplers. This enables more accurate monitoring of bearing condition and identification of other problems on the railcar or track.

Wireless onboard health monitoring devices are a promising preventive technology that can be included in the surveillance of train rolling stock. These devices can detect the early stages of bearing and wheel defects. However, the nature of continuous monitoring requires an energy source sufficient to record and transmit data. Thermoelectric energy harvesting is an effective solution to power onboard wireless condition monitoring sensors during railroad operations. Thermoelectric Generators (TEGs) are considered to be environmentally safe, are static and simple structures, and require little maintenance. TEGs can fill a crucial role in providing energy to run vibration and temperature sensors, as well as supporting LoRa communications. However, when mounted on a railcar, TEGs may be subjected to non-uniform temperature differentials caused by the forced convection generated by air motion relative to the vehicle. It can be shown that TEGs experiencing non-homogeneous temperatures can have reduced power output, and if the temperature difference is large, power is further reduced than with one TEG alone. This work presents analysis and experimental data comparing several possible design solutions: (1) a simple series connection, (2) a series connection with bypass diodes, and (3) isolated TEGs with separate boost converters for each module.
Solution for real-time data collection and analysis. In bearing testing technology, providing a robust, user-friendly, and scalable system represents a significant advancement. This system supports security and monitoring efforts by displaying live camera feeds from a whiteboard, a Linux-based computer with expanded storage capabilities, to each tester but also synchronizes with a central “whiteboard” database. The system’s integrated database infrastructure, which not only stores data locally on each interfaced with a dedicated Linux computer equipped with LabVIEW™ for conducting wired tests, and custom-developed software for wireless connectivity to a specially designed module by the electrical engineering team. The core of the system lies in its capability to autonomously collect data collection and reporting. The main objective of the research presented here is to explore the feasibility of utilizing existing geophone technologies as an alternative energy harvesting approach for the onboard bearing condition monitoring system. The proposed method involves mounting a geophone device on a bearing adapter to harvest vibration-based energy produced by the rolling stock. By enhancing the reliability and safety of rail transportation networks, this research can help mitigate the risks associated with bearing failures and improve the overall safety of railway operations.

04 EVALUATING FEASIBILITY OF GEOPHONE TECHNOLOGIES FOR ENERGY HARVESTING ON ROLLING STOCK

Presenter: Andres Salinas

Amanda Rodriguez, Heinrich Foltz, Constantine Tarawneh

The University of Texas Rio Grande Valley, Edinburg, TX

Bearing failure continues to be one of the leading causes of train derailments that result in significant economic and environmental damages. To prevent these tragedies, researchers at the University Transportation Center for Railroad Safety (UTCRS) are developing wireless onboard condition monitoring systems that can detect bearing defects preemptively by tracking the vibration signature emissions continuously. These systems utilize a rechargeable battery that can provide up to two years of operation on a single charge. However, a suitable energy harvesting system can significantly increase the batteries’ longevity or allow for more frequent data collection and reporting. The main objective of the research presented here is to explore the feasibility of utilizing existing geophone technologies as an alternative energy harvesting approach for the onboard bearing condition monitoring system. The proposed method involves mounting a geophone device on a bearing adapter to harvest vibration-based energy produced by the rolling stock. By enhancing the reliability and safety of rail transportation networks, this research can help mitigate the risks associated with bearing failures and improve the overall safety of railway operations.

05 LINUX-BASED DAQ SYSTEM FOR TESTING RAILROAD BEARINGS IN A LABORATORY SETTING

Presenter: Marcelo Cavazos

Rogelio Salinas

The University of Texas Rio Grande Valley, Edinburg, TX

An innovative data acquisition and monitoring system designed to enhance the efficiency, reliability, and safety of railroad bearing testing within a laboratory setting is presented. The system comprises five distinct testers, each interfaced with a dedicated Linux computer equipped with LabVIEW™ for conducting wired tests, and custom-developed software for wireless connectivity to a specially designed module by the electrical engineering team. The core of the system lies in its capability to autonomously collect 5,200 samples from each module every 10 minutes, ensuring comprehensive data acquisition. To accommodate users of varying technical expertise, the software features both a graphical user interface (GUI) for ease of use and a headless mode for command line users. A unique aspect of the system is its integrated database infrastructure, which not only stores data locally on each tester but also synchronizes with a central “whiteboard” database. The whiteboard, a Linux-based computer with expanded storage capabilities, serves as a nexus for aggregating data from all testers. Additionally, it supports security and monitoring efforts by displaying live camera feeds from the testing environments. This system represents a significant advancement in bearing testing technology, providing a robust, user-friendly, and scalable solution for real-time data collection and analysis.

06 INCREASING STABILITY OF BEARING APPLIED LOAD DURING DYNAMIC TESTING

Presenter: Rogelio Salinas

Heinrich Foltz, Constantine Tarawneh

The University of Texas Rio Grande Valley, Edinburg, TX

A major activity at the University Transportation Center for Railroad Safety (UTCRS) is performance evaluation of freight railcar bearings using laboratory test rigs that closely simulate service operating conditions. A hydraulic system applies load to the bearings through the adapters, with controllable force ranging from that of an unloaded railcar to 125% of the maximum allowed load capacity. One issue in laboratory testing is variation in the applied load due to thermal expansion and contraction of the hydraulic fluid within the cylinder. To remedy this problem, a load controller that can adjust the force applied by the hydraulic cylinder to counteract thermal effects was designed and built. The fabricated load controller is a completely analog device with user adjustable controls for set point, sensitivity, and maximum load rate. It controls a motor driven lead screw and auxiliary cylinder that are used to adjust the main cylinder pressure. It has a manual mode, where the motor and lead screw are adjusted directly by the user. Most important, however, is the automatic mode, which controls the load set point with an adjustable dead band to reduce hunting that could shorten motor life. Future versions of this controller will allow the user to program specific load profiles, be under digital control, and have connectivity features.

07 AUTOMATED CURVATURE CALCULATION ALGORITHM IN RAIL NEUTRAL TEMPERATURE MEASUREMENT SYSTEM

John Stormes (Presenter), Emerson Mitchell, Dimitros Rizos

The University of South Carolina, Columbia, SC

Researchers at the University of South Carolina have developed a non-contacting, reference-free technology for estimating the rail neutral temperature (RNT). The technology is based on deformation measurements of the top of rail (TOR) and the web. It is a non-contacting, reference free technique that has been validated in the laboratory and the field. RNT estimates are obtained by correlating changes in curvature of the TOR to temperature. The TOR deformations may be captured by stereo digital image correlation (stereoDIC) systems or high-resolution 3D laser profilers. Both techniques produce a point cloud in the 3D space that defines the TOR surface at different temperatures. The authors have developed an automated curvature calculation algorithm that automates the calculation of the required curvatures and optimizes the evaluation of the RNT. The method is based on a weighted sum approximation and least square regression and has shown excellent performance in reducing noise in the measurements.
08 A REVIEW OF REQUIREMENTS TO OPTIMIZE THE USE OF DIGITAL IMAGE CORRELATION (DIC) FOR MONITORING RAIL INFRASTRUCTURE

Stephen Wilcken (Presenter), Dimitros Rizos
The University of South Carolina, Columbia, SC

A crucial aspect of safe and efficient operation of railway infrastructure is proper maintenance and inspection. Information on the condition of this infrastructure needs to be quickly and accurately determined through testing, ideally in a non-destructive and non-disruptive way. Digital Image Correlation (DIC) is a non-destructive, non-disruptive, and uniquely non-contacting testing method that has been developed in the USC laboratories over the last thirty years. DIC captures full field shape, deformations, and displacements through the acquisition and analysis of optical images. The Advanced Railway Technology Group at USC has introduced the DIC technology in the rail industry. DIC has been successfully implemented in rail neutral temperature (RNT) measurements, in the quality control of prestressed concrete crossties, including transfer length measurements, for material testing, and the structural assessment and monitoring of main girders of rail bridge. The effective use of DIC in such applications in the field that will maintain the high accuracy and reliability of the technology poses challenges with respect to: (i) the application of a speckle pattern on the area of interest (AOI), (ii) the varying lighting conditions of the AOI, and (iii) a stable and rigid camera hardware configuration that eliminates the adverse effects of vibrations. This presentation introduces the implementation requirements of the DIC technology in rail infrastructure monitoring and presents the solutions proposed by the research team to alleviate the challenges encountered in the field applications.

09 DEVELOPMENT OF RAIL ANCHOR TESTING THROUGH LITERATURE REVIEW OF CWR BUCKLING RESISTANCE EVALUATION

Teresa Salazar-Flores (Presenter), Juan Rodriguez, Siang Zhou, Mustapha Rahmainezhad, Constantine Tarawneh
The University of Texas Rio Grande Valley, Edinburg, TX

Continuously welded tracks (CWR) are among the most used railroad systems worldwide with great improvements compared to jointed tracks. Rail buckling is one of the key remaining issues for CWRs to further reduce safety hazards and infrastructure deterioration. CWR buckling results from a combination of longitudinal, lateral, and torsional forces acting on the track due to various factors such as rail components, moving train loads, track-substructure interaction, and thermal variations. An in-depth study of factors affecting rail stiffness (longitudinal, lateral, and torsional) is crucial to comprehend rail buckling and improve buckling resistance on CWR. This work summarizes and interprets existing research related to rail buckling resistance, considering parameters such as time-dependent neutral temperature of the tracks, the type of trains, various track resistors (rails, sleepers, and ballasts), and other accessories (anchors and fasteners). A discussion of previous experiments that studied resistors and rail buckling resistances is presented, which guides development of an experimental arrangement as part of an ongoing large-scale rail resistance testing project at UTCRS-UTRGV. The information summarized here identifies additional needs for experimental and numerical studies and provides structured background for prospective improvements on rail buckling and stiffnesses of CWR.

10 DESIGN AND TESTING OF FULL-SCALE TRACK PANEL PUSH TEST

Santana Gutierrez (Presenter), Mustapha Rahmainezhad, Siang Zhou, Constantine Tarawneh
The University of Texas Rio Grande Valley, Edinburg, TX

For the past 40 to 50 years, the railway industry has increasingly focused on continuous welded rail (CWR) as a replacement for jointed tracks. The absence of rail joints in CWR systems increases the risk of thermal expansion-induced track buckling, which can result in catastrophic derailments and poses a significant safety concern. Longitudinal track resistance can play a critical role in ensuring track stability and minimizing temperature-induced rail stress damage. Rail anchors have long been used to enhance the longitudinal track resistance. Rail-tie anchors serve a multifaceted purpose in track stability, while they distribute longitudinal or rotational loads to the ties, they also play a pivotal role in managing Rail Neutral Temperature (RNT). Although some investigations have been done on the longitudinal resistance of CWR tracks, there have been few comprehensive investigations that have isolated the influence of steel anchors on the longitudinal resistance of the rail-tie interface. The design and construction of a full-scale laboratory experimental track panel push test (TPPT) setup to assess the efficacy of rail anchors on longitudinal track resistance are presented along with some results acquired from the initial testing of TPPT evaluating several rail-anchor loading configurations.

11 MULTIVARIATE CALIBRATION FOR AN ONBOARD LOAD SENSOR IN A SHEAR ADAPTER PAD ASSEMBLY

Diego Aguila (Presenter), Constantine Tarawneh
The University of Texas Rio Grande Valley, Edinburg, TX

To fully characterize the health condition of a railroad bearing, three parameters must be tracked and measured. These are temperature, vibration, and applied load. Currently, there are onboard monitoring sensors that can track and record the temperature and vibration profiles, however, there are no onboard sensors that can accurately and reliably measure the load applied on each bearing within the railcar. Hum Industrial Technology, Inc., alongside researchers at the University Transportation Center for Railway Safety (UTCRS) are working on developing and deploying a prototype onboard load sensor for both static and dynamic operating conditions. This research aims to make this sensor ready for field applications by implementing a means to compensate for the effects of bearing operating temperature on the strain gauge. This temperature calibration is essential for effective functionality of the load sensor and to ensure the accuracy and efficacy of the sensor during dynamic rail service operation where the bearing operating temperature will fluctuate significantly depending on the railcar operating load and speed. This endeavor is well-aligned with the USDOT strategic goal of enhancing the safety and efficiency of railroad operations.
12
EXPERIMENTAL INVESTIGATION OF LATERAL LOAD EFFECTS ON RAILWAY TAPERED ROLLER BEARING PERFORMANCE

Abel David Sanchez Trinidad (Presenter), Constantine Tarawneh, Arturo Fuentes

The University of Texas Rio Grande Valley, Edinburg, TX

When a freight train railcar is at rest, the wheelsets and their bearings bear the weight and stress in a primarily static, radial loading. However, when set into motion, the scenario changes significantly due to the inherent imperfections in rail tracks and the presence of curves or turns in various locations. These imperfections can cause the loaded railcar to shift from side to side, subjecting the bearings to lateral forces. Surprisingly, limited research has been carried out or made publicly available on the effects of lateral loading on the performance of railroad tapered-roller bearings under various train speeds at empty and full railcar loads. Motivated by this, researchers at the University Transportation Center for Railway Safety (UTCRS) are conducting laboratory testing utilizing the available dynamic bearing test rig to explore the effects of lateral loading on bearing performance. The laboratory testing is designed to mimic lateral forces that bearings will experience during events like hunting, buckled track, uneven track, and instances where trains are navigating curved sections of track. The results of this study are expected to inform rail operators on the effects of lateral loads on bearing operating temperature and vibration levels with the goal of optimizing rolling stock condition monitoring technologies.

13
INACTIVE BEARING PERFORMANCE CHARACTERIZATION STUDY

Curtis Pena (Presenter), Constantine Tarawneh, Robert Jones

The University of Texas Rio Grande Valley, Edinburg, TX

Railroad tapered roller bearings rely on grease to reduce friction and wear and to cool the components during dynamic operation. When the bearing is static for a prolonged period, the base oil and thickener may begin to separate, affecting cooling and anti-friction properties. The potential for such changes to impact bearing performance and reliability has led researchers at the University Transportation Center for Railway Safety (UTCRS) to investigate this aspect of bearing operational history to assess the performance of tapered roller bearings that have experienced long periods of inactivity while railcars are parked in railyards. A dynamic four bearing tester (4BT) designed by the UTCRS simulates operating conditions for bearing life assessment while differential scanning calorimetry (DSC) and standard grease characterization and viscosity measures are used to understand the effects of inactivity on the grease. The study includes bearings with varying storage durations and environments and assesses bearing performance, lubricant quality, and performance, and bearing component degradation. Understanding the effects of prolonged storage on bearing performance can guide maintenance protocols, contributing to the reliability, longevity, and safety of rolling stock bearings.

14
OPTIMIZED VIBRATION-BASED HEALTH METRICS FOR FREIGHT RAIL BEARINGS

Dylan Rocha (Presenter), Constantine Tarawneh, Jeffery Pams, Alberto Diaz Jr.

The University of Texas Rio Grande Valley, Edinburg, TX

In the railroad industry, monitoring the condition of freight railcar bearings in-service is carried out through two primary systems: wayside hot bearing detectors (HBDs) and trackside acoustic detection systems (TADS™). However, these systems face challenges in accurately assessing bearing fatigue and distress, especially during initial defect stages. To address this, the University Transportation Center for Railway Safety (UTCRS) developed a wireless onboard condition monitoring technology. Unlike existing methods, this system continuously monitors in-service bearings, offering precise health assessments. It utilizes calibrated vibration thresholds based on correlations between bearing operating speeds and vibration signatures for healthy and defective bearings. Additionally, the system identifies faulty components in tapered-roller bearings through frequency domain analysis. To maintain accuracy of the onboard sensors in detecting defective components, the thresholds are periodically reassessed by employing regression analysis to establish revised thresholds that incorporate the latest vibration data collected from laboratory testing of healthy and faulty bearings. These revised thresholds can enhance the health monitoring of in-service bearings, enabling rail operators to identify issues early, schedule maintenance, and prevent costly and unnecessary train stoppages. This research aims to improve bearing health monitoring in the railroad industry, ultimately reducing catastrophic derailments and associated human and capital losses.
RAILROAD TRACK AND WHEEL DETECTION WITH ONBOARD CONDITION MONITORING SYSTEM

Presenter: Jeffery Pams¹
Constantine Tarawneh,² Brent Wilson,² Lee Cantu²

¹The University of Texas Rio Grande Valley, Edinburg, TX
²HUM Industrial Technology, Inc., St. Louis, MO

The Federal Railroad Administration’s (FRA) Office of Safety Analysis estimates that over 1,000 train derailments occur every year in the United States, with a significant number being caused by mechanical failures such as defects within the wheels and tracks. The use of wireless onboard health monitoring technologies has been receiving attention after recent catastrophic derailments. Through research, development, and implementation of onboard condition monitoring systems by the University Transportation Center for Railway Safety (UTCRS) and HUM Industrial Technology, Inc., a promising method to detect wheel and track defects has been field tested in freight revenue service. HUM’s onboard condition monitoring system, which includes the Boomerang (the onboard module with a suite of sensors), and the Gateway (the wireless communication module), has improved the visibility of data pertaining to railcar operating conditions by measuring vibrations generated by the bearings, wheels, and wheel-track interactions. By correlating these data to measured vehicle speed and GPS locations, the data pertinent to wheel and track aberrations can be parsed and verified against known defect signatures of each component or track. This study highlights the capabilities of onboard condition monitoring systems for determining in situ wheel defects and extrapolations to track defects and low-speed defect monitoring.

HEALTHY AND DEFECTIVE TAPERED ROLLER BEARING TEMPERATURE METRICS

Presenter: Samantha Garcia
Mia Adame, America Martinez, Curtis Pena, Constantine Tarawneh

The University of Texas Rio Grande Valley, Edinburg, TX

The safe and efficient transport of freight in the railway industry relies heavily on monitoring bearings and wheels. Bearing seizures remains a significant concern, capable of causing catastrophic train derailments. This underscores the critical need for effective monitoring practices. Wayside detection devices like Hot Bearing Detectors (HBDs) and Trackside Acoustic Detection Systems (TADS*) monitor, respectively, bearing temperatures and acoustic emissions as trains pass. However, these systems have shown inaccuracies in fault detection, resulting in unnecessary and costly train stoppages and delays. Additionally, bearing operating temperatures can exhibit random trends due to roller misalignments, even without defects. This study aims to provide comprehensive bearing operating temperatures for healthy and defective bearings under typical rail service conditions. It includes two decades of laboratory experiments on AAR Class F and K railroad bearings, covering bearings with defective cup (outer ring) and cone (inner ring) raceways of varying severity. Intriguingly, the data show that bearings with relatively small defects operate at temperatures similar to healthy bearings. This raises concerns about HBDs’ ability to detect faulty bearings in time for preventive maintenance. Nonetheless, the data offer valuable insights into healthy and defective bearing temperature metrics for the rail industry.

MEASURING GEOMETRIC TOLERANCE CHANGES IN RECONDITIONED RAILROAD BEARING RACEWAYS

Presenter: Diego Leal
Constantine Tarawneh

The University of Texas Rio Grande Valley, Edinburg, TX

Railway maintenance has a major impact on the safety and efficiency of train operations. Among the critical components are bearing raceways within the cup (outer ring), where geometric tolerances are crucial for optimal performance. This project focuses on investigating the geometric tolerances of railroad bearing raceways after they have been reconditioned. Currently, a simple test setup is being utilized that allows the measurement of geometric concentricity of bearing outer ring (cup) raceways. Preliminary measurements of new, lightly used, and reconditioned bearing cups indicate that raceways of reconditioned bearings exhibit higher than normal geometric concentricity, especially near the spacer ring region. These tolerance deviations can compromise the integrity of bearing raceways, leading to increased friction and wear, which can ultimately result in bearing burn-off and train derailment. Understanding the reasons behind these geometric concentricity issues present in reconditioned bearings is key to implementing corrective measures to this process to ensure the safety and reliability of freight rail service. Future work will involve devising a sophisticated setup integrating precise LVDTs so that exact measurements of raceway geometric concentricity can be acquired and mapped.
18
ONBOARD CONDITION MONITORING SENSOR MODULE INSTALLATION ON RAILROAD BEARING ADAPTERS

Presenter: Daniel Reyna

Constantine Tarawneh

The University of Texas Rio Grande Valley, Edinburg, TX

With the adoption of onboard condition monitoring technologies on the rise, installation of these devices on freight railcars presents a challenge given the variations in bogie configurations in rail revenue service. Since sensors cannot be affixed to the bearing itself due to the possible indexing of the bearing outer ring (cup) during dynamic operation, the bearing adapter is commonly utilized for the installation of the sensor modules. The bearing adapter is the component on the railcar suspension system (bogie) that mates the bearing with the side frame. The work presented here aims to provide detailed steps on the installation of the HUM Boomerang – a wireless onboard condition monitoring sensor module developed by HUM Industrial Technology, Inc., in partnership with the University Transportation Center for Railway Safety (UTCRS) – on the bearing adapter. The installation involves machining the adapter to accept the sensor module while ensuring that: (1) the sensors are properly aligned, and (2) the sensor module is rigidly attached to the adapter to mitigate any relative motion that can affect the acquired vibration signatures. Methods used to optimize the installation process for time and effort are also presented.

19
KERNEL RIDGE REGRESSION IN PREDICTING RAILWAY CROSSING ACCIDENTS

Presenter: Ethan Villalobos

Jia Chen, Ping Xu, Constantine Tarawneh

1The University of Texas Rio Grande Valley, Edinburg, TX
2University of California, Riverside, Riverside, CA

Expanding on insights gained from an initial investigation into railway accident patterns by the authors, the current research delves deeper into the predictive capabilities of machine learning to forecast potential accident trends in railway crossings. Focusing on critical factors such as “Highway User Position” and “Equipment Involved,” Kernel Ridge Regression (KRR) models tailored to distinct clusters are integrated, as well as a global model for the entire dataset. These models, trained on historical data, discern patterns and correlations that might elude traditional statistical methods. The findings are compelling: certain clusters, despite limited data points, showcase remarkably root mean squared error (RMSE) values between predictions and real data, indicating superior model performance. However, certain clusters hint at potential overfitting, given the disparities between model predictions and actual data. Conversely, clusters with vast datasets underperform compared to the global model, suggesting intricate interactions within the data that might challenge the model’s capabilities. The performance nuances across clusters emphasize the value of specialized, cluster-specific models in capturing the intricacies of each dataset segment. This study underscores the efficacy of KRR in predicting future railway crossing incidents, fostering the implementation of data-driven strategies in public safety.

20
SPECTRAL CLUSTERING IN RAILWAY CROSSING ACCIDENTS ANALYSIS

Presenter: Miguel Gutierrez

Ethan Villalobos, Biqian Cheng, Ping Xu, Jia Chen, Evangelos E. Papalexakis, Constantine Tarawneh

1The University of Texas Rio Grande Valley, Edinburg, TX
2University of California, Riverside, Riverside, CA

This study employs graph mining and spectral clustering to analyze patterns in railway crossing accidents, utilizing a comprehensive dataset from the U.S. Department of Transportation. By constructing a graph of implicit relationships between railway companies based on shared accident localities, spectral clustering is applied to identify distinct clusters of companies with similar accident patterns. This offers nuanced insight into the underlying structure of these incidents. The results indicate that “Highway User Position” and “Equipment Involved” play pivotal roles in accident clustering, while temporal elements like “Date” and “Time” exert a diminished impact. This research not only sheds light on potential accident causation factors but also sets the stage for subsequent predictive safety analyses. It aims to serve as a cornerstone for future studies that aspire to leverage advanced data-driven techniques for improving railway crossing safety protocols.

21
AI-BASED HAZARD DETECTION FOR RAILWAY CROSSINGS

Presenter: Darren Espinoza

Gasser Ali, Constantine Tarawneh

The University of Texas Rio Grande Valley, Edinburg, TX

Grade crossings are vital components of railway infrastructure. However, potential risks of collisions between vehicle-train and human-train are of concern. In 2020 alone, the National Highway Traffic Safety Administration (NHTSA) recorded over 1,600 vehicle-train collisions and 500 human-train collisions. Efforts by researchers, scientists, transportation companies, and government agencies have explored methods such as sensors, barriers, motion detectors, and cameras. The research presented here aims to apply deep learning (DL) and artificial intelligence (AI) techniques to enhance rail grade crossing safety. The devised DL model aims to offer robust, cost-effective, and reliable ability to detect hazards at grade crossings, under any environmental, lighting, and weather conditions. Development of the model will be accomplished with a dataset of labelled images captured at grade crossings by the authors. The DL model aims to provide detection of hazardous conditions at grade crossings consisting of wildlife, vehicles, and pedestrians for the sole purpose of preventing dangerous operating conditions.
<table>
<thead>
<tr>
<th>AUTHOR FIRST NAME</th>
<th>AUTHOR LAST NAME</th>
<th>SELECTED PAPER TYPE</th>
<th>SUBMISSION CODE</th>
<th>SUBMISSION NAME</th>
<th>ASSIGNED TO TRACK/SESSION</th>
<th>SCHEDULER DAY DATE</th>
<th>SCHEDULER TIME SLOT START TIME</th>
<th>SCHEDULER TIME SLOT END TIME</th>
<th>TRACK/SESSION ROOM NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasser Ali</td>
<td>Technical Paper Publication</td>
<td>124640</td>
<td>AI-Based Hazard Detection for Railway Crossings</td>
<td>Track 2-4: Rolling Stock and Dynamics</td>
<td>5/14/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Mohsen Amerian</td>
<td>Technical Paper Publication</td>
<td>124517</td>
<td>AI-Enabled Vibration Sensing System for Early Detection of Trans at Active Highway-Rail Grade Crossings</td>
<td>Track 1-5A: Track Safety</td>
<td>5/15/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Arash Azmingad</td>
<td>Technical Paper Publication</td>
<td>125037</td>
<td>Empirical Verification of a Heuristic Radio Propagation Model in a Non-Uniform Subway Tunnel Environment</td>
<td>Track 2-3: Communications and Signals - CBTC and Advanced Communications</td>
<td>5/14/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Fabio Barbosa</td>
<td>Technical Paper Publication</td>
<td>124729</td>
<td>Hydrogen Powered Rail Traction Technology Review - The Pathways to Reduce the Rail Environmental Footprint</td>
<td>Track 2-5: Rolling Stock and Dynamics</td>
<td>5/15/24</td>
<td>3:30 PM</td>
<td>4:50 PM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>Daniel Blasko</td>
<td>Technical Presentation Only</td>
<td>118881</td>
<td>Journal Bearing Developments for High Axle Load Applications</td>
<td>Track 2-4: Rolling Stock and Dynamics</td>
<td>5/15/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>Alan Colegani</td>
<td>Technical Paper Publication</td>
<td>130067</td>
<td>Automatic Assessment of Rail Squat Defects by Sensor Fusion</td>
<td>Track 1-7: Rail</td>
<td>5/14/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Kenneth Demursch</td>
<td>Technical Paper Publication</td>
<td>122074</td>
<td>Managing Hi-Railer Set-on and Set-Off in a Train Control System Using Aisle Counters</td>
<td>Track 3-2: Communications and Signals - Conventional Issues</td>
<td>5/15/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>Brennan Gedney</td>
<td>Technical Paper Publication</td>
<td>124287</td>
<td>Investigating the Use of B-Spline Signature Responses to Detect Internal Rail Defects</td>
<td>Track 1-7: Rail</td>
<td>5/14/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Paul Ghazouri</td>
<td>Technical Paper Publication</td>
<td>125352</td>
<td>Simulation-Based Framework to Evaluate the Accident Performance of Novel Railroad Tank Cars</td>
<td>Track 6-5: Tank Car Safety</td>
<td>5/15/24</td>
<td>3:30 PM</td>
<td>4:50 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Nauid Gholizadeh</td>
<td>Technical Paper Publication</td>
<td>124675</td>
<td>“ICE 68150 and its Capabilities in Protection Systems</td>
<td>Track 4-1: Electrification</td>
<td>5/14/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>John Hoffbauer</td>
<td>Technical Paper Publication</td>
<td>125798</td>
<td>Why CBTC at Metro? A Technical Case Study</td>
<td>Track 3-1: Communications and Signals - CBTC and Advanced Communications</td>
<td>5/14/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>John Hoffbauer</td>
<td>Technical Paper Publication</td>
<td>130095</td>
<td>Challenges and Solutions of Track Circuits in Rail Transit Systems</td>
<td>Track 3-2: Communications and Signals - Conventional Issues</td>
<td>5/15/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>Chris Johnson</td>
<td>Technical Presentation Only</td>
<td>125042</td>
<td>Building Fast, the New Facility for Accelerated Service Testing</td>
<td>Track 1-3: Railroad Track</td>
<td>5/15/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Acma Khattak</td>
<td>Technical Presentation Only</td>
<td>128196</td>
<td>Pedestrian and Bicyclist Exposure Prediction Models for Highway-Rail Grade Crossings</td>
<td>Track 6-2: Rail Grade Crossing Safety</td>
<td>5/14/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Steven Kirkpatrick</td>
<td>Technical Paper Publication</td>
<td>130035</td>
<td>Evaluating the Puncture Resistance of the DOT-73 Tank Car for Liquefied Natural Gas Service</td>
<td>Track 6-5: Tank Car Safety</td>
<td>5/15/24</td>
<td>3:30 PM</td>
<td>4:50 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Sana Kauldemir</td>
<td>Technical Paper Publication</td>
<td>122075</td>
<td>Finite Element Analysis of Crack Growth in Steel Rails Subjected to Non-Uniform Residual Stresses: Shelling to Deltal Fracture</td>
<td>Track 2-2: Rolling Stock and Dynamics</td>
<td>5/15/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>Sana Kauldemir</td>
<td>Technical Presentation Only</td>
<td>131626</td>
<td>Investigating the Optimization of the Rail Roller Straightening Process: 3D Finite Element Analysis of Residual Stresses and Process Modifications</td>
<td>Track 1-7: Rail</td>
<td>5/14/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Sana Kauldemir</td>
<td>Technical Presentation Only</td>
<td>118837</td>
<td>Improving Crash Energy Management of Tank Cars</td>
<td>Track 2-1: Rolling Stock and Dynamics</td>
<td>5/14/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>Sana Kauldemir</td>
<td>Technical Presentation Only</td>
<td>120296</td>
<td>Fatigue Crack Growth Rate Material Characterization of Targeted Microstructures of Welded Rail</td>
<td>Track 1-7: Rail</td>
<td>5/14/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Adam Klopp</td>
<td>Technical Presentation Only</td>
<td>125910</td>
<td>Evaluating Draft System Performance</td>
<td>Track 2-1: Rolling Stock and Dynamics</td>
<td>5/14/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>Kamyar Kosamekhan</td>
<td>Technical Presentation Only</td>
<td>125323</td>
<td>Numerical Investigation of Fixed Structures Effect on Longitudinal Rail Stress and Buckled Track Accidents</td>
<td>Track 1-7: Continuous Welded Rail</td>
<td>5/14/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Sridevi Lakshminarayanan</td>
<td>Technical Paper Publication</td>
<td>128226</td>
<td>System Integration Testing in the Factory for Train Control and Signaling Systems</td>
<td>Track 3-2: Communications and Signals - Conventional Issues</td>
<td>5/15/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>William Larson</td>
<td>Technical Presentation Only</td>
<td>124335</td>
<td>A Case Study in Crosse Asset Management System Development</td>
<td>Track 1-3: Railroad Track</td>
<td>5/15/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B201</td>
<td></td>
</tr>
<tr>
<td>Sanyup Lee</td>
<td>Technical Presentation Only</td>
<td>122626</td>
<td>Optimizing Wheel Design for Dual Operation in Tramway Infrastructure</td>
<td>Track 2-3: Rolling Stock and Dynamics</td>
<td>5/15/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B103</td>
<td></td>
</tr>
<tr>
<td>Keith Lewandowski</td>
<td>Technical Paper Publication</td>
<td>121865</td>
<td>UAV-Based Railroad Line Detection</td>
<td>Track 1-5A: Track Safety</td>
<td>5/14/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B201</td>
<td></td>
</tr>
</tbody>
</table>
AUTHOR FIRST NAME | AUTHOR LAST NAME | SELECTED PAPER TYPE | SUBMISSION CODE | SUBMISSION NAME | ASSIGNED TO TRACK/SESSION | SCHEDULER DAY DATE | SCHEDULER TIME SLOT START TIME | SCHEDULER TIME SLOT END TIME | TRACK/SESSION ROOM NAME
---|---|---|---|---|---|---|---|---|---
Zhan | Li | Technical Paper Publication | 124371 | Evaluating the Use of Surface Wave UltraSons for Near-Surface Rolling Contact Fatigue Depth Characterization | Track 1-4: Rail | 5/14/24 | 9:00 AM | 10:20 AM | 300MN B213
Ting-Ming | Liu | Technical Presentation Only | 123713 | Understanding the Complex Interplay of Factors in Rail Buckling: A Finite Element Approach | Track 6-4: Track Safety | 5/15/24 | 11:00 AM | 12:20 PM | 300MN B201
Patricia | Llana | Technical Paper Publication | 124114 | Locomotive Crash Energy Management Train-To-Train Impact Test Results | Track 2-1: Rolling Stock and Dynamics | 5/14/24 | 9:00 AM | 10:20 AM | 300MN B103
Timothy | Martin | Technical Presentation Only | 133676 | Load Environment Characterization of Tank Car Stub Slat During Revenue Operations | Track 2-1: Rolling Stock and Dynamics | 5/14/24 | 9:00 AM | 10:20 AM | 300MN B103
Timothy | Mast | Technical Presentation Only | 124357 | Understanding Locomotive Performance Characteristics of 6 Axle Dc and Ac Locomotives and the Ac-4 Locomotive | Track 6-2: Railroad Industry: Past, Present, and Future | 5/15/24 | 3:30 PM | 4:50 PM | 300MN B103
Boshan Khan | Mohammed Hussain Khan | Technical Paper Publication | 127705 | EPS Geofoam In-Filled Ground Vibration Barriers for Environmental Sustainability of Ballasted High-Speed Railway Tracks: State of the Art | Track 5-5A: Track Safety | 5/15/24 | 11:00 AM | 12:20 PM | 300MN B213
Reza | Niaeri | Technical Paper Publication | 126271 | A Hybrid Rail Surface Spot Irregularities (RSSI) Detection Algorithm Based on Onboard Measurements | Track 1-5A: Rail | 5/14/24 | 9:00 AM | 10:20 AM | 300MN B213
Dennis | Paige | Technical Presentation Only | 123832 | Cyclic Capacity Analysis: Efficiently Analyzing Station and Yard Capacity and Operations | Track 5-1: Operations and Systems Management | 5/15/24 | 1:30 PM | 2:50 PM | 300MN B201
Bilesh | Paudyal | Technical Presentation Only | 125339 | Advanced RailWireless Communications: Exploring the ieee 802.16i Standard for Wireless Railroad Applications | Track 3-1: Communications and Signals - CBTC and Advanced Communications | 5/14/24 | 11:00 AM | 12:20 PM | 300MN B201
Yu | Qian | Technical Paper Publication | 123762 | Using SmartRock to Assess Railroad Ballasted Vertical Acceleration in Large Scale Test Under Varied Loading Pulses | Track 1-3: Railroad Track | 5/15/24 | 9:00 AM | 10:20 AM | 300MN B213
Yu | Qian | Technical Presentation Only | 125092 | Autonomous Power-Efficient Track Inspection System (APTS) | Track 1-4: Condition Monitoring | 5/15/24 | 1:30 PM | 2:50 PM | 300MN B213
Yu | Qian | Technical Presentation Only | 125406 | Usb Imagery-Based Rail Surface Detects Detection Using Eignet and Incremental Learning | Track 6-4: Track Safety | 5/15/24 | 9:00 AM | 10:20 AM | 300MN B201
Yu | Qian | Technical Presentation Only | 125416 | Railway Crossing Intrusion Detection Based on Usb Image and Open World Object Detection | Track 1-5B: Track Safety | 5/15/24 | 3:30 PM | 4:50 PM | 300MN B213
Christian | Rope | Technical Presentation Only | 136462 | Predicting Railway Fire Resistance Using Modeling and Reduced-Scale Testing | Track 6-3: Rolling Stock Safety and Policies | 5/15/24 | 9:00 AM | 10:20 AM | 300MN B201
Dimitris | Rizos | Technical Paper Publication | 124555 | Enhancing Railway Safety Through Satellite-Based Monitoring for Rockfall Potential | Track 1-5B: Track Safety | 5/15/24 | 3:30 PM | 4:50 PM | 300MN B213
Dimitris | Rizos | Technical Paper Publication | 129134 | Performance of a Mobile, Non-Contacting, Reference-Free Prototype System for RFID and Rail Stress Measurements | Track 1-2: Continuous Welded Rail | 5/14/24 | 11:00 AM | 12:20 PM | 300MN B213
Pavucanzeo | Rizzo | Technical Presentation Only | 123599 | Vibration-Based Estimation of Neutral Temperature in Continuous Welded Rails | Track 1-2: Continuous Welded Rail | 5/14/24 | 11:00 AM | 12:20 PM | 300MN B213
Sina | Saberi | Technical Paper Publication | 122412 | Multiscale Computational Modeling of Subsurface Cracking in Railroad: Insights Into Fatigue Life | Track 6-4: Track Safety | 5/15/24 | 9:00 AM | 10:20 AM | 300MN B201
Sven | Scholz | Technical Presentation Only | 124969 | A Field-Based Analysis of Safety vs. Availability of Track Intrusion Detection Systems | Track 6-4: Track Safety | 5/15/24 | 11:00 AM | 12:20 PM | 300MN B201
Dawn | Shi | Technical Presentation Only | 125372 | Simulation Analysis and Sensitivity of Potential Battery Electric Locomotive Energy Benefits to Freight Railway Operating Characteristics | Track 4-1: Electrification | 5/14/24 | 1:30 PM | 2:50 PM | 300MN B103
Mohammad A. | Taeb | Technical Presentation Only | 133563 | Developing Framework for Railroad Track Maintenance Life-Cycle Assessment | Track 1-1B: Rail | 5/15/24 | 1:30 PM | 2:50 PM | 300MN B213
Constantine | Tarawneh | Technical Paper Publication | 125389 | Functional Implications of Wayside Detector Systems and Their Ability to Detect Hot Bearing Deviations | Track 8-3: Railroad Industry: Past, Present, and Future | 5/15/24 | 9:00 AM | 10:20 AM | 300MN B201
Constantine | Tarawneh | Technical Paper Publication | 125943 | Powering Onboard Bearing Health Monitoring Sensors With Thermoelectric Generators Under Non-Uniform Temperatures | Track 6-1: Rolling Stock Condition Monitoring | 5/14/24 | 9:00 AM | 10:20 AM | 300MN B201
Constantine | Tarawneh | Technical Paper Publication | 128552 | Healthy and Defective Tapered Roller Bearing Temperature Metrics | Track 6-1: Rolling Stock Condition Monitoring | 5/14/24 | 9:00 AM | 10:20 AM | 300MN B201
Constantine | Tarawneh | Technical Paper Publication | 124946 | Thermal Analysis of Locomotive and Axle Gearbox | Track 6-3: Rolling Stock Safety and Policies | 5/14/24 | 9:00 AM | 10:20 AM | 300MN B201
Constantine | Tarawneh | Technical Paper Publication | 129911 | Railroad Track and Wheel Defect Detection With Onboard Condition Monitoring System | Track 6-1: Rolling Stock Condition Monitoring | 5/14/24 | 9:00 AM | 10:20 AM | 300MN B201
Constantine | Tarawneh | Technical Paper Publication | 129917 | Optimized Vibration-Based Health Metrics for Freight Rail Bearings | Track 6-1: Rolling Stock Condition Monitoring | 5/14/24 | 9:00 AM | 10:20 AM | 300MN B201
<table>
<thead>
<tr>
<th>AUTHOR FIRST NAME</th>
<th>AUTHOR LAST NAME</th>
<th>SELECTED PAPER TYPE</th>
<th>SUBMISSION CODE</th>
<th>SUBMISSION NAME</th>
<th>ASSIGNED TO TRACK/SESSION</th>
<th>SCHEDULER DAY DATE</th>
<th>SCHEDULER TIME SLOT START TIME</th>
<th>SCHEDULER TIME SLOT END TIME</th>
<th>TRACK/SESSION SCHEDULER ROOM NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constantine</td>
<td>Tarawneh</td>
<td>Technical Paper Publication</td>
<td>130045</td>
<td>Feature Extraction From Vibration Signature Required From Railroad Bearing Onboard Condition Monitoring Sensor Modules</td>
<td>Track 1-4: Condition Monitoring</td>
<td>5/15/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B213</td>
</tr>
<tr>
<td>Justin</td>
<td>Theriaut</td>
<td>Technical Presentation Only</td>
<td>136485</td>
<td>Using AI and Machine Learning for Rail Lidar Processing at Scale</td>
<td>Track 1-5B: Track Safety</td>
<td>5/15/24</td>
<td>3:30 PM</td>
<td>4:50 PM</td>
<td>300MN B213</td>
</tr>
<tr>
<td>Keivan</td>
<td>Torabi</td>
<td>Technical Paper Publication</td>
<td>120875</td>
<td>Streaming System Assurance Program Objectives and Compliance With Both European and American Standards by Early Integration</td>
<td>Track 6-3: Rolling Stock Safety and Policies</td>
<td>5/15/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B201</td>
</tr>
<tr>
<td>Stuart F</td>
<td>Trout</td>
<td>Technical Paper Publication</td>
<td>125411</td>
<td>Passenger Railway Production in North America: Rationalization and Standardization</td>
<td>Track 2-5: Rolling Stock and Dynamics</td>
<td>5/15/24</td>
<td>3:30 PM</td>
<td>4:50 PM</td>
<td>300MN B103</td>
</tr>
<tr>
<td>Joseph</td>
<td>Turner</td>
<td>Technical Presentation Only</td>
<td>125267</td>
<td>Ultrasonic Nondestructive Quantification of Case Depth in Railroad Bearings: Statistical Analysis and Machine Learning Predictions</td>
<td>Track 2-2: Rolling Stock and Dynamics</td>
<td>5/14/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B103</td>
</tr>
<tr>
<td>Joseph</td>
<td>Turner</td>
<td>Technical Presentation Only</td>
<td>130021</td>
<td>Riding Contact Fatigue Performance of Railroad Bearing Rollers Manufactured Using Laser Powder Bed Fusion</td>
<td>Track 2-2: Rolling Stock and Dynamics</td>
<td>5/14/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B103</td>
</tr>
<tr>
<td>Samuel</td>
<td>Vellequette</td>
<td>Technical Presentation Only</td>
<td>130210</td>
<td>Using Waam to Locally Enhance Fatigue and Corrosion Resistance ofcast Steel Parts</td>
<td>Track 2-4: Rolling Stock and Dynamics</td>
<td>5/15/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B103</td>
</tr>
<tr>
<td>Ethan</td>
<td>Villalobos</td>
<td>Technical Paper Publication</td>
<td>130028</td>
<td>Spectral Clustering in Railway Crossing Accidents Analysis</td>
<td>Track 6-2: Rail Grade Crossing Safety</td>
<td>5/14/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B201</td>
</tr>
<tr>
<td>Ethan</td>
<td>Villalobos</td>
<td>Technical Paper Publication</td>
<td>130036</td>
<td>Kernel Ridge Regression in Predicting Railway Crossing Accidents</td>
<td>Track 6-2: Rail Grade Crossing Safety</td>
<td>5/14/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B201</td>
</tr>
<tr>
<td>Rydell</td>
<td>Walthall</td>
<td>Technical Presentation Only</td>
<td>124334</td>
<td>Model for Optimizing Partial Electrification of a Rail Corridor Using Overhead Supply and Batteries</td>
<td>Track 4-1: Electrification</td>
<td>5/14/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B103</td>
</tr>
<tr>
<td>David</td>
<td>Csowskowski</td>
<td>Technical Presentation Only</td>
<td>129801</td>
<td>Leveraging 3D Laser Scanning Data for Track Condition Change Detection</td>
<td>Track 1-4: Condition Monitoring</td>
<td>5/15/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B201</td>
</tr>
<tr>
<td>Gavin</td>
<td>Whetstone</td>
<td>Technical Presentation Only</td>
<td>122008</td>
<td>Experimental Evaluation of Crack Evolution in Rails Using a Phased Array</td>
<td>Track 1-3A: Rail</td>
<td>5/14/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B213</td>
</tr>
<tr>
<td>Soheil</td>
<td>Yusefnejad</td>
<td>Technical Paper Publication</td>
<td>124493</td>
<td>Fault Detection of a Loose Bolt Connection for Implementation of the DC Series Motor in the Railway Industry by Wavelet</td>
<td>Track 4-1: Electrification</td>
<td>5/14/24</td>
<td>1:30 PM</td>
<td>2:50 PM</td>
<td>300MN B103</td>
</tr>
<tr>
<td>Abdul-Rashid</td>
<td>Zakaria</td>
<td>Technical Presentation Only</td>
<td>129728</td>
<td>Robust Artificial Intelligence for Reasoning and Decision Making in Mitigating Ground Hazards Along Railroads</td>
<td>Track 5-8B: Track Safety</td>
<td>5/15/24</td>
<td>3:30 PM</td>
<td>4:50 PM</td>
<td>300MN B213</td>
</tr>
<tr>
<td>Abdul-Rashid</td>
<td>Zakaria</td>
<td>Technical Presentation Only</td>
<td>130514</td>
<td>Enhancing the Safety and Reliability of Railroad Corridors Prone to Geohazards Using a Decision Support System</td>
<td>Track 5-8A: Track Safety</td>
<td>5/15/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B213</td>
</tr>
<tr>
<td>Yosama</td>
<td>Zarate</td>
<td>Technical Paper Publication</td>
<td>124653</td>
<td>Counteracting Freeze-Thaw Deterioration Using Fiber Reinforced Concrete for Railroad Tie</td>
<td>Track 1-3: Railroad Track</td>
<td>5/14/24</td>
<td>9:00 AM</td>
<td>10:20 AM</td>
<td>300MN B213</td>
</tr>
<tr>
<td>Jinn</td>
<td>Zhang</td>
<td>Technical Paper Publication</td>
<td>129725</td>
<td>Research on Wheel Wear Coefficient Considering Wheel Profile and Operating Route Based on Multi-Body Method</td>
<td>Track 2-2: Rolling Stock and Dynamics</td>
<td>5/14/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B103</td>
</tr>
<tr>
<td>Siang</td>
<td>Zhou</td>
<td>Technical Paper Publication</td>
<td>122011</td>
<td>Development of Rail Anchor Testing Through Literature Review of CWR Buckling Resistance Evaluation</td>
<td>Track 1-2: Continuous Welded Rail</td>
<td>5/14/24</td>
<td>11:00 AM</td>
<td>12:20 PM</td>
<td>300MN B213</td>
</tr>
</tbody>
</table>
THE ORGANIZERS THANK EACH OF THE SPEAKERS AND TRACK CHAIRS FOR THEIR WILLINGNESS TO FREELY SHARE THEIR KNOWLEDGE AND EXPERIENCES WITH OUR ATTENDEES. ALSO, WE THANK THE FOLLOWING INDIVIDUALS AND THE ORGANIZATIONS THAT THEY REPRESENT, WHO GENEROUSLY VOLUNTEERED MANY HOURS, THEIR EXPERTISE AND DEDICATION IN PLANNING THIS YEAR’S EVENT.

Dimitris Rizos
ASCE
University of South Carolina

Constatine Tarawneh
University Transportation Center for Railway Safety (UTCRS)
The University of Texas Rio Grande Valley (UTRGV)
Edinburg, TX

David Thurston
IEEE
Canadian Pacific Railway

Elizabeth Caruso
AREMA

Thank You All!
2024 Co-operating Society Sponsors

ASME
RAIL TRANSPORTATION DIVISION

The University of Texas Rio Grande Valley
UNIVERSITY TRANSPORTATION CENTER FOR RAILWAY SAFETY

ASCE
AMERICAN SOCIETY OF CIVIL ENGINEERS

IEEE
Connecting the Mobile World

AREMA
AMERICAN RAILWAY ENGINEERING AND MAINTENANCE-OF-WAY ASSOCIATION
<table>
<thead>
<tr>
<th>FIRST NAME</th>
<th>LAST NAME</th>
<th>COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEJANDRO</td>
<td>ALVAREZ REYES</td>
<td>ENSCO</td>
</tr>
<tr>
<td>BILAL</td>
<td>AYYUB</td>
<td>UNIVERSITY OF MARYLAND (UMD)</td>
</tr>
<tr>
<td>DANUAL</td>
<td>BEHNIA</td>
<td>UNIVERSITY OF ALBERTA</td>
</tr>
<tr>
<td>DAN</td>
<td>BLASKO</td>
<td>THE TIMKEN COMPANY</td>
</tr>
<tr>
<td>ALAN</td>
<td>CALEGARI</td>
<td>MERMEC, INC.</td>
</tr>
<tr>
<td>DANNA</td>
<td>CAPITANACHI</td>
<td>UNIVERSITY TRANSPORTATION CENTER FOR RAILWAY SAFETY (UTCRS)</td>
</tr>
<tr>
<td>MIKE</td>
<td>CLAIRBORNE</td>
<td>ROCKY MOUNTAINEER</td>
</tr>
<tr>
<td>STEVE</td>
<td>DESMON</td>
<td>STANDARD STEEL, LLC</td>
</tr>
<tr>
<td>TYLER</td>
<td>DICK</td>
<td>UNIVERSITY OF TEXAS AUSTIN</td>
</tr>
<tr>
<td>BRIAN</td>
<td>DONOHUE</td>
<td>WSP</td>
</tr>
<tr>
<td>JEREMY</td>
<td>GERNAND</td>
<td>PENN STATE UNIVERSITY (PSU)</td>
</tr>
<tr>
<td>JOHN</td>
<td>GRANTHAM</td>
<td>ATKINS GLOBAL</td>
</tr>
<tr>
<td>TOM</td>
<td>GUNS</td>
<td>ASME – NEED TO CONFIRM</td>
</tr>
<tr>
<td>TED</td>
<td>HAGEMO</td>
<td>INTERNATIONAL ASSOCIATION OF RAILWAY OPERATING OFFICES (AROO)</td>
</tr>
<tr>
<td>BIH-YUAN</td>
<td>KU</td>
<td>NATIONAL TAIPEI UNIVERSITY OF TECHNOLOGY</td>
</tr>
<tr>
<td>FRANCESCO</td>
<td>LANZA DI SCALEA</td>
<td>UNIVERSITY OF CALIFORNIA SAN DIEGO (UCSD)</td>
</tr>
<tr>
<td>JOHN</td>
<td>LOBO</td>
<td>HDR, INC.</td>
</tr>
<tr>
<td>TIMOTHY</td>
<td>MAST</td>
<td>WABTEC CORPORATION</td>
</tr>
<tr>
<td>YU</td>
<td>PAN</td>
<td>ENSCO RAIL</td>
</tr>
<tr>
<td>MOHAMMAD</td>
<td>POUR-GOL-MOHAMAD</td>
<td>UNIVERSITY OF MARYLAND (UMD)</td>
</tr>
<tr>
<td>ANAND</td>
<td>PRABHAKARAN</td>
<td>SHARMA & ASSOCIATES</td>
</tr>
<tr>
<td>DIMITRIS</td>
<td>RIZOS</td>
<td>UNIVERSITY OF SOUTH CAROLINA (USC)</td>
</tr>
<tr>
<td>PIERVINCENZO</td>
<td>RIZZO</td>
<td>UNIVERSITY OF PITTSBURGH (PITT)</td>
</tr>
<tr>
<td>CONRAD</td>
<td>RUPERT</td>
<td>HNTB CORPORATION</td>
</tr>
<tr>
<td>RAPIK</td>
<td>SAAT</td>
<td>THE ASSOCIATION OF AMERICAN RAILROADS (AAR)</td>
</tr>
<tr>
<td>GIUSEPPE</td>
<td>SAMMARTINO</td>
<td>WABTEC CORPORATION</td>
</tr>
<tr>
<td>CAM</td>
<td>STUART</td>
<td>FEDERAL RAILROAD ADMINISTRATION (FRA)</td>
</tr>
<tr>
<td>ARMAND</td>
<td>TAILLON</td>
<td>AMSTED RAIL</td>
</tr>
<tr>
<td>CONSTANTINE</td>
<td>TABANINEH</td>
<td>UNIVERSITY TRANSPORTATION CENTER FOR RAILWAY SAFETY (UTCRS)</td>
</tr>
<tr>
<td>DAVID</td>
<td>THURSTON</td>
<td>CPKC</td>
</tr>
<tr>
<td>ELTON</td>
<td>TOMA</td>
<td>NUCLEAR REGULATORY COMMISSION (NRC)</td>
</tr>
<tr>
<td>ARUN</td>
<td>VEERAMANY</td>
<td>PACIFIC NORTHWEST NATIONAL LABORATORY (PNML)</td>
</tr>
<tr>
<td>LAMONT</td>
<td>WARD</td>
<td>AMTRAK</td>
</tr>
<tr>
<td>XUESONG</td>
<td>ZHOU</td>
<td>ARIZONA STATE UNIVERSITY (ASU)</td>
</tr>
<tr>
<td>PETER</td>
<td>ZHU</td>
<td>THE UNIVERSITY OF UTAH</td>
</tr>
</tbody>
</table>
JRC 2024 Track Chairs

TRACK 1: JOHN LOBO, DIMITRIS RIZOS, PIERVENCENZO RIZZO

TRACK 2: TIMOTHY MAST, YU PAN, SENA KIZILDEMIR

TRACK 3: DAVID THURSTON

TRACK 4: JOHN GRANTHAM

TRACK 5: MIKE CLAIBORNE, BRIAN DONOHUE

TRACK 6: CONSTANTINE TARAWNEH, DANNA CAPITANACHI AVILA

TRACK 7: LAMONT WARD

TRACK 8: TIMOTHY MAST
With thriving academic and research excellence and a lively, welcoming student experience, the University of South Carolina brings the opportunities of higher education to new generations.

South Carolina’s unrivaled college experience has been sought by students, faculty and academic researchers for more than 200 years. Founded in 1801, the university is located in Columbia, the capital of South Carolina.

The University of South Carolina System, led by President Michael Amiridis who is serving as the university’s 30th president, and has eight campuses in 20 locations that together serve more than 52,000 students.

We would like to extend our gratitude and a big thank you to the University of South Carolina as the Conference Host and strong supporter as well as the University Transportation Center for Railway Safety. Their contributions to the conference have helped make JRC 2024 possible. In particular, Dr. Dimitris Rizos and Dr. Constantine Ta, who both worked tirelessly and were instrumental in organizing the events and details.

Please visit their website below:

USC - College of Engineering and Computing

https://sc.edu/study/colleges_schools/engineering_and_computing/index.php
University of Texas Rio Grande Valley (UTRGV)

University Transportation Center for Railway Safety (UTCRS)

Website: www.utrgv.edu/railwaysafety

Director: Constantine Tarawneh, Ph.D.

ph. (956) 665-2607

Primary Research Goals: The primary goal of the UTCRS is promoting safety in railway transportation systems, with secondary goals of economic strength, global competitiveness, climate and sustainability. The UTCRS aims to reduce the number of accidents and equipment failures experienced in rail transportation systems, reduce rail-related fatalities and injuries and economic losses to stakeholders, and improve the durability of the U.S. rail infrastructure, while developing and training the next generation of technical professionals for the transportation sector. The center’s research goals are accomplished in close collaboration with industry partners, including manufacturers of railcars and components, Class I railroads, national testing and training facilities, and local railroads. The center’s workforce development goals are accomplished through deep engagement with K-12 and community college students and educators, UTRGV’s own academic programs, and bridges to advanced programs at multiple research universities in our consortium.

Facilities: The UTRGV Railroad Research laboratory facilities currently include two railroad bearing testing laboratories which house four test rigs each capable of testing four bearings of all AAR bearing classes, a single bearing test rig with advanced capabilities including impact testing and lateral loads, and an environmental chamber capable of -35°F to 150°F ambient temperature range. A separate test rig for rail anchor slip-force testing has been recently developed and fabricated and has started operation in early 2024. UTRGV has comprehensive instrumentation for analyzing materials, including testing of mechanical properties, chemical composition, and advanced microscopy. The center has significant in-house capabilities for fabrication of both mechanical components and electronic instrumentation.
MERMEC is an international company founded in 1970 and a member of the ANGEL Group, the largest privately held high tech holding company with member companies operating in the transportation, aerospace, and digital mechatronics sectors. Companies are all driven by innovative applications in every sector and industry they operate.

MERMEC is active in advanced technologies for rail transport including signaling, measuring rail vehicles and systems, electric traction, telecommunication, along with industrial applications.

The company operates globally with a presence in 21 countries from which it serves its customers by providing state-of-the-arts technologies and products along with project management, sales support, and technical assistance. With a team of 1,400 highly qualified engineering and technical personnel MERMEC boasts an unmatched technical know-how that has enabled the development of successful projects and advanced solutions currently in use in 73 countries across the world.

https://www.mermecgroup.com/

SmartFume® is a controlled release cartridge containing Chloropicrin, a highly effective fumigant, unsurpassed in arresting and preventing internal decay in large wood utility poles, pilings, and timbers. Research backed, it’s proven to protect for at least 10 years, made in the USA and provides a simple yet effective solution to internal remediation.

https://www.smartfume.com/
Correlated Solutions, Inc. is the worldwide leading manufacturer of Digital Image Correlation (DIC) systems, which provide full-field measurements of shape, motion, deformation and strain in 2D and 3D. Objects of almost any size and under any loading condition can be measured, and data can easily be compared to Finite Element data via integrated importing or exporting features for fast design validation.

www.correlatedsolutions.com
Standard Steel is a leading manufacturer of forged steel wheels and axles for freight railcars, locomotives, and passenger railcars. It is the only producer of forged steel wheels for railcars and locomotives in North America.

Customers include major Class I railroads in North America, freight railcar builders, railcar and locomotive maintenance shops, the Amtrak national railroad, locomotive builders and regional transit authorities.

Standard Steel, LLC, and its affiliated companies were purchased by Sumitomo Metal Industries, Ltd. and Sumitomo Corporation in 2011, but the existing facility has been producing forgings since 1795. In 2012, Sumitomo Metal Industries, Ltd. merged with Nippon Steel Corporation to become Nippon Steel & Sumitomo Metal Corporation, the majority owner of Standard Steel.

Standard Steel’s manufacturing plant is located at 500 North Walnut Street in Burnham, Pennsylvania.

www.standardsteel.com

Leica Geosystems – when it has to be right

With more than 200 years of history, Leica Geosystems, part of Hexagon, is the trusted supplier of premium sensors, software, and services. Delivering value every day to professionals in surveying, construction, infrastructure, mining, mapping and other geospatial content-dependent industries, Leica Geosystems leads the industry with innovative solutions to empower our autonomous future.

Hexagon (Nasdaq Stockholm: HEXA B) has approximately 24,000 employees in 50 countries and net sales of approximately 5.2bn EUR. Learn more at hexagon.com and follow us @HexagonAB.

https://hexagon.com/industries/transportation/rail-transit

Hum ASME RAIL TRANSPORTATION DIVISION
YOUR FAST TRACK TO DIGITAL RAILWAY

Advanced Technology for Smarter and Sustainable Mobility
SmartFume is a controlled release cartridge containing chloropicrin, a highly effective fumigant, unsurpassed in arresting and preventing internal pest and fungal decay.

ENCAPSULATED CONTROLLED RELEASE DELIVERY

SmartFume® is designed to control the release of chloropicrin, minimizing the risk of handler exposure during application, while dispersing chloropicrin into the wood to arrest and prevent decay for at least 10 years.

SmartFume® clearly outperforms all other internal wood fumigant products, protecting wood poles for up to 10 years with no lapse in coverage.

Other fumigants fail to maintain the minimum threshold 4-6 years after treatment leaving the wood unprotected.

<table>
<thead>
<tr>
<th>Feature</th>
<th>metam sodium</th>
<th>clazomat</th>
<th>methylisothiocyanite (mitc)</th>
<th>chloropicrin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Liquid</td>
<td>Granular requires liquid activator</td>
<td>Encapsulated Solid</td>
<td>Encapsulated Liquid</td>
</tr>
<tr>
<td>Wood cellular bonding for longevity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of handler chemical contact</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Never blocks inspection hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction completion</td>
<td>Incomplete reaction</td>
<td>Incomplete reaction</td>
<td>No reaction required</td>
<td>No reaction required</td>
</tr>
<tr>
<td>Easily uninstalled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Requirement</td>
<td>No water required</td>
<td>Requires activator and water</td>
<td>No water required</td>
<td>No water or activator required</td>
</tr>
<tr>
<td>Audit and tracking capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual chemical left in hole/tube</td>
<td>None</td>
<td>Significant</td>
<td>Occasionally</td>
<td>None</td>
</tr>
<tr>
<td>Made in the USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlated Solutions provides the largest variety of DIC products on the market. Our state-of-the-art, non-contacting optical systems measure 3D full-field displacement and strains on virtually any type of material under any loading condition. Measurements can be made on length scales ranging from microns to meters and time steps as small as a few nanoseconds. Our engineers invented DIC technology here at the University of South Carolina, have over 200 years of combined experience, and are recognized as world leaders in its continued development. Our broad network of authorized distributors provide peace of mind knowing that unmatched technical support and training are readily available anywhere in the world.

Rail Neutral Temperature & Strain Measurement with VIC-3D

Precisely determining the rail neutral temperature can help insure the integrity of track and the safety of train operation which makes it important in many rail-based engineering topics, including:

Quantification of the longitudinal stress: Utilizing thermal imaging and three-dimensional digital image correlation to measure full-field temperature and deformation is a critical component to accurately estimate the rail neutral temperature and quantify the longitudinal stress in the rail.

Strain distribution: The distribution of thermal strain across the rail section is not uniform. The farther a portion of the rail is from the neutral axis, the greater the strain it experiences due to temperature changes.

Rail design: Understanding the location of the neutral axis allows engineers to design rails that can withstand thermal stresses without cracking or buckling.

Rail anchoring: The position of the neutral axis can also influence the design of rail anchors, which are used to secure the rails to the ties and prevent them from moving due to thermal expansion.

The VIC-3D system from Correlated Solutions is a versatile non-contacting measurement solution for all rail applications that require accurate surface shape and strain measurements. These measurements quickly and efficiently validate FEA models while helping to solve a variety of engineering challenges. Just one system supports up to eight camera pairs, which is ideal when measuring multiple areas of the specimen is required. Call today for a quote.

We invite you to visit the sales engineers at the Correlated Solutions booth during the JRC to explore our range of industry-leading digital image correlation systems. And follow us on social media for up-to-date DIC news from around the world.
STANDARD STEEL
Since 1795

Manufacturer of Railroad Wheels and Axles
500 North Walnut Street
Burnham, PA 17009
(717)248-4911

MECHANICAL ENGINEERING
Find Bad Bearings Impacts Wheels Scales Track Now
WE WOULD LIKE TO THANK ALL OF OUR SPONSORS FOR THEIR GENEROSITY AND SUPPORT WHICH WAS PARAMOUNT IN MAKING THE CONFERENCE SUSTAINABLE.
1. Swearingen Lab: Swearingen built in 1987 is named after John E. Swearingen, a former USC Chemical Engineering student, class of 1938.
3. Student Services - Room 100 Office of Academic Affairs and Academic Advisors.
4. CEC Student Organizations List & Awards: Trophies (left wall) There are currently over 35 different engineering and computing student clubs and organizations in the CEC.
5. Classrooms/Computer Labs: CEC students have 24/7 access to computers and printing.
6. Server Room (high performance): CEC has its own network server for high power and speed.
7. Amoco Hall/Classroom - room 1C01: Seats about 300; named after Amoco Oil Company (John Swearingen was the former President).
8. Hall of Undergraduate Research (right wall) Displayed are results of various undergraduate research projects. CEC students are encouraged to participate in research with faculty.
9. Teaching Lab - room 1B15 (example lab): Students get hands-on classroom experience with faculty.
10. CEC Tutoring Lab - room 1A07: Peer tutoring trained tutors are available; only college with its own separate Student Success tutoring branch.
11. CEC Career Center - room 1A03: Full-time staff assist with internships/community experience; only college with its own separate Career Center branch.
12. Stairs - 2nd floor: Leads to classrooms in the 2A Hall; the class sizes average about 36:1.

Flip over for more CEC info!

Swearingen Engineering Center 301 Main St. Columbia, SC 29208 www.cec.sc.edu

CEC Fun Facts:
- The USC College of Engineering was founded in 1909.
- CEC is the 3rd largest college on campus (enrollment).
- The Mechanical Engineering major has the largest student enrollment.
- We offer an Accelerated Masters program - students can get a Bachelor’s and a Master’s in 5 years.
- Biomedical, Chemical, and Civil majors have the highest female enrollment.
- Students have 24/7 access to computer labs and get 250 free prints per semester.
- The CEC is currently creating a 3D Printing makerspace in Swearingen.
- As a freshman, there are no separate applications or requirements to be accepted into the College of Engineering and Computing.

Map Key:

A. Swearingen Center - 301 Main St. Classrooms, labs and offices; houses the Chemical, Biomedical and Electrical departmental offices.
B. Catawba Building - 1200 Catawba St. Biomedical Engineering labs.
C. 300 Main Building - 300 Main St. Classrooms, labs and offices; houses the Mechanical, Aerospace, Nuclear, Civil & Environmental departmental offices.
D. Horizon Parking Garage - 519 Main St. (First Floor) Classrooms.
E. Horizon Center - 519 Main St. Offices and research labs.
F. Horizon II Innovation Center (IBM Building) - Corner of Blossom and Assembly St. Classrooms and offices; houses the Integrated Information Technology, and Computer Science and Engineering departmental offices.
Parking is located in the Key Road lots

Address: 1040 Key Road

Enter at the pedestrian walkway from parking lots. Walk left around the concourse to the gate labeled Founders Zone and take the elevators up to floor labeled Founders Zone.