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This course provides a practical introduction to the analysis of flexible multibody systems based
on the motion formalism. Theoretical foundations and numerical aspects will be covered. The course
is intended for researchers interested in efficient simulation tools for flexible multibody systems.

The course will take place during the three days, Aug. 16–18, preceding The ASME 2019
International Design Engineering Technical Conferences (IDETC 2019) in Anaheim, California. A
set of detailed lecture notes as well as illustrative software will be provided.

Program

When dealing with multibody dynamics, one of the core difficulties lies in the description of the
kinematics of the system. The traditional approach has been to decompose motion into independent
displacement and rotation fields, using the rotation tensor to represent the latter. In contrast,
the motion formalism treats motion as a unified quantity. Several kinematic representations are
available, such as homogeneous transformation matrices, motion tensors, dual quaternions, and
screws. This unified framework comes with powerful mathematical tools that enable a deeper
understanding of kinematics. All derivations can be performed without global parameterizations
of motion, minimizing their importance. The motion formalism opens the door to novel, efficient
numerical methods. In particular, it offers a simple and consistent way to describe rigid-body
transformations, leading to the definition of frame-invariant relative motions in kinematic joints and
deformation measures in flexible components. This approach also enables the formulation of frame-
invariant equilibrium equations, called intrinsic equilibrium equations, that filter out geometric
non-linearities. Finally, the systematic use of material frames leads to constant system matrices
that reduce computation costs dramatically.

The following topics will be covered in this course:

• Motion formalism. Geometric description. Representations. Parameterizations.

• Flexible multibody formulation. Finite element approach. Intrinsic equations.

• Kinematic joints. Modal reduction. Floating frame of reference. Geometrically exact beams.

• Time integration. Domain decomposition. Parallel computing.

• Sensitivity analysis. Design optimization.
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Schedule

Friday, Aug. 16 2019
09:00 Introduction Outline of the course

Motivation
09:30 Rigid body motion I Geometric description

Derivatives
10:45 Coffee break
11:00 Rigid body motion II Representations

Parameterization
12:15 Lunch break
13:30 Rigid body motion III Equations of motion

Time integration
14:45 Coffee break
15:00 Implementation Motion manipulation
16:00 Coffee break
16:15 Implementation Rigid body motion
17:15

Saturday, Aug. 17 2019
09:00 Kinematic joints I Flexible joint
10:15 Coffee break
10:30 Kinematic joints II Lower pair joints
11:45 Coffee break
12:00 Implementation Double pendulum
13:00 Lunch break
14:15 Modal superelement I Modal reduction
15:30 Coffee break
15:45 Modal superelement II Floating frame of reference
17:00 Coffee break
17:15 Implementation Rotating beam
18:15

Sunday, Aug. 16 2019
09:00 Geometrically exact beam I Kinematics

Equations of motion
10:15 Coffee break
10:30 Geometrically exact beam II Finite element interpolation
11:45 Coffee break
12:00 Implementation Rotating beam
13:00 Lunch break
14:15 Sensitivity analysis Direct method

Adjoint method
15:30 Coffee break
15:45 Implementation Design optimization
16:45
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[7] O. Brüls, A. Cardona, and M. Arnold. Lie group generalized-alpha time integration of con-
strained flexible multibody systems. Mechanism and Machine Theory, 48:121–137, February
2012.

[8] O. A. Bauchau. Flexible Multibody Dynamics. Springer, Dordrecht, Heidelberg, London, New-
York, 2011.

[9] E. Pennestr̀ı and R. Stefanelli. Linear algebra and numerical algorithms using dual numbers.
Multibody System Dynamics, 18:323–344, 2007.

[10] M. Borri, L. Trainelli, and C. L. Bottasso. On representations and parameterizations of motion.
Multibody Systems Dynamics, 4:129–193, 2000.

[11] J. Angeles. Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algorithms.
Springer-Verlag, New York, 1997.

[12] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation.
CRC Press, 1994.
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