IDETC 2019

The motion formalism for flexible multibody systems: A practical introduction

Olivier A. Bauchau, Alfonso Callejo, and Valentin Sonneville

Department of Aerospace Engineering University of Maryland College Park, MD, U.S.A.

This course provides a practical introduction to the analysis of flexible multibody systems based on the motion formalism. Theoretical foundations and numerical aspects will be covered. The course is intended for researchers interested in efficient simulation tools for flexible multibody systems.

The course will take place during the three days, Aug. 16–18, preceding The ASME 2019 International Design Engineering Technical Conferences (IDETC 2019) in Anaheim, California. A set of detailed lecture notes as well as illustrative software will be provided.

Program

When dealing with multibody dynamics, one of the core difficulties lies in the description of the kinematics of the system. The traditional approach has been to decompose motion into independent displacement and rotation fields, using the rotation tensor to represent the latter. In contrast, the motion formalism treats motion as a unified quantity. Several kinematic representations are available, such as homogeneous transformation matrices, motion tensors, dual quaternions, and screws. This unified framework comes with powerful mathematical tools that enable a deeper understanding of kinematics. All derivations can be performed without global parameterizations of motion, minimizing their importance. The motion formalism opens the door to novel, efficient numerical methods. In particular, it offers a simple and consistent way to describe rigid-body transformations, leading to the definition of frame-invariant relative motions in kinematic joints and deformation measures in flexible components. This approach also enables the formulation of frame-invariant equilibrium equations, called intrinsic equilibrium equations, that filter out geometric non-linearities. Finally, the systematic use of material frames leads to constant system matrices that reduce computation costs dramatically.

The following topics will be covered in this course:

- Motion formalism. Geometric description. Representations. Parameterizations.
- Flexible multibody formulation. Finite element approach. Intrinsic equations.
- Kinematic joints. Modal reduction. Floating frame of reference. Geometrically exact beams.
- Time integration. Domain decomposition. Parallel computing.
- Sensitivity analysis. Design optimization.

Schedule

Friday, Aug. 16 2019		
09:00	Introduction	Outline of the course
		Motivation
09:30	Rigid body motion I	Geometric description
		Derivatives
10:45	Coffee break	
11:00	Rigid body motion II	Representations
	_ *	Parameterization
12:15	Lunch break	
13:30	Rigid body motion III	Equations of motion
	_ *	Time integration
14:45	Coffee break	
15:00	Implementation	Motion manipulation
16:00	Coffee break	
16:15	Implementation	Rigid body motion
17:15		
Sature	day, Aug. 17 2019	
09:00	Kinematic joints I	Flexible joint
10:15	Coffee break	
10:30	Kinematic joints II	Lower pair joints
11:45	Coffee break	
12:00	Implementation	Double pendulum
13:00	Lunch break	
14:15	Modal superelement I	Modal reduction
15:30	Coffee break	
15:45	Modal superelement II	Floating frame of reference
17:00	Coffee break	
17:15	Implementation	Rotating beam
18:15		
Sunday Aug. 16 2010		
Sunda	y, Aug. 16 2019	1/2:
09:00	Geometrically exact beam I	Kinematics
10.15	Coffee breek	Equations of motion
10:15	Competizelly supet heavy II	Finite element interrelation
10:30	Coffee breek	r inte element interpolation
11:40	Implementation	Potating beam
12:00	Implementation	Rotating beam
13:00	Sonsitivity analysis	Direct method
14:15	Sensitivity analysis	Adjoint method
15.20	Coffee breek	Aujoint method
15:30		Design entimination
15:45	Implementation	Design optimization
10:40		

Suggested literature

- O. A. Bauchau, A. Callejo, S. L. Han, and V. Sonneville. The Motion Formalism for Flexible Multibody Dynamics. 2018. Course notes.
- [2] Andreas Müller. Screw and lie group theory in multibody kinematics. *Multibody System Dynamics*, pages 1–34, 2017.
- [3] S. L. Han and O. A. Bauchau. Manipulation of motion via dual entities. Nonlinear Dynamics, 85(1):509–524, July 2016.
- [4] V. Sonneville, A. Cardona, and O. Brüls. Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Computer Methods in Applied Mechanics and Engineering, 268(1):451-474, 2014.
- [5] V. Sonneville and O. Brüls. A formulation on the special Euclidean group for dynamic analysis of multibody systems. *Journal of Computational and Nonlinear Dynamics*, 9(4):041002, 2014.
- [6] O. A. Bauchau and S. L. Han. Flexible joints in structural and multibody dynamics. *Mechanical Sciences*, 4(1):65–77, 2013.
- [7] O. Brüls, A. Cardona, and M. Arnold. Lie group generalized-alpha time integration of constrained flexible multibody systems. *Mechanism and Machine Theory*, 48:121–137, February 2012.
- [8] O. A. Bauchau. Flexible Multibody Dynamics. Springer, Dordrecht, Heidelberg, London, New-York, 2011.
- [9] E. Pennestrì and R. Stefanelli. Linear algebra and numerical algorithms using dual numbers. Multibody System Dynamics, 18:323–344, 2007.
- [10] M. Borri, L. Trainelli, and C. L. Bottasso. On representations and parameterizations of motion. *Multibody Systems Dynamics*, 4:129–193, 2000.
- [11] J. Angeles. Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algorithms. Springer-Verlag, New York, 1997.
- [12] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.
- [13] M. Géradin and A. Cardona. Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra. *Computational Mechanics*, 4:115–135, 1989.
- [14] J. C. Simo. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering, 49(1):55–70, 1985.