ASME INTERPACK 2024

		Plenary T	alks	Technical Sessions		Break	ks Lunch Presenta	tions Workshops/Panels	ASME Meetings	5		Student Posters		Track Keynote:	;	т	utorials		Pane	ls		
	8:00 AM	8:30 AM	9:00 AM 9:3	IO AM 10:00 AM	10:30 AM	11:00 /	AM 11:30 AM 12:00 PM	12:30 PM 1:00 PM	1:30 PM 2:00 PM	2:3	30 PM 3:00 PI	M 3:30 PM	4:00 PM	4:30 PM	5:00 PM	5:30 PM	6:00 PM	6:30 PM	7:00 PN	1 7:30 F	M 8:00 PM	8:30 PM
Day 1 October 7, 2024													Registration	Opens				Lead	lership Din	ner -By invitat	ion Only	
	7:45 AM	8:00 AM - 9:30	AM	9:30 AM - 10	:45 AM		11:00 AM - 12:15 PM	12:15 PM - 1:30 PM	1:30 PM - 2:15 PM		2:30 PM	- 03:45 PM	3:50	PM - 5:15 PM			5:45 PM-6	6:45 PM	7:	00-7:30 PM	7:30-8:00 PM	
Day 2 October 8, 2024	Opening Remark	OUSD IBAS RESHAPE Project (California DE)	The Use of Additive Hybrid Electronics as a Key Element in the National Strategy for Advanced Packaging (California DE)	03-01: Electronics Electrical Design 02-01: Data Centers Edge Systems - 07-01: Transportation and Machine Learnir Reliability Eval Additively Manufact and Stretchable E Experiments, Mr Application (Salon A	Packaging - (Salon C) and Modular (Salon B) n Systems, Al g - 1 (Salon K) Jation of ured Flexible (ectronics - ddels, and ns	BREAK	03-02: Electronics Packaging- <u>Components (Salon C)</u> 04-01: Power/RF Electronics and <u>Photonics - (Salon-1)</u> 06-01: FHE Design & Reliability (Salon M) Data Center and Telecom Challenges and Opportunities (Salon A)	Lunch Avram Bar-Cohen Award (California GJFH)	Passive Two-Phase Cooling of Electronics and Energy Efficiency (Salon D) Al/ML and Industry Trends (Salon E)	BREAK	03-04: Electro Stress and Reli 02-02: Data Cer Edge System 04-02: Power/R Photonics Machine Learni (Sal	nics Packaging - ability I (Saton-C) tters and Modular ns - II (Saton-B) F Electronics and i - II (Saton L) ing for Electronics Ion A)	03-05: Electr Re 06-02: Advan Printed Women	itability II (Salon C ced Materials & Pro Electronics - I (Sal in Engineering (Sa	itress and cesses for on M)		Interactive Pos (California	ster Session a GJFH)	K-	16 Committee Meeting (Open) (Salon D)	K-16 Committee Meeting (Closed) (Saton D)	
Day 3 October 9, 2024		SRC's Microelectronics and Advanced Packaging Technologies (MAPT) Roadmap: Driving a New Era of Innovation in Semiconductors and Digital Twins (California DE)	2.5D/3D Integration for High-Speed Light Engines (California DE)	03-06: Electronics Stress and Reliabilit 01-01: Heterogeneou (Salon A 06-04: Materials & F RF Electronics 'Net zero compu cooling and he (Salon I	Packaging - y III (Salon C) is Integration) rocesses for Salon M) ting: Liquid- at reuse ()	BREAK	03-07: Electronics Packaging - stress and Reliability IV (Salon Co 20-03: Data Centers and Modula Edge Systems - III (Salon B) 06-05: FHE Applications & Processing (Salon M) Advancing Electronics Packaging and Heterogeneous Integration: Insights From Intergrate 2020 Insights From Intergrate 2020 Insights From Intergrate 2020 Insights From Intergrate 2020 Insights From Intergrate 2020	Lunch InterPACK24 Allan Kraus Award (California GJFH)	Size and Timescale Matching for Transient- Aware Thermal Management (Salon D) Efficient energy systems/sustainability/ba ttery (Salon E)	BREAK	03-08: Electro Reliabilit 02-04: Data Cer Edge System 07-03: Transport and Machini (Sal Thermal/Mech Challenges and Mobile/Wireless e and Higher I Devices	nics Packaging - ty (Salon C) ters and Modular ns. 1V (Salon B) tation Systems, Al e Learning - III ton K) annical/Electrical Opportunities for s/AI/07/Automotiv Power Compute (Salon A)	05-03: Multi Energ 06-06: Advand Printed 03-09: Elect K16	scale Thermal Tran y Storage -III (Salot ced Materials & Pro telectronics II (Salot tronics Packaging - (Salon C) Mentoring (Salon J	sport and h L) cesses for on M) Thermal I		InterP Meeti (Closs (Salor	ACK Inter ing Mee ed) (Op n D) (Sald	PACK eting pen) on D)	EPPD Meeting (Open) (Salon D)		
Day 4		ARPA-E COOLERCHIPS Technology for a Future of Energy	Data Center Industry's Supply Chain Readiness	03-10: Electronics Thermal II (Two-pha 05-01: Multiscal Transport and Ener (Salon I	Packaging - se) (Salon-C) Thermal gy Storage -I)	EAK	03-11: Electronics Packaging - Thermal III (Salon-C) 05-02: Multiscale Thermal Transport Benergy Storage-II (Salon L)	Lunch InterPACK24 Awards	Wearable Ultrasound Technology	EAK	03-12: Electro Thermal IV Convectio 02-06: Data Cen Edge System	nics Packaging - (Single Phase on) (Salon C) nters and Modular ns -VI (Salon B)	03-03: Elect 07-02: Tran Machir	ronics Packaging - (Salon C) Isportation System 1e Learning -II (Salo	Materials s, Al and in K)							
October 10, 2024		Efficient High Power Density/Al Data Centers (California DE)	and Scalability for Liquid Cooling (California DE)	02-05: Data Centers Edge Systems -\ Government (S	and Modular (Salon B) alon-M)	BRE	22-07: Data Centers and Modula Edge Systems -VII (Salon B) Flexible Electronics (Salon M)	(Nasser Grayeli Poster, EPPD, JEP (California GJFH)) Additive Manufacturing for electronic devices and interconnects	BRE	06-07: FHE Prin (Sal Two-phase Flo Cooling	nting & Packaging lon M) w for Electronics g (Salon A)	05-03: Multi Energ 06-03: Printer	scale Thermal Tran y Storage -III (Salor d Electronics for W Health (Salon M)	sport and 1 L) earables &							

Session	Submission Name	First Author	Author Affiliation
	Wide-Field, Subsurface Bond Health Evaluation of Heterogeneously-Integrated	Amun	
01 01. Hotorogonoouo	Microelectronics Using Frequency Domain Thermoreflectance	Jarzembski	Sandia National Laboratories
Integration	A Thermal Reduced Order Model for Power Throttling Simulations of a 3D IC	David Geb	Ansys, Inc.
Integration	Parametric Thermal Design for Heterogeneously Integrated High-Power	Yunhyeok	
	Packages	Im	Georgia Institute of Technology
		Ahmad R.	
	Exploring the Impact of CRAH Unit Partial Failure in Hybrid-Cooled Data Centers	Gharaibeh	Binghamton university
02-01: Data Centers and		Lochan Sai	
Modular Edge Systems -I		Reddy	
	Bio-Analysis of Cross-Mixed Coolants in High Powered Liquid Cooled Data	Chinthapart	
	Center	hy	University of Texas at Arlington

Session	Submission Name	First Author	Author Affiliation
	Liquid to Liquid In-Row Coolant Distribution Unit Characterization for High Power	Himanshu	
	Data Center	Modi	The University of Texas at Arlington
	Review of Commercial One-Dimensional Thermo-Fluid Solvers for Liquid Cooled	Bharath	
	Server System	Ram Ravi	Celestica
02-02: Data Centers and	Numerical Analysis of Immersed Confined Coaxial Liquid Jet Impingement Heat	Faramarz	
Modular Edge Systems- II	Transfer for Electronics Thermal Management	Kahbandeh	Faramarz
		Saeel	
	Topology Optimization of Heat Exchange Surfaces Using Ann-Based Anisotropic	Shrivallabh	
	Flow and Thermal Submodels	Pai	Purdue University
	Experimental Investigation of Single-Phase Forced Convection Heat Transfer	Bolape	
02-03: Data Centers and	With Water in Compressed Copper Foam	Alade	Villanova University
Modular Edge Systems -	Effect of Aspect Ratio and Flow Rate on the Flow Regimes and Thermal	Yousaf	
	Performance of Two-Phase Micro-Channel Cold Plates for Direct to Chip Cooling	Shah	Villanova University
		Ryan	
	Passive Direct Liquid Cooling for High-Power Processors	Enright	Seguente Inc.
	Numerical Study of Two-Phase Immersion Cooling Limits for Bare Die Packages		
02-04: Data Centers and	With Novec 649	Tanya Liu	Google
Modular Edge Systems -	Numerical Study of Single-Phase Immersion Cooling Limits for Bare Die	Sadegh	
IV	Packages	Khalili	Google
	Data Center Industry's Supply Chain Readiness and Scalability for Liquid Cooling	Ani Natekar	Meta Platform Inc.
	Maturation of Pumped Two-Phase Liquid Cooling to Commercial Scale-Up	Russell	
	Deployment	Tipton	Vertiv
	Investigation of Server Level Direct-To-Chip Two Phase Cooling Solution for High	Akshith	
02-05: Data Centers and	Power GPUs	Narayanan	Accelsius
Modular Edge Systems -V	Advancing in Data Centers Thermal Management: Experimental Assessment of	Omar Al-	
	Two-Phase Liquid Cooling Technology	Zu'bi	Binghamton University
	Thermal Performance of Common Cold Plate for Pumped Single- and Two-Phase	Devdatta	
	Direct Liquid Cooling for Next Generation High Power Server Processors	Kulkarni	Intel Corporation
	Commissioning and Thermohydraulic Characterization of a Single-Phase Liquid-	Deogratius	
02-06: Data Centers and	Cooled High-Density Data Center Rack	Kisitu	Villanova University
Modular Edge Systems -		Jacob	
VI	Experimental Study of Electrochemical Additive Manufacturing (Ecam) Cold	Lamotte-	
	Plates for Cooling Non-Uniform Heat Dissipation	Dawaghreh	The University of Texas at Arlington
		Saeed	
02-07: Data Centers and		Moghadda	
Modular Edge Systems-	Upper Limits of Phase Change Heat Transfer in Immersion Cooling	m	University of Florida
VII	Dielectric Fluid Based Optimization Approach for Heat Sinks in Single-Phase	Akiilessh	
	Immersion Cooling	Sivakumar	The University of Texas at Arlington

Session	Submission Name	First Author	Author Affiliation
	Experimental Study on Heat Capture Ratio in Single Phase Immersion Hybrid	Akiilessh	
	Cooling	Sivakumar	The University of Texas at Arlington
	Experimental Study of Electrochemical Additively Manufactured (Ecam) Heat	Joseph	
	Sinks for Single-Phase Immersion Cooling	Herring	The University of Texas at Arlington
02-08: Data Centers and	Thermal Performance of Low GWP Dielectric Fluid for Two-Phase Immersion	ANIL	
Modular Edge Systems -	Cooling	YUKSEL	HPE
VIII	Pool Boiling Performance of Low Gwp Dielectric Fluids for Immersion Cooling in	Cheng-Min	
VIII	Data Center Applications	Yang	Oak Ridge National Laboratory
	Topology Optimization of Electronic Line Using Computer Aided Engineering	Kotaro	
	Software	Miura	Hirosaki University
03-01. Electronics		Ho-Chuan	Siliconware Precision Industries
Packaging - Electrical	The Key Factors for Impedance Control in Embedded Trace Substrates	Lin	Co.,Ltd.
Design	Advanced Thermal Aware Mobile SoC Floorplan Design Optimization by	Myunghoon	
DealBu	Integrating Proactive Design Rule Check Process and Evolutionary Algorithms	Lee	Ansys
	Enabling Reduced Footprint SMT Components in IC Packages: A Simulation-	Nidheesh	
	Based Approach for Solder Paste Volume Optimization	Puliyath	Qualcomm Technologies Inc.
	Fabrication and Passive Assembly of Compact, Broadband Substrate-To-Die	Drew	Massachusetts Institute of
03-02: Electronics	Evanescent Couplers for Sustainable Pbps Co-Packaged Optics	Weninger	Technology
Packaging - Components	Comparing Wire Bonding Strategies for High Power Applications	Whit Vinson	University of Arkansas
	State of Health Estimation Model Development for Li-Ion Battery Lifetime		
	Considering Calendar Aging and Post-Knee Degradation	Ved Soni	Auburn University
	Evolution of Non-PFAS Underfill Properties Under High-Temperature Storage and	Madhu	
03-03: Electronics	Hygrothermal Exposure	Kasturi	Auburn University
Packaging - Materials	Process-Performance Interactions Under Exposure to Sustained High		
	Temperature for Additively Manufactured Electronics and SMT Assembly With	Sabina	
	Low-Temperature Curable Adhesives	Bimali	Auburn University
	Microvia Geometry Assessment at High-Stress Substrate Locations in Printed	Mujahid	
	Circuit Boards Under Thermomechanical Stresses	Abbas Syed	Yokohama National University
03-04: Electronics	Evaluation of Warpage Deformation in Semiconductor Device Packaging Process	Taiju Yagi	Yokohama National University
Packaging - Stress and	Effects of Package Position and Constraint Conditions on Fatigue Life of QFP	Nozomi	
Reliability I	Interconnect Structure Under Random Vibration	Shimamura	Yokohama National University
The dubling f		Aniket	
	Modelling Effect of Isothermal Aging of Anisotropic SaAgCu(SAC) Solder Joint	Bharamgon	
	Using Crystal Viscoplasticity	da	University of Maryland
	Reliability Analysis of SAC Solder Under Thermal Fatigue for Encapsulated GaN	Patrick	
	Packages	McCluskey	University of Maryland, College Park

Session	Submission Name	First Author	Author Affiliation
		Shrinath	
	Minimizing Die Cracking Risk by Copper Pillar Design Optimization for Advanced	Shrinivas	
03-05: Electronics	5nm Silicon Node	Ramdas	Marvell Technology
Packaging - Stress and	Evolution of Mechanical Properties and Microstructure of SAC305 Lead Free	Mahbub	
Reliability II	Solder Subjected to Mechanical Cycling and High Temperature Aging	Alam Maruf	Auburn University
	Comparisons of Mesoscale and Conventional Techniques to Predict Thermal	Debabrata	
	Cycling Induced Solder Joint Deformation Behavior	Mondal	Auburn University
		Souvik	
	Effect of Die Parameters on the Thermomechanical Performance of PBGA	Chakrabort	
	Packages With Hybrid SAC-LTS Interconnects	У	Auburn University
		Golam	
03-06: Electronics		Rakib	
Packaging - Stress and	Mechanical Characterization and Aging Behavior of iSAC Lead Free Solder	Mazumder	Auburn University
Reliability III	Effect of Bismuth Concentration on the High Strain Rate Characteristics of Sn-		
	Ag-Cu Solders and Analysis of High-g Level Shock Damage During Extended	Vishal	
	Sustained Operation at 100°C	Mehta	Auburn University
	Sequential High Temperature and Hygrothermal Exposure on the Evolution of	Madhu	
	Interfacial Fracture Toughness of TIM-Copper and EMC Interfaces	Kasturi	Auburn University
	Sequential High-Temperature Aging and High Humidity Exposure of	Aathi	
	Chip/Underfill Interfaces to Investigate the Evolution of Interfacial Stress	Panduranga	
02 07. Flootropico	Intensity Factor in FCBGA Stress Intensity	n	Auburn University
03-07. Electronics		Aathi	
Packaging - Stress and	Investigation of Interfacial Reliability and Comparison Non-PFAS Underfills in	Panduranga	
Reliability iv	FCBGAs Under Humidity and High-Temperature Exposure	n	Auburn University
		Nakul	
	Warpage Prediction Improvements for Thin Package-on-Package Architectures	Kothari	Qualcomm Technologies
	Study on the Impact of Prolonged High-Temperature Exposure on the Reliability	Vishal	
	of Lead-Free Solder Joint Assemblies Under Vibration	Mehta	Auburn University
		Padmanava	
02 00: Flootropico	Hygrothermal Aging Evolution of Non-PFAS FCBGA Interfaces	Choudhury	Auburn University
Dookoging Dolighility		Padmanava	
Packaging - Reliability	Sequential High Humidity and Isothermal Evolution of UF-Substrate Interface	Choudhury	Auburn University
		Ehsan	
	Exploring Signal Processing Techniques for Resolution Enhancement in Scanning	Dehghan	
	Acoustic Microscopy for Microelectronic Package Inspection	Niri	Arizona State University
03-09: Electronics	Advances in Thermal Analysis Techniques to Address the Growing Thermal	Мо	
Packaging - Thermal I	Challenges With Heterogeneous Packaging	Shakouri	Microsanj LLC

Session	Submission Name	First Author	Author Affiliation
	Fundamental Study on Practical Measurement Method of Anisotropic Thermal	Natsumi	
	Conduction Performance Using Zig-Zag Jigs	Kimura	Kanazawa Institute of Technology
	High-Precision Thermal Characterization of Ultra-Low Thermal Resistance		
	Copper Nano-Wire (CuNWs)-Polydimethylsiloxane (PDMS) Composite Thermal		
	Interface	Kaiying	
	Materials (TIMs) Tape	Jiang	Stanford university
	Characterization of Heat-Curable Thermal Interface Materials and Influence on		
	Package Thermal Performance	Kevin Cox	Tektronix Component Solutions
	Scalable Large-Area Two-Phase Capillary-Enhanced Micro-Cooler Using Silicon		
	Microchannel Fin Array With 3D Silicon Manifold for High-Heat-Flux Electronics	Heungdong	
	Cooling Application	Kwon	Stanford University
03-10: Electronics	Capillary-Based Two-Phase Cooling for High Power Density Power Electronics	Yujui Lin	Stanford University
Packaging - Thermal II	Mitigation of Boiling-Induced Thermal Degradation Using Microporous Nickel	Kaiying	
(Two-phase)	Inverse Opal (NIIOs) Structures	Jiang	Stanford university
		Luke	
	Implementation and Assessment of Various Thermal Management	(Gyubin)	
	Strategies/solutions in 3d Dense Integrated Circuits	Min	Stanford University
	Additively Manufactured Cold Plate Integrated With Evaporator Wicks and Phase	Mohammad	
03-11: Electronics	Separators for Thermal Management of Multiple High-Heat-Flux Heat Sources	Reza Shaeri	Advanced Cooling Technologies, Inc.
Packaging - Thermal III		Chengdong	
	Reduced-Order Modelling for Efficient Chip-Package-Board Design	Yuan	Jade University of Applied Sciences
	Basic Study on Transient Flow Control Technique in Narrow Flow Passage With		
	Flow Separation Region for Maximization of Cooling Performance of Heating	Daiki	
03-12: Electronics	Elements	Kobayashi	Kanazawa Institute of Technology
Packaging - Thermal IV	Computational Fluid Dynamics (CFD) Modeling and Optimization of Large-Scale		
(Single Phase	(3 cm X 3 cm) Silicon-Based Embedded Microchannels With 3D Manifold Micro-	Daeyoung	
Convection)	Coolers	Kong	Stanford University
	Microscale Transport Phenomena and Bubble Dynamic in Microfluidic	Yonglin	The Hong Kong University of Science
	Electroless Copper Interconnection for Chip 3d Integration	Zhang	and Technology
	Thermophysical Property Measurement of GaN-on-AIN Wafers for Next-	Husam	
	Generation RF Device Technologies	Walwil	Pennsylvania State Universioty
04-01: Power/BE	A Numerical Study on Die-Integrated Manifold Microchannel Heat Sinks		
Flectronics and	Considering Transistor-Level Heat Dissipation of GaN Based MMIC Devices	Orcun Yildiz	Aselsan Inc.
Photonics -I		Conor	
	Standardized Approach for Assessing Fiber Device Resiliency	Galligan	MIT Lincoln Laboratory
	Thermal Management System of an Outer-Rotor-Motor-Based Traction Drive	Bidzina	National Renewable Energy
	With Integrated Power Electronics in its Central Cavity	Kekelia	Laboratory

Session	Submission Name	First Author	Author Affiliation
	Enhanced RF and Thermal Performance of 400 W GaN-on-SiC S-Band Amplifier		
04.02: Dowor/DE	MMICs Using CVD Diamond Heat Spreaders	Ian Friel	Element Six (UK) Ltd
Electronics and	Efficient Cooling Solutions for High Heat Flux Electronics: Ann Optimization of	Seungwoo	Korea Advanced Institute of Science
Photonics -II	Jet Impingement and Micropost Systems	Kim	and Technology (KAIST)
	Evaluating the Transient Thermal Dynamics of High Al Content Algan Channel	Georges	
	Hemts	Pavlidis	University of Connecticut
	Evaporative Thermal Management of Batteries in Electric Vehicles Using Flexible	Myriam	
	Structures	Bouzidi	Georgia Institute of Technology
	Comprehensive Analysis of Two-Phase Flow Boiling for IT Equipment Cooling: A	Mohammad	
05.01: Multicoplo	System and Component-Level Approach	Reza Najjari	CoollT Systems
Thormal Transport and	Enhanced Passive Cooling in Thermal Interface Materials via Encapsulated	Joshua	
Enormy Storago	Phase Change Material Additives	Kasitz	University of Arkansas
Energy Storage -		Amanie	
		Abdelmessi	
	Cooling Electronics by Direct Contact With Liquids	h	California Baptist University
	Enhanced Pool Boiling Heat Transfer Using Re-Entrant Surfaces	Yimin Zhou	University of Michigan-Ann arbor
		Valentin	The University of Illinois at Urbana-
		Belosludtse	Champaign, Department of
	Optimized Single-Phase Cooling of Multi-Chip Modules	v	Mechanical Science and Engineering
05-02: Multiscale		Soonwook	University of Illinois at Urbana-
Thermal Transport and	Dynamic Phase Change Material for High Power Electronics Cooling	Kim	Champaign
Energy Storage -II	Simulation of Evaporating Cooling in Micropillar Array for Chip Thermal	Sumanta	
	Management	Acharya	Illinois Institute
	Measurements of Strain-Dependent Thermal Properties of Elastocaloric	Ronald	
	Refrigeration Materials	Warzoha	United States Naval Academy
		Valentin	The University of Illinois at Urbana-
	Electrochemical Additive Manufacturing of Three-Dimensional Topology	Belosludtse	Champaign, Department of
	Optimized Fins for High Heat Flux Thermal Management Applications	v	Mechanical Science and Engineering
	Quantitative Thermophysical Property Characterization of Thin Layered	Kazuyoshi	
05-03: Multiscale	Structures by Means of Combined Thermoreflectance-Nid Algorithm Technique	Fushinobu	Tokyo Institute of Technology
Thermal Transport and	Performance of Topology Optimized Cold Plate Designs for Cooling Arrays of	Avinash	
Energy Storage -III	Discrete Heat Sources	Bairwa	Purdue University
		Ashwani	
	Criteria for Transition From Bubbly to Elongated Bubbles Flow Regime	Verma	University of Florida
	Enhancement of Thermal Boundary Conductance in Wide and Ultrawide	Chung-Ping	
	Bandgap Semiconductor Devices With Interlayer	Но	University of Florida

Session	Submission Name	First Author	Author Affiliation
	Behavior of Printed Hybrid Electronic Assemblies With Embedded Components		
	in Polymeric Substrates Subject to Extreme Acceleration Levels and Elevated	Hayden	
Deliebility	Temperatures	Richards	University of Maryland
neuability	Wearable Ultrasound Technology	Sheng Xu	UC San Diego
	Hybrid Electronics Integration and Design for Reliability	Janos Veres	NextFlex
	Thermal Cycling Reliability on Encapsulated Flexible Printed Circuit Fabricated	Sabina	
	With Water-Based Ink and Room-Temperature Curable Adhesive	Bimali	Auburn University
	Performance and Reliability of In-Mold Direct-Write Signal Processing Circuits in	Md Golam	
	Sustained High-Temperature Operation	Sarwar	Auburn University
06-02: Advanced	Additively Printed Circuits Using Biodegradable Substrates on Aerosol-Jet With		
Materials & Processes for	Aqueous-Based Silver Conductive Paste Using ECA and Low-Temperature	Daniel	
Printed Electronics-1	Interconnects	Karakitie	Auburn University
	Comparative Performance Analysis of Screen-Printed Structures on PET and		
	BPET Substrates Utilizing Low-Temperature ECA and MACA for SMD Component	Shriram	
	Attachment	Kulkarni	Auburn University
		David	
	Synthesis of 2d Material and Nanoparticle Inks for Advanced Device Applications	Estrada	Boise State University
06-03: Printed	Sustainable and Cost-Effective Paper Based Dry Electrodes Leads for Health	Babatunde	
Flectronics for	Monitoring	Falola	Binghamton University (SUNY)
Wearables & Health	Seeing the Sound: An Ultrasound-Based Intravascular Light Source for Non-	Guosong	
	Invasive Neuromodulation	Hong	Stanford University
	Study of Liquid Metal Inks on Textile Fibers via Direct-Write for a Novel Multi-	Adria	
	Layer Rf Application	Kajenski	University of Massachusetts Lowell
06-01. Materials &	3D-Printed Multifunctional Flexible Sensors for Low-Frequency Magnetic Field	Richard	
Processes for BF	Detection and Manipulation	Harry	Tuskegee University
Electronics		Mousa Al-	
	Aerosol Jet Printed Coplanar Waveguides on Hpfs Substrates	Zanina	Binghamton University
		Shenqiang	
	Hybrid Additive Manufacturing of Flexible Copper-Based Electronics	Ren	University of Maryland
	Oscillator Performance on Thermoformed Additive In-Mold Electronics for	Aditya	
	Automotive Applications	Harsha	Auburn University
06-05: FHE Applications	Evaluation of Additively Printed Filters on High-Temperature Performance on the	Daniel	
& Processing	Aerojet Platform Using Ceramics Substrate and Laser Ablation Process	Karakitie	Auburn University
		Christopher	
	Printed Liquid Electronics for Ultra-Soft Stretchable Electronics	Tabor	Air Force Research Laboratory
	Effect of Passivation Layer and Line Thickness on Damage Mechanism of Flexible	Kazuki	
	Ag Nanowire Interconnects Under High Density Current	Hisasue	Hirosaki University

Session	Submission Name	First Author	Author Affiliation
	Water-Based Inks and Low-Temperature Interconnects for Direct-Write	Fatahi	
	Fabrication of Flexible Electronics Under Thermal Cycling	Musa	Auburn University
00.00. Advanced	Thermal Cycling Reliability of In-Mold Direct Write Additively Printed Integrator		NextFlex National Manufacturing
Materiale & Broosses for	and Active Low-Pass Filter	Scott Miller	Institute
Printed Electronics	Performance and Reliability Comparison of Thermoformed, Screen-Printed		
	Structures on Polycarbonate (PC) and High Impact Polystyrene (HIPS)	Shriram	
	Substrates Under Sustained High Temperatures for In-Mold Electronics	Kulkarni	Auburn University
	Innovative Materials for Additive Manufacturing	Daniel Slep	ChemCubed, LLC
	Validation and Translation of Process Monitoring Tools for Commercial Aerosol		
	Jet Printing Systems	Ethan Secor	Iowa State University
	Reliability of Direct Write Additively Printed Sustainable Flexible Circuitry With	Md Golam	
06-07: FHE Printing &	ECA Under Sustained High-Temperature Operation	Sarwar	Auburn University
Packaging	Evaluation of Printed Logic Circuits With Additively Packaged GaN Bare Die		
	Devices at High Temperatures	Ved Soni	Auburn University
	Multiphysics Modelling of Direct-Write Hollow Pillars for Microfluidic I/o by Uv-		The Hong Kong University of Science
	Assisted Coaxial Printing	Qianwen Xu	and Technology
07-01. Transportation	Predictive Machine Learning Models for LiDAR Sensor Reliability in Autonomous	Saba	
Systems Al and Machine	Vehicles	Farahani	University of California, Irvine
Learning -I	Nusselt-Constrained Physics-Driven Learning for Condensation Heat Transfer in		
20011118	Non-Condensable Gas	Haeun Lee	Chung-Ang University
07-02: Transportation		Dheeraj	
Systems, Al and Machine	Anti Theft Control of Automatic Teller Machine Using Wireless Sensors	Royal	srm university
Learning -II			SRM Institute of Science and
U	Intelligent Packaging Is Changing Transportation	Md Sameer	Technology
07-03: Transportation	Revolutionizing Transportation Systems With Ai and Machine Learning:	Koushik	SRM INSTITUTE OF SCIENCE AND
Systems, Al and Machine	Innovations and Impacts	Mahto	TECHNOLOGY,CHENNAI
Learning -III	"Revolutionizing Transportation: The Role of Ai and Machine Learning in Modern	Aditya	
	Mobility"	Singh	SRMIST
	Electro-Thermal Co-Simulation for Sic Power Module Based on Ltspice-Matlab-		
	Comsol	Juho Park	Chung-Ang university
	Thermal Spreading Resistance Analysis for High Heat Flux Removal in Power	K .	
	Modules of Evs/nevss	nana Kang	Chung-Ang university
08-01: Interactive	Enhanced Boiling Heat Transfer on a Large Surface Area With an Integrated	Youngseob	School of Intelligent and Energy
Presentations	Micropillar and Microporous Copper Structure	Lee	Industry, Chung-Ang Univ
	Hierarchical Structure with Laser-Induced-Roughness for Enhanced Pool Boiling	Jeonghwan	Chung_Ang University, Advanced
			mermai System Lab.
		Harsnith	COMICT
	Inermal Transport	Tadikonda	SKMIST

Session	Submission Name	First Author	Author Affiliation
	Advancements in Heterogeneous Integration for Next-Generation Electronic	Amokh G	
	Systems	Nair	SRM IST
	Optimizing Data Management: The Role of Data Centers and Modular Edge	M Vaishnavi	
	Systems in the Digital Era	Prabha	SRM IST
	Wire Bonding Strategy Comparison for High Power Applications	Whit Vinson	University of Arkansas
	Improvement of Adhesion Reliability of Epoxy Adhesives Under Environment of	Taro	
	High Temperature and High Humidity by Surface Treatment of Adherend	Katayama	Gunma University
	Opportunity for Encapsulated Phase Change Material Passive Cooling in Thermal	Joshua	
	Interface Materials	Kasitz	University of Arkansas
	Bondability and Corrosion Resistance of Cr-Free Brazing Filler for Solid Oxide	Коуа	
	Fuel Cells	Tsukagoshi	Gunma University
	Aluminum Powder-Based Bonding Materials: Preparation Techniques and		
	Characterization of Their Bonding Properties	Rika Goto	Gunma University
	Effect of Ag Addition on Microstructure and Mechanical Properties of Sn-Sb-Ag-	Kentaro	
	Ni-Ge Lead-Free Solder	Kawai	Gunma University
		Karishma	SRM INSTITUTE OF SCIENCE AND
	Improving Electronic Cooling With Nanostructured Materials	Prasad	TECHNOLOGY - KTR CAMPUS
	Comparison of Low Melting Point Lead-Free Solder for Flip Chip Bonding in	Shota	
	Mechanical Properties With Sn-Ag-Cu Solder	Umeda	Gunma University
		Yashwad	SRM INSTITUTE OF SCIENCE AND
	Advancements in Multiscale Thermal Transport and Energy Storage Technologies	Shaik	TECHNOLOGY
	Exposure to Sustained High Temperatures in Additively Manufactured		
	Electronics Created With Water-Based Ink and Low-Temperature Curable	Sabina	
	Adhesives	Bimali	Auburn University
		Padmanava	
	Accelerated Life Testing Reliability of Pfas-Free Fcbga Interfaces	Choudhury	Auburn University
	Aerosol-Jet Printing of Additive Circuits on Biodegradable Substrates Using		
	Aqueous-Based Silver Conductive Paste With High and Low-Temperature	Daniel	
	Interconnects	Karakitie	Auburn University
	Evaluation of Interfacial Fracture Toughness of Tim/copper and Emc/substrate	Madhu	
	Interfaces Exposed to Sequential Isothermal and Hygrothermal Loading	Kasturi	Auburn University
	Reliability of Conductive Epoxy Joints in Flexible Electronics Undergoing	Sara	
	Vibration	Lieberman	Binghamton University
	Mechanical Properties of Lts and Sac+bi Subjected to High Strain Rate With	Mrinmoy	
	Isothermal Aging	Saha	Auburn University
	Reliability of Additively Printed In-Mold Electronics With Eca Under Sustained	Md Golam	
	High Temperature Operation	Sarwar	Auburn University

Session	Submission Name	First Author	Author Affiliation
	Impact of Thermal Cycling on the Reliability of In-Mold Direct Write Additively	Fatahi	
	Printed Integrators and Active Lowpass Filters.	Musa	Auburn University
	Aging and Humidity Effect of Non-Pfas Tims and Ufs Thermal Conductivity		
	Evolutions	Yunli Zhang	Auburn University
		Aathi Raja	
		Ram	
	Probing the Effects of Sequential Environmental Stressors on Chip/underfill	Panduranga	
	Interfacial Toughness in Fcbga Assemblies for Automotive Applications	n	Auburn University
	Investigations on the Effects of Extended High-Temperature Exposure on the	Vishal	
	Reliability of Lead-Free Solder Joint Assemblies Under Vibrations	Mehta	Auburn University
	Performance Comparison of Screen-Printed Structures on PET and BPET		
	Substrates With Low-Temperature ECA and MACA for SMD Component	Shriram	
	Attachment	Kulkarni	Auburn University
	Unified Cell Lifetime Model Development for Soh Estimation of Li-Ion Batteries		
	Considering Calendar Aging and Post-Knee Degradation	Ved Soni	Auburn University
	Performance of Oscillator Circuit in Additive In-Mold Electronics for Automotive	Aditya	
	Applications	Harsha	Auburn University
	Advances in Flexible, Wearable, and Printed Electronics: Processing, Reliability,	Harshith	
	and Applications	Tadikonda	SRMIST
		Hiranmoy	SRM Institute of Science and
	Thermal Management of 3d Rf Pop Based on Ceramic Substrate	Dey	Technology
		Jeevan	S.R.M INSTITUTE OF SCIENCE AND
	Low-Temperature Lead-Free	Kumar Yalla	TECHNOLOGY
	Utilizing Ansys Icepak for Capstone Thermal Systems Design in Mechanical	Kevin R.	
	Engineering Education	Anderson1	NA
		Devadharsh	SRM Institue of Science and
	Thermal Optimization of Smartphone Components	ini S	Technology
	Experiential Learning in Electronic Cooling Design Using Ansys Icepak: A	Dinesh	SRM Institute of Science and
	Capstone Course Perspective	Kumar S	Technology
	Enhancing Electronics Cooling Efficiency Through Advanced Heat Transfer		SRM INSTITUTE OF SCIENCE AND
	Analysis With Ansys Icepak and Ai/ml Integration	Leni Nikitaa	TECHNOLOGY
			srm institute of science and
	Thermal Management of High-Power Led Arrays	Pradeep T	technology kattankulathur
		Gowshigan	
	Thermal Management of Autonomous Vehicle Electronics	М	SRM
	Enhancing Electronics Cooling Efficiency Through Advanced Heat Transfer	Ramjimaha	
	Analysis With Ansys Icepak and Ai/ml Integration	devan Rg	SRM

Session	Submission Name	First Author	Author Affiliation
		Raajneel	
	Cold Plate and Liquid Cooling Thermal Analysis	Ray	SRMIST
	Enhanced Pool Boiling Heat Transfer Using Re-Entrant Surfaces	Yimin Zhou	University of Michigan