

SBC 2025 SUMMER BIOENGINEERING CONFERENCE

PROGRAM

CONFERENCE JUNE 22–25, 2025

HYATT REGENCY TAMAYA RESORT AND SPA SANTA ANA PUEBLO, NEW MEXICO, USA

https://event.asme.org/SBC

The American Society of Mechanical Engineers • ASME [®]

SBC 2025

This conference was supported by the National Science Foundation's Civil, Mechanical, and Manufacturing Innovation Division (Biomechanics and Mechanobiology) under award number 2526752. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of National Science Foundation; nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

Congratulations to the 2024 Cover Art Contest Winner:

Susannah Waxman and Ian A. Sigal, University of Pittsburgh

Title: Circulation celebration: capillaries throw a party with lipofuscin confetti in the monkey optic nerve, multiphoton microscopy paparazzi

Description: Fluorescently-labeled vasculature and autofluorescent lipofuscin in the non-human primate optic nerve visualized across 800µm in depth. This vasculature provides essential metabolic support to the neurons that bridge the eye and brain, enabling vision. Visualizing the vasculature helps us understand its healthy function and changes that may threaten vision. Deep imaging was enabled by tissue clearing and multiphoton microscopy. This 2D representation of a 3D image is color-coded by depth, with yellow at the sample surface, red in the middle, and purple at the sample base.

Table of Contents

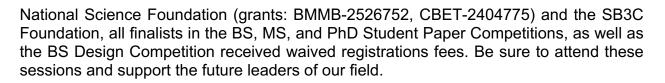
Forward and acknowledgement	4
Code of conduct	6
General Information	7
Special Sessions, Plenary	15
Speakers, and Workshops	
Awards	23
Scientific sessions	31
Sponsors	107
Reviewers	115
Program at a glance	117

Forward and Acknowledgement

Dear ASME BED Community,

BC 2025

Welcome to SBC2025! We are thrilled to gather with so many colleagues and friends at the beautiful Grand Hyatt Tamaya Resort in Santa Ana, Pueblo. This year's conference will include 50 stellar scientific sessions and 15 special sessions and workshops, all centered around our theme: *Transforming Healthcare through Bioengineering*. This theme underscores how innovation in bioengineering, biomechanics, and biotransport continues to shape the future of health care for all.


Our plenary speaker, Dr. Manu Platt, exemplifies this vision of accelerating healthcare solutions through interdisciplinary engineering. Dr. Platt, formerly at Georgia Tech, now leads the NIH's Center for Biomedical Engineering Technology Acceleration (BETA Center), a national model for rapid development, validation, and dissemination of biomedical technologies that meet emerging healthcare needs. A widely recognized researcher and Fellow of the American Institute for Medical Biological Engineering (AIMBE), Dr. Platt's work embodies the impact of the transformative impact of bioengineering research.

In the United States, the federal government and agencies like the NIH have long supported foundational and translational research, driving innovations in disease diagnostics, prevention, and treatment. As national priorities continue to evolve, it's more important than ever for scientists and bioengineers to be active participants in shaping the future of research. This year, we are happy to host a special AIMBE-led workshop on scientific advocacy, highlighting how researchers can effectively communicate the impact of their work and engage with policymakers to support continued progress in healthcare innovation. We encourage you to attend this important session on Wednesday morning (10-11:30am in Tamaya A) to explore how your voice can contribute to the future of biomedical research.

We are also honored to feature six ASME medal awardees giving presentations at the conference. Their exceptional accomplishments are highlighted in the Whova app and in digital program book. Additionally, a special symposium will honor Dr. John Bischof's 60th Birthday and his pioneering work in thermal bioengineering and biopreservation. Join us in celebrating these remarkable individuals and their lasting contributions to the field.

Of course, we cannot overlook our outstanding student community – the backbone to workforce development and a driving force in healthcare innovation. We're proud to support trainees through a range of events, including networking opportunities, workshops on careers in academia and industry, the Future Faculty Poster Session, the BS Design competition, and the Student Paper Competition. Thanks to support from the

The success of SBC2025 is made possible by the tireless efforts of our ASME staff, the 2025 Organizing Committee, the ASME Bioengineering Division Technical and Student Leadership Committees, the SB3C Foundation, and the generous contributions of our sponsors, exhibitors, and advertisers. We are deeply grateful for this community's continued support.

We look forward to a week filled with science, community, and inspiration—let's make SBC2025 one to remember!

Grace D. O'Connell, PhD Conference Chair University of California – Berkeley

BC 2025

Kristin S. Miller, PhD Program Chair University of Texas at Dallas

Conference code of conduct

BC 2025

ASME is dedicated to a safe, productive, and welcoming environment free from unlawful discrimination or harassment of any kind, including but not limited to conduct based on an individual's race, national origin, citizenship, sex, gender identity or expression, age, sexual orientation, disability or familial status. "Harassment" includes, but is not limited to: verbal comments, jokes, or imagery, unwelcome physical contact or sexual attention.

Should you have any concerns pursuant to this policy or experience or observe any conduct you believe may violate this policy, please immediately contact any ASME staff member or send an email to <u>events@asme.org</u>. You may also report concerns to the ASME HOTLINE at 212-591-8700. Reports to the hotline may be made anonymously.

Conduct believed to be in violation of this policy, as determined within ASME's sole discretion, may result in a warning, removal from or denial of access to ASME-sponsored meetings and events, exclusion from future ASME-sponsored meetings or events on a temporary or permanent basis, or other remedial measures. No refunds will be issued to a meeting participant asked to leave a meeting pursuant to this policy.

General Information

All times below are in MDT.

Registration Hours

The registration desk will be open during the following hours:

Sunday, June 22 12:00 pm – 7:00 pm Monday, June 23 7:30 am – 4:00 pm Tuesday, June 24 7:30 am – 4:00 pm Wednesday, June 25 8:00 am – 1:00 pm

Networking Events

Sunday, June 22, 7:15 – 9:00 PM, Tamaya Pre Function and Veranda

Welcome reception

Please join us for our annual opening reception! The SBC prides itself on being an open and welcoming community. Be a part of it by attending this event, and don't forget to introduce yourself to someone new.

Monday, June 23, 2:30 – 3:45 PM, Puma AB

1st Time Attendee Networking Event

Monday, June 23, 2:30 – 3:45 PM, Wolf AB

Lavender Networking Event

Monday, June 23, 3:45 - 4:55 PM

Student Networking Event

Join us for the SBC 2025 Student Networking Event hosted by the ASME BED Student Leadership Committee (SLC) and SB3C Foundation! All students attending the conference are invited to unwind and connect with one another.

Tuesday, June 24, 5:00 – 6:00 PM, Puma AB

Women's Networking Event

The Women's Networking Group provides a rich environment to bring together women, industry leaders and allies at SBC. This group has been meeting since 2007 with the purpose of providing networking, communication, and recognition opportunities for women involved in the biomechanics field. It also seeks to identify eligible and deserving individuals for awards and

fellow status within ASME as well as other professional societies. We are very excited to get together again at this social gathering in New Mexico!

Tuesday, June 24, 7:00 – 10:00 PM, Sunrise Amphitheater

BEDRock concert

The SBC conference date and venue each year coincides with the annual concert of BEDrock, the world's most influential unknown band. Come dance to the band as it takes us through a history of the BEDrock repertoire. Come see if this is the year we lose a percussionist to spontaneous human combustion! There is never a cover charge and all are invited. Are you a musician with time to rehearse and be part of the band? Please contact Alan Eberhardt at aeberhar@uab.edu.

Wednesday, June 25, 7:00 – 7:30 PM, Tamaya DEFGH Ballroom

Banquet Reception

Wednesday, June 25, 7:30 – 10:00 PM, Tamaya DEFGH Ballroom

Banquet and Awards Ceremony

Be sure to stay through the banquet that closes the conference! In addition to a final gathering with all your colleagues and friends, the winners of the student competitions will be announced. The ASME Medals and awards will be presented at the banquet. You won't want to miss it.

Committee Meetings

BC 2025

The committee meetings listed below are open to all except the ASME BED Executive meeting, the SB³C Foundation Board Meeting, and the JBME Editorial Board Meeting. Attending the open meetings is a terrific way to get more involved with the Bioengineering Division of the ASME.

Sunday, June 22

ASME BED Executive committee meeting	Puma AB	11:30 AM – 1:00 PM
Education open meeting	Puma AB	1:00 – 2:00 PM
Fluid mechanics open meeting	Wolf AB	1:00 – 2:00 PM
Industry open meeting	Eagle A	1:00 – 2:00 PM
Student leadership committee meeting	Eagle B	1:00 – 2:00 PM
Biotransport open meeting	Puma AB	2:00 – 3:00 PM
Tissue and Cellular Engineering open meeting	Wolf AB	2:00 – 3:00 PM
Design, Dynamics, Rehabilitation and Regulation open meeting	Eagle A	2:00 – 3:00 PM
Solid Mechanics open meeting	Eagle A	3:00 – 4:00 PM
Monday, June 23		
ASME-SB ³ C open meeting	Tamaya B	3:45 – 4:55 PM
Tuesday, June 24		
JBME editorial board meeting	Bear B	12:30 – 2:00 PM
Wednesday, June 25		
SB ³ C Foundation board meeting	Eagle B	8:30 AM – 10:00 AM

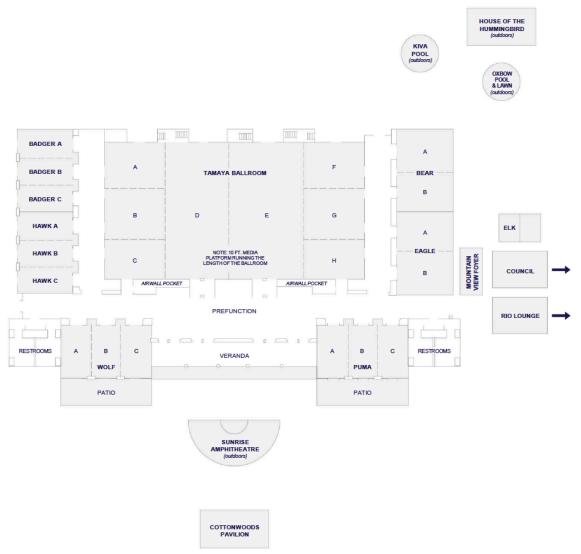
Whova App for the SBC 2025 Conference

ASME SBC 2025 conference information, including the program and schedule, is available on the Whova app, which has additional features including a personal conference agenda, and more. The QR code for the Whova app is below.

Instructions for Poster Presenters

General Session Posters Poster Session I & BS SPC Posters: 1:00 - 2:30 PM, Monday, June 23, Tamaya EFGH Ballroom Poster Session II & MS SPC Posters: 12:30 - 2:00 PM, Tuesday, June 24, Tamaya EFGH Ballroom

Prospective Faculty Poster Session 1:00 - 2:30 PM, Monday, June 23, Tamaya EFGH Ballroom


The poster exhibition hall (Forum) opens at 10:00 AM. Please hang your poster on the board with the number that corresponds to your poster number (P1, P2, etc.), which is provided to you and is also available in the Whova app. Authors should stand next to their poster during their assigned session, and may also stand at their posters at other times.

Posters for Poster Session I and Prospective Faculty Poster Session should be set up before 10:00 AM on Monday, June 23 and must be removed by 4:00 PM the same day. Posters for Poster Session II should be set up before 10:00 AM on Tuesday, June 24 and must be removed by 4:00 PM the same day. Posters that are part of the BS or MS Student Paper Competition (SPC) may stay up throughout both days of poster presentations, from 10:00 AM on Monday, June 23 through 4:00 PM on Tuesday, June 24. For more information about poster presentations, and for instructions for podium presentations, see the Information for Presenters page on the conference website.

Conference Site Map

Nursing room/ Childcare room Wolf A

Conference Organizing Committees

Grace D. O'Connell, Conference chair, University of California, Berkeley

Organizing Committee

Keefe Manning, Conference vice chair, Pennsylvania State University

Kristin Miller, Program chair, The University of Texas at Dallas

Manuel Rausch, Local arrangement chair, University of Texas at Austin

Ethan Kung, Exhibits chair, Clemson University

Mariana Kersh, Students paper competition chair, University of Illinois at Urbana-Champaign

Debanjan Mukherjee, Information Chair, University of Colorado Boulder

Melissa Brindise, Culture & community chair, Pennsylvania State University

Soham Ghosh, Publications chair, Colorado State University

Zhongping Huang, Finance chair, West Chester University

Jonathan Vande Geest, President, SB3C foundation, University of Pittsburgh

The American Society of Mechanical Engineers ® ASME®

ASME-BED Technical Committee Chairs

Biotransport

BC 2025

Sihong Wang, The City College of New York

Chris Rylander, The University of Texas at Austin

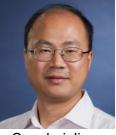
Design, Dynamics, Rehabilitation and Regulations

Anita Singh, Temple University

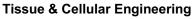
Antonia Zaferiou. Stevens Institute of Technology

Fluid mechanics

Industry


Alejandro Roldan-Alzate, **UW Madison**

Lucas Timmins, Texas A&M University


Solid Mechanics

David Pierce, University of

Songbai Ji, Worcester Connecticut Polytechnic Institute

David Corr, Rensselaer **Polytechnic Institute**

Alix Deymier, University of Connecticut

Clemson

University

University of North Texas

Victor Lai, University of Minnesota Duluth

Education

Chiara Bellini. Northeastern University

Zhongping Huang, West Chester University

The American Society of Mechanical Engineers • ASME®

Student Paper Competition Committee

Mariana Kersh, chair, University of Illinois at Urbana-Champaign

Mary Kathryn Sewell-Loftin, PhD level, University of Alabama at Birmingham

Matthew Bersi, MS level, Washington University in St. Louis

Noelia Grande Gutierez, BS Ievel, Carnegie Mellon University

Anita Singh, UG student design competition, Temple University

Thank you to all committee members, subcommittee members and ASME staff!

Plenary Speaker, Special Sessions, and Workshops

Sunday, June 22	Tamaya D	6:00 – 7:10 PM
J ,	,	

Plenary Lecture: Dynamic Interplay between Biomechanics and Biochemistry in Large Artery Remodeling due to Sickle Cell Disease

Manu Platt, Director, Center for Biomedical Engineering Technology Acceleration (BETA Center), National Institute of Biomedical Imaging and Bioengineering / National Institutes of Health)

Biography: Dr. Manu Platt became the inaugural director of the NIH-wide Center for Biomedical Engineering Technology Acceleration (BETA Center) housed within NIBIB, as a new NIH campus model for accelerating technology-driven interdisciplinary research and clinical translation and to bring engineering, clinicians, and basic scientists together in February 2023. Dr. Manu Platt earned his B.S. in Biology from Morehouse College and Ph.D. from Georgia Tech/Emory in Biomedical Engineering. After a postdoc at MIT, he returned to Georgia Tech/Emory's joint department as an Assistant Professor where he worked up to promotion to full Professor. His research program focuses on proteolytic mechanisms of disease, translational approaches to reduce strokes in people affected by sickle cell disease, and harnessing proteolytic networks and systems biology tools to

BC 2025

predict disease progression. Among other awards, Dr. Platt was awarded the Biomedical Engineering Society Diversity Award, is a Fellow of American Institute for Medical and Biological Engineering (AIMBE), Fellow of Biomedical Engineering Society, the Root 100 in 2019, and AAAS Mentor Award in 2021.

Tuesday, June 24	Tamaya C	8:00 – 9:30 AM
------------------	----------	----------------

Special Session: Cancer Biomechanics and Mechanobiology

Organizer: Meenal Datta, University of Notre Dame

This session explores multidisciplinary approaches to understand and perturb biomechanics and mechanobiology in solid cancerous tumors. Research at the intersection of fundamental mechanics and basic biology reveals previously unknown pathologies and potentially targetable vulnerabilities within tumor microenvironments, particularly by leveraging non-traditional and/or emerging fields and technologies. Talk topics include mechanical property versus mechanical force effects on malignant and non-malignant cells, non-invasive and live-imaging methods to track dynamic mechanobiological signaling, and biomaterials-based approaches to model tumor mechanics and microenvironmental abnormalities.

SBC 2025

Tuesday, June 24

Wolf AB

8:00 - 9:30 AM

Special Session: John Bischof's 60th Birthday - Bioheat and Mass Transfer Research

Organizer: Zhengpeng Qin, The University of Texas at Dallas

Who would believe that John Bischof is turning 60? John has been a pillar of the bioengineering community and the ASME BED for as long as any of us can remember, and for many of us that's a whole lot of years. A thought leader in the biotransport community, John's research impact spans many of the most critical biotransport problems of our generation(s), including cryopreservation & regenerative medicine, focal energy-based therapy, and theranostics. Along the way, he has been a role model and mentor for 32 PhD students, 31 MS students, 22 postdocs, and for most of his friends and mentors as well, including all of us. Eleven of his trainees are now faculty members running their own labs, and his friends and students span the globe. He is at once the star who is continuing to rise – several of us have to keep checking the program to see if it is this year that he is receiving the ASME Mow Medal – and is simultaneously the man whose leadership is timeless. All of us know and admire John as a leader in the community, the visionary who leads his field and leads the Bioengineering Division (BED) of ASME. He has received all of the honors and accolades available to scientist at the University of Minnesota, including UMN's most prestigious professorship, and being selected to lead UMN's globally renowned Institute for Engineering in Medicine. His numerous leadership roles in the ASME Bioengineering Division (BED) and Summer Bioengineering Conference (SBC ± 3) include chairing the biotransport committee and chairing the BED Executive Committee. He was the leader behind the ASME NanoEngineering for Medicine and Biology (NEMB) conference series, a revolutionary conference model for ASME that continues to be viewed as the leading model and one of the greatest conference series of the ASME. In addition to the Mow Medal and the respect and admiration of all of his friends and colleagues, he has received the ASME Heat Transfer Memorial Award. What greater sign could there be of being the field's elder statesman of advanced age than to have already received an award with the name memorial in it? But incredibly, John is only 60, and that means that many of us should be able to remember the days before he started the Bioheat and Mass Transfer lab at Minnesota three decades ago. This is a great opportunity to try to remember all the way back then, and to recognize and celebrate John's career milestones with his trainees, colleagues and the broader SBC community.

List of speakers:

John Bischof, Distinguished McKnight University Professor, Mechanical Engineering Medtronic-Bakken Endowed Chair for Engineering in Medicine, University of Minnesota

Mehmet Toner

Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School; Shriners Children's Boston.

Guillermo Aguilar, Professor and Department Head, J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University

Nichole Rylander, Associate Professor and Werner W. Dornberger Centennial Teaching Fellowship in Engineering, Department of Mechanical Engineering, The University of Texas, Austin

Guy M. Genin, Harold and Kathleen Faught Professor of Mechanical Engineering, Mechanical Engineering and Materials Science, NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis.

Kenneth Diller, Professor, Robert M. and Prudie Leibrock Endowed Professorship in Engineering Department of Biomedical Engineering, The University of Texas, Austin.

Tuesday,	June 24
----------	---------

Tamaya A

2:00 – 3:30 PM

Workshop: Funding Opportunities to Support Health Equity Education and Outreach Activities

Organizer: Stephanie George, East Carolina University

The primary goal of this workshop is to educate attendees on funding opportunities to support health equity education and outreach efforts. Investigators and trainees are typically well-informed of traditional research funding mechanisms; however, many may not have experience in seeking opportunities to support education, outreach. The workshop will focus on opportunities to support education, outreach, broadening participation, and workforce development. Growing a diverse workforce and instilling the core value of equity is paramount to driving healthcare change and innovation. The workshop will bring together funding agencies and community leaders to highlight health equity education and outreach funding opportunities, provide tips on how to successfully secure funding, and encourage collaboration among the SBC community. Key takeaways from the workshop for conference attendees include the following:1) Learn about health equity related education, outreach, broadening participation, and workforce development funding opportunities.2) Learn how to advance and promote health equity through education and outreach.3) Tips for successful proposal preparation.4) How to successfully integrate education and outreach with scholarly activities.5) Identify potential new collaborators and project concepts.

Tuesday, June 24	Tamaya B	2:00 – 3:30 PM
------------------	----------	----------------

Workshop: Funding Transitioning between Academia and Industry

Organizer: Lance Frazer, Southwest Research Institute

The workshop's primary goal is to educate attendees on applying and preparing for potential jobs in Academia (research or teaching-focused tenure-track), emphasizing how they can promote and incorporate health education through Bioengineering. Students will learn more about the academic job application process from different types of institutions (e.g., R1/2, Primarily Undergraduate Institutions). The workshop will offer a discussion-based environment where all attendees can learn the importance of advancing healthcare through Bioengineering. Key takeaways from the workshop for conference attendees include the following: (1) Learn about the importance of health education in Bioengineering, (2) Learn how to advance and promote healthcare in an Academic or Teaching setting, (3) How to prepare and apply for jobs in Academia (e.g., research or teaching-focused positions)

Tamaya C

2:00 - 3:30 PM

Workshop: Women's Health and Engineering

Organizers: Michelle Oyen, Wayne State University; Kristin Myers, Columbia University

This workshop will highlight efforts to advance engineering research in women's health. The importance of supporting, engaging with, and pursuing research in the field of women's health has been brought into stark focus in recent years, with engineers helping to shape a future with equitable healthcare for all. This workshop will feature a panel of distinguished researchers who will share their journeys into the field, highlights of their research, and insights on opportunity areas for future research. Panelists will include Kyoko Yoshida (Assistant Professor, University of Minnesota), Sara Roccabianca (Associate Professor, Washington University), Megan Routzong (Postdoctoral Fellow, UCSD), and Matthew Bersi (Assistant Professor, Washington University). Time will be dedicated for an interactive audience Q&A, and attendees will be provided access to a curated list of resources for those eager to enter or expand their work in this vital space.

Medical Device Workshop: Computational Models in FDA Submissions and the Role of Devices in Healthcare Equity

Organizer: Anita Singh, Temple University

The workshop will focus on raising awareness and informing the audience of FDA strategies that serve to promote and protect the health of diverse populations through research and communication of science that addresses health-care disparities. Additional topics will include details of how to design a new medical device and get it approved for sale. Brief presentations on product design and development processes used in the development of medical devices, getting FDA approval for the device, and where to get help will also be offered. Additionally, the finalists of the NSF-funded UG Design Competition held at SB3C will have a hands-on component aimed at improving upon their design ideas while accounting for issues related to healthcare disparity such as expanding the stakeholder community, understanding diverse patient perspectives, preferences, and unmet needs, and how to design a killer experiment that accounts for enrollment of underrepresented populations etc.

SBC 2025

Tuesday, June 24	Tamaya A	3:30 – 5:00 PM
------------------	----------	----------------

NIH-NSF Program Officer Webinar

Organizer: Grace O'Connell, University of California, Berkeley

Panelists

Shivani Sharma (BMMB, NSF) Steven Zehnder (CBET, NSF) Jessica Falone (NIBIB, NIH)

Tuesday, June 24	Tamaya B	3:30 – 5:00 PM
------------------	----------	----------------

Mentor-mentee Workshop

Organizer: Melissa Brindise, Pennsylvania State University

		1
Tuesday, June 24	Tamaya C	3:30 – 5:00 PM
-	-	

Workshop: The Effect of Biological Sex on Tissue Mechanics Throughout the Body

Organizer: Stephanie Cone, University of Delaware

The importance of biological sex is of great importance across the biomedical research landscape with recent efforts underway to better account for sex differences in experimental planning, to improve reporting of relevant biomarkers, and to enhance the quality of research outcomes across sexes via improved practices. Widespread support for these improvements in both scientific understanding and experimental best practices is evident through both noted researcher interest and major funding initiatives (NIH reporting guidelines, NIH NOSI for Women's Health, NSF Dear Colleague Letters, ARPA-H, etc). In this workshop, we aim to bring researchers from the ASME BED community together to share practices and findings from sex-specific research across four major topic areas in biomechanics: musculoskeletal, brain, cardiovascular, and skin. By assembling speakers across a diverse range of fields, our objective with this workshop is to provide the SBC community with opportunities to learn about and discuss best scientific practices in sex-specific research. Specific topics of discussion will include experimental planning, research challenges, and exciting outcomes in sex-specific studies across the four physiological systems of interest. This workshop will provide attendees with insight into research planning for sex-specific studies from four experts, the opportunity to see research developments outside of their typical field, and a network of fellow researchers with interest in improving research equity by improving our understanding how sex influences tissue mechanics.

Tuesday, J	lune 24

Wolf AB

3:30 - 5:00 PM

Workshop: How to Apply for Academic Positions: Incorporating Health Education in Research and Teaching

Organizers: Luke Mattar, University of Pittsburgh

The workshop's primary goal is to educate attendees on how to apply and prepare for potential jobs in Academia (research or teaching-focused, tenure-track or term, Minority Serving Institutions (MSIs), Predominantly Undergraduate Institutions (PUIs), National Labs, etc.), emphasizing how they can promote and incorporate advancements in health equity through Bioengineering. Based on feedback from prior conferences, students would like to learn more about the job application process for different academic positions. The workshop will offer a discussion-based environment where all attendees can learn the importance of advancing health equity through Bioengineering.

Wednesday, June 25	Tamaya A	10:00 – 11:30 AM
--------------------	----------	------------------

Workshop: The Importance of Advocacy in Bioengineering and Medical Research

Organizers: Dawn Beraud, AIMBE

ASME®

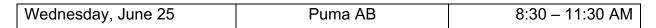
This 90-minute general session will begin with a 10-minute presentation by Dr. Beraud on the critical role of advocacy in the field of bioengineering. Next, we will feature individual presentations from three AIMBE Fellows or Emerging Leaders in the SBC community. Speakers will share different ways they have engaged in advocacy, including their professional experiences, personal anecdotes, and the impact that these activities have had on the fields of bioengineering and biomechanics. We will then host a 30-minute Q&A panel session with audience questions that will be moderated by Dr. Beraud, which serves as an open forum for attendees to learn more about current challenges and opportunities within our evolving science policy landscape. Lastly, we will conclude with closing remarks by Dr. Beraud and the invited speakers, during which we will administer an anonymous survey to evaluate the impact of this session on the attendees' perceptions and interests towards advocacy.

CRIMSON Workshop

Organizers: C. Alberto Figueroa, University of Michigan; Sadman Sadid, University of Michigan; Matt Eden, University of Michigan

CRIMSON is an advanced open-source simulation environment capable of performing state-of-the-art hemodynamics modeling. In this workshop, you will learn how to perform a patient specific hemodynamic analysis from medical images. Emphasis will be placed on demonstrating CRIMSON's dynamic lumped parameter network framework, which enables users to model conditions with transitional physiology, such as hemorrhage and exercise. Furthermore, we will showcase advanced modeling techniques in CRIMSON, such as immersed boundary method, Lagrangian particle tracking, scalar transport, and more!

Wednesday, June 25Tamaya C8:30 - 11:30 A
--


SimVascular Workshop

Organizers: Alison Marsden, Stanford University; Shawn Shadden, University of California Berkeley

SimVascular (www.simvascular.org) is a fully open-source software package providing a complete pipeline from medical image data to cardiovascular blood flow simulation results and analysis. It offers capabilities for image segmentation, unstructured and adaptive meshing, physiologic boundary conditions, and multiphysics simulations. The newly developed svMultiPhysics parallel, finite element solver provides capabilities to simulate tissue and blood flow mechanics, diffusion and electrophysiology. It offers a variety of material models and large deformation fluid structure interaction simulation capabilities. Extensive online documentation and video tutorials with clinical examples are provided online. In addition, a companion project, the Vascular Model Repository (VMR), provides over 275 freely available clinical data sets with image data and simulation results from different vascular regions (www.vascularmodel.com).

In this workshop, we will offer focused sessions tailored to new and experienced users. New users will be guided through step-by-step tutorials, covering basic steps of image segmentation, model construction, meshing, boundary condition assignment, flow simulations, and best practices (and pitfalls to avoid) for high quality results. For experienced users, we will cover advanced topics including an introduction to the flexible svMultiPhysics solver as well as automated segmentation and model construction methods using machine learning for vascular and cardiac models. Users will have the opportunity to discuss current challenges from their research with the SimVascular team and thus participants are encouraged to bring their own models and questions to the workshop.

FEBio Workshop

Organizers: Jeff Weiss, University of Utah; Gerard Ateshian, Columbia University

202

The FEBio workshop will offer beginning and intermediate users of FEBio a full-day course on how to setup FEBio models, run, and analyze them. All demos will be given using FEBioStudio, the new, fully integrated software environment for FEBio. The workshop will be divided in several focused, hands-on sessions, with topics including importing geometry, creating surface and volume meshing, doing solid mechanics and biphasic analyses, handling material anisotropy, setting up contact models, performing parameter optimizations, and more. Participants will also learn proven techniques for debugging their models, avoiding common pitfalls, and improving runtime performance. There will also be opportunities for discussing specific modeling challenges with the FEBio developers, so participants are encouraged to bring their own models and questions to the workshop.

wednesday, June 25 Woll AB 8:30 – 11:30 AM	Wednesday, June 25	Wolf AB	8:30 – 11:30 AM
--	--------------------	---------	-----------------

simVITRO Workshop

Organizers: Robb Colburn, Cleveland Clinic; Axel Moore, Carnegie Mellon University; Alex Hooke, Mayo Clinic; Rohit Badida, Brown University; Logan Shannon, Cleveland Clinic; Tara Nagle, Cleveland Clinic; Elizabeth Pace, Cleveland Clinic; Jeremy Loss, Cleveland Clinic

Many in vitro joint biomechanics researchers, and their in vivo and in silico collaborators, attend the SBC conference but only participate in sessions regarding their specific joint or clinical problem of interest. Best practices, novel methodologies, and unique analysis techniques are not necessarily joint or clinical question specific. Researchers using simVITRO systems have expressed a desire for a workshop to collaborate and discuss these technical challenges and solutions with the greater biomechanical engineering community. At this workshop we aim to present an overview of robot-based orthopedic biomechanics research to newcomers in the field; provide interesting talks on the origins of 6 degree of freedom robotic in vitro joint testing, and present more advanced topics by seasoned researchers developing novel solutions in this field. We also want to provide in vitro, in silico, and in vivo joint biomechanics researchers the ability to network and have on-on-one discussions regarding technical challenges and solutions for collecting in vitro joint biomechanics data.

List of speakers: Robb Colburn, Cleveland Clinic; Axel Moore, Carnegie Mellon University; Alex Hooke, Mayo Clinic; Rohit Badida, Brown University; Logan Shannon, Cleveland Clinic; Tejus Surendran, Carnegie Mellon University; Hiro Fujie, Tokyo Metropolitan University

Awards

3C 2025

2018 Roger D. Kamm 2019 Kenneth R. Diller 2020 Dawn M. Elliott 2021 Maury L. Hull 2022 Michele Grimm 2023 Victor Barocas 2024 James E. Moore 2025 Alan Eberhardt

Robert E. Nerem Education and Mentorship Medal

The Robert M. Nerem Education and Mentorship Medal is given to an individual who has demonstrated a sustained level of outstanding achievement in education and mentoring of trainees. Examples of meritorious activities include leadership within the nominee's institution, mentoring activities that are above and beyond those expected from others employed in similar positions, mentoring activities tailored to meet the needs of the trainees, and innovative mentoring activities.

2025 Alan Eberhardt, PhD

As Professor and Associate Chair of Education, Dr. Eberhardt oversees all activities related to undergraduate and graduate education in the Department of Biomedical Engineering at (UAB). He serves as the Undergraduate Program Director and works with the Graduate Program Director to help maintain and direct the curricula and teaching

responsibilities for each program. For over 30 years, he has been an active and productive researcher in orthopedic and injury biomechanics at UAB and is the Director of the Experimental Biomechanics Core. With respect to mentoring, he has accumulated extensive experience leading innovation and design activities within the School of Engineering. As the recipient of NSF funding (21 years) and NIH funding (13 years), he has mentored student teams through work with clinicians and therapists to develop rehabilitation and assistive devices. He has served as instructor for the senior capstone sequences since 1995 and has coached hundreds of senior capstone students who have designed, constructed, and delivered new or modified prototype medical and rehab equipment. As Director for the Design & Commercialization track within the UAB Master of Science in Engineering Management, he brought these efforts to the graduate level and partnered with the Harbert Institute for Innovation and Entrepreneurship to promote commercialization of student design projects, primarily in rehabilitation and assistive technologies. He has won numerous teaching and mentorship awards, including the 2021 Graduate School Dean's Mentorship Award for Excellence in Mentorship, and the 2012 Ellen Gregg Ingalls UAB National Alumni Society Award for Lifetime Achievement in Teaching.

BC 2025

2005 Kyriacos A. Athanasiou 2006 Robert Lie-Yuan Sah 2007 Lori A. Setton 2008 Scott L. Delp 2009 Michael Sacks 2010 Tony M. Keaveny 2011 David A. Vorp 2012 John Bischof 2013 Jeffrey Weiss 2014 Christopher R. Jacobs 2015 Dawn M. Elliott 2016 Beth A. Winkelstein 2017 Richard R. Neptune 2018 Jeffrey W. Holmes 2019 Tony Jun Huangm 2020 Stavros Thomopoulos 2021 Rafael V. Davalos 2022 Robert L. Mauck 2023 Alison Marsden 2024 Thao D. Nguyen 2025 Yongjie Jessica Zhang

Van C. Mow Medal

The Van C. Mow Medal is bestowed upon an individual who has made significant contributions to the field of bioengineering through research, education, professional development, leadership in the development of the profession, as a mentor to young bioengineers, and with service to the bioengineering community. The individual must have earned a Ph.D. or equivalent degree between ten and twenty years prior to June 1 of the year of the award. The award was established by the Bioengineering Division in 2004.

2025 Yongjie Jessica Zhang, PhD

As Professor Jessica Zhang is the George Tallman Ladd and Florence Barrett Ladd Professor of Mechanical Engineering at Carnegie Mellon University (CMU) with a courtesy appointment in Biomedical Engineering. She received her B.Eng. in Automotive Engineering, and M.Eng. in Engineering Mechanics from Tsinghua University, China; and M.Eng. in

Aerospace Engineering and Engineering Mechanics and Ph.D. in Computational Engineering and Sciences from Oden Institute, The University of Texas at Austin. Her research interests include computational geometry, isogeometric analysis, finite element method, data-driven simulation, image processing, and their applications in computational biomedicine and engineering. Zhang has co-authored over 240 publications in peer-reviewed journals and conference proceedings and received several Best Paper Awards. She published a book entitled Geometric Modeling and Mesh Generation from Scanned Images with CRC Press, Taylor & Francis Group. Zhang's recent major awards include ASME Van C. Mow Medal, AWM-SIAM Sonia Kovalevsky Lecture Award, and Professorship Simons Visitina from Mathematisches Forschungsinstitut Oberwolfach of Germany. She is a Fellow of ASME, SIAM, IAMBE, AIMBE, IACM, USACM, SMA, and ELATES at Drexel. She also received the prestigious US Presidential Early Career Award for Scientists and Engineers, NSF CAREER Award, Office of Naval Research Young Investigator Award, and USACM Gallagher Young Investigator Award. Zhang's current leadership roles in her research societies include Vice President of USACM (rotate to President in 2026), Chair of AIMBE College of Fellows, Chair of SIAM Activity Group of Geometric Design, and Vice Chair of ASME AMD-CONCAM. She is the Editor-in-Chief of Engineering with Computers.

BC 2025

1986 Mark H. Holmes 1987 Steven A. Goldstein 1989 David N. Ku 1990 Jay D. Humphrey 1991 Michael Kwan 1992 Cheng Zhu 1993 John A. Frangos 1994 Mehmet Toner 1995 Cheng Dong 1996 Antony Keaveny 1997 Gerard A. Ateshian 1998 Louis J. Soslowsky 1999 Rebecca Richards-Kortum 2000 Farshid Guilak 2001 David F. Meaney 2002 Jeffrey A. Weiss 2003 Sangeeta N. Bhatia 2004 Richard E. Debski 2005 Jeffrey W. Holmes 2006 Beth A. Winkelstein 2007 Stavros Thomopoulos 2008 Gabriel A. Silva 2009 Robert Mauck 2010 Matthew J. Gounis 2011 Ali Khademhosseini 2012 Marissa Nichole Rylander 2013 Jonathan Vande Geest 2014 W. David Merryman 2015 Adam J. Engler 2016 Triantafyllos Stylianopoulos 2017 Kristin Myers 2018 Spencer P. Lake 2019 Grace D. O'Connell 2020 Matthew B. Fisher 2021 Kristin S. Miller 2022 Zhenpeng Qin 2023 Jessica Oakes 2024 Adrian Buganza Tepole 2025 Spencer Szczesny

Y.C. Fung Early Career Medal

The Y.C. Fung Early Career Award is given to young investigators who are committed to pursuing research in the field of Bioengineering and have demonstrated significant potential to make substantial contribu- tions to the field of Bioengineering. Such accomplishments may take the form of, but are not limited to, design or development of new meth- ods, equipment or instrumentation in bioengineering; and research publications in peer- reviewed journals. The award was established by the Bioengineering Division in 1985 and operated as a division award until 1998 when it was elevated to a Society award.

2025 Spencer Szczesny, PhD

Dr. Szczesny is an associate professor at the Pennsylvania State University with a joint appointment in the Departments of Biomedical Engineering and Orthopaedics & Rehabilitation. He completed his postdoctoral training in 2017 as an NIH NRSA F32 fellow and obtained a PhD in bioengineering in 2015 at the University of Pennsylvania. Prior to his doctorate, Dr.

Szczesny developed medical implants as a design engineer for Aesculap Implant Systems and as a research assistant at the Helmholtz Institute for Biomedical Technology in Aachen, Germany. He obtained a MS in mechanical engineering at the Massachusetts Institute of Technology in 2005 and a BS in mechanical engineering at the University of Pennsylvania in 2003. Dr. Szczesny's research on tendon/ligament mechanics and mechanobiology has been recognized by his 2024 election as an ASME Fellow, a 2022 NSF CAREER Award, 2022 CMBE Rising Star Award, 2016 ORS New Investigator Recognition Award (NIRA) finalist, 2015 Acta Student Award, and two-time winner of the ASME/SB3C PhD competition. Dr. Szczesny has served as cochair of the Mechanobiology Theme within the Tissue and Cellular Engineering ASME Technical Committee, Associate Editor of the journal Connective Tissue Research, member of the Orthopaedic Research Society (ORS) Annual Meeting Program Committee, and member of the ORS Tendon Section Board. Dr. Szczesny is also committed to improving diversity, equity, and inclusion (DEI) within engineering. He currently is a Diversity Advocate for the ASME Journal of Biomechanical Engineering and served as the 2022 SB3C Diversity Chair and member of the ORS DEI Committee.

BC 2025

1977 Robert W. Mann 1978 Y.C. Fung 1979 Robert F. Rushmer 1980 F. Gaynor Evans 1981 Max Anliker 1982 R.M. Kenedi 1983 Henning E. von Gierke 1984 Perry L. Blackshear 1985 Richard Skalak 1986 Albert H. Burstein 1987 Van C. Mow 1988 Alf Louis Nachemson 1989 Robert M. Nerem 1990 Albert B. Schultz 1991 Savio Lau-Yuen Woo 1992 John C. Chato 1993 Don P. Giddens 1994 Sheldon Weinbaum 1995 Robert E. Mates 1996 Albert I. King 1997 Ajit P. Yoganathan 1998 Malcolm H. Pope 1999 Stephen C. Cowin 2000 Morton H. Friedman 2001 W. Michael Lai 2002 Kenneth R. Diller 2003 Vijay K. Goel 2004 John M. Tarbell 2005 Steven A. Goldstein 2006 Peter A. Torzilli 2007 Maury L. Hull 2008 Noshir A. Langrana 2009 Thomas P. Andriacchi 2010 Roger D. Kamm 2011 Jay D. Humphrey 2012 David Butler 2013 Mehmet Toner 2014 Kyriacos A. Athanasiou 2015 James A. Ashton-Miller 2016 Roger C. Haut 2017 Gerard A. Ateshian 2018 Louis J. Soslowsky 2019 Jennifer S. Wayne 2020 Larry A. Taber 2021 C. Ross Ethier 2022 Lori Setton 2023 Boris Rubinsky 2024 Marjolein C. H. van der Meulen 2025 Kai-Nan An

H. R. Lissner Medal

The H.R. Lissner Medal recognizes outstanding achievements in the field of bioengineering. These achievements may be in the form of (1) significant research contributions in bioengineering; (2) development of new methods of measuring in bioengineering; (3) design of new equipment and instrumentation in bioengineering; (4) educational impact in the training of bioengineers; and/or (5) service to the bioengineering community, in gen- eral, and to the Bioengineering Division of ASME, in particular. The Bioengineering Division of ASME established the H. R. Lissner Award as a divisional award in 1977. It was upgraded to a society award in 1987, made possi- ble by a donation from Wayne State University and is named in honor of Professor H. R. Lissner of Wayne State University for his pioneering work in biomechanics that began in 1939.

2025 Kai-Nan An, PhD

Professor Kai-Nan An received his B.S. in Mechanical Engineering from National Cheng-Kung University in Taiwan in 1969. After completing his military service in the Air Force, he went on to Lehigh University in Bethlehem, PA, where he earned his M.S. and Ph.D. in Applied Mechanics in 1973 and 1975, respectively. He then joined the Biomechanics Laboratory at the Mayo Clinic in Rochester, MN, where he

served as Director from 1993 to 2014. In 1993, he was named the John and Posy Krehbiel Professor of Orthopedics at Mayo Medical School. Dr. An has co-authored over 900 scientific articles and book chapters. His research interests span biomechanics, biomaterials, imaging, orthopedics, and rehabilitation. His clinical focus has been on the joint and tissue mechanics of the musculoskeletal system, particularly in the upper extremities. He has been awarded numerous grants from the NIH and industry, and his collaborative work extends globally. Throughout his career, Dr. An has received several prestigious awards, including the Borelli Award from the ASB, the Muybridge Award from the ISB, the Neer Award from the ASES, and the Kappa Delta Award from the AAOS. He has also received Distinguished Alumni Awards from Mayo Clinic College of Medicine and National Cheng-Kung University. Dr. An is an Academician of Academia Sinica, Taiwan.

3C 2025

2023 Dawn Elliot & Robert Mauck 2024 DASI SimulationTeam 2025 John Bishcof & Mehmet Toner

Edward Grood Interdisciplinary Team Science Medal

The Edward Grood Interdisciplinary Team Science Medal in Bioengineering seeks to recognize a team of scientists and engineers who have collaboratively carried out impactful interdisciplinary science and engineering research in the bioengineering field.

2025 ATP-Bio Team: John Bischof & Mehmet Toner

ATP-Bio is focused on halting biological time, enabling living products to be readily available across the globe to advance healthcare, biodiversity, and food sustainability. ATP-Bio is co-led by the University of Minnesota and Massachusetts General Hospital and comprised of 6 institutions (University of Minnesota, Massachusetts General Hospital, UC Berkeley, UC Riverside, Carnegie Mellon and Texas A+M), 30+ faculty, 100+ trainees and more than 40 industrial, academic and non-profit partners. ATP-Bio's biological testbeds include cells for therapy, tissues and organoids for drug discovery and therapeutics, organs for transplantation, and whole organisms to preserve genetic model systems (e.g. Drosophila and Zebrafish), as well as agricultural products and biodiversity. ATP-Bio breakthrough platform technologies include high subzero (e.g. supercooling and partial freezing), and lower subzero cryogenic (e.g. vitrification and isochoric) approaches. These technologies now enable organ and organoid preservation up to months, with the potential to address the organ wait list, and offer solutions for complex diseases such as diabetes, cardiac conditions, and liver failure. Work on whole organisms will allow critical genetic lines from Drosophila and Zebrafish to be banked at stock centers to avoid genetic drift or catastrophic loss and may one day support a lunar biorepository for terrestrial and aquatic species. In addition to research, ATP-Bio is training the workforce for the emerging "Cryo Supply Chain" which comprises a growing innovation ecosystem of commercial, academic and NGO partners. Finally, with our ELSI (Ethical, Legal, and Societal Implications) colleagues, we are evaluating anticipatory governance, regulation, and societal adoption of these transformative technologies.

C 2025

2016 Baruch Barry Lieber 2017 Arthur Erdman 2018 Kyriacos A.Athanasiou 2019 Rita M. Patterson 2020 Mehmet Toner 2021 Daniel Bluestein 2022 Zong-Ming Li 2023 Tamara Bush 2024 Guy M. Genin2025 Umut Atakan Gurkan

Savio L-Y. Woo Translational Biomechanics Medal

The Savio L-Y. Woo Translational Biomechanics Medal was established in June 2015 as a society-level award and recognizes a sustained level of meritorious contributions in translating bioengineering research to clinical application, to improve the quality of life. This award is named in honor of Savio Lau-Yuen Woo, Ph.D., Distinguished University Professor of Bioengineering and the Founder and Director of the Musculoskeletal Research Center (MSRC), a diverse multidisciplinary research and educational center in the Department of Bioengineering at the University of Pittsburgh. Beyond pioneering and world- renowned scholarly contributions, Professor Woo has made an enormous impact in 40 years of translational research that has significantly contributed to the delivery of healthcare. Any member of ASME who has demonstrated a sustained level of outstanding achievement in translating bioengineering findings to the clinical community may be eligible for this medal.

2025 Umut Atakan Gurkan, PhD

Dr. Umut Gurkan is the Wilbert J. Austin Professor of Engineering and leads the Case Biomanufacturing and Microfabrication Laboratory at Case Western Reserve University (CWRU). He holds appointments in Mechanical and Aerospace Engineering, Biomedical Engineering, Orthopedics, the Case Comprehensive Cancer Center, and the Clinical and Translational Science

Collaborative of Northern Ohio. His work centers on microcirculation, vascular mechanobiology and red blood cell biomechanics, driving the development of innovative microfluidic systems and point-of-care diagnostics for blood disorders, aiming for global diagnostic equity. Gurkan's academic journey includes a Ph.D. from Purdue University and postdoctoral training at Harvard-MIT, leading to over 110 publications, 18 US patents, 100+ international patent applications, and the founding of four biotech firms, with products like Gazelle Hb Variant impacting millions across 40+ countries for sickle cell disease and thalassemia screening. His leadership in international technology translation extends from the US to Africa, Middle East, Asia, and India. Recognized globally, Gurkan has received prestigious awards, including, Distinguished Investigator Award from the Association for Clinical and Translational Science, Wiederhielm Award from the Microcirculatory Society, Faculty Distinguished Research Award from the CWRU, Featured New Investigator Award from the Central Society for Clinical and Translational Research, NSF Faculty Early Career Development Award, Rising Star Award from the BMES Cellular and Molecular Bioengineering Division, MIT Technology Review Innovator under 35 Award, and Doris Duke Innovations in Clinical Research Award. He is a Senior Member of the National Academy of Inventors (NAI) and a Fellow of the American Institute for Medical and Biological Engineering (AIMBE

Award Lecture Abstracts

Monday, June 23, 2025, 9:45 – 11:15 AM, Tamaya D Ballroom

Alan Eberhardt, Robert M. Nerem Education and Mentorship Medal

Title: "When will you quit this drumming nonsense?" Lessons in mentoring learned over 40+ years in academia

This talk will tell my history in academia in parallel with my pursuit of music, while highlighting the mentors with whom I was engaged along the way and how they affected my mentoring style. From my "dark years" of 9th and 10th grade, to the completion of my PhD and ultimately to a successful career in academia, I'll share my experiences with great professors and amazing local musicians, who helped shaped my life and were formative in my mentoring style. The recognition that happiness, for me, involves maintaining a healthy mind and body, with a consistent influx of music, helped me to recognize that my students have a life outside of the classroom/lab, and one that I should fully support.

Yongjie Jessica Zhang, Van C. Mow Medal

Title: Integrating Isogeometric Analysis with Deep Learning and Digital Twins to Investigate Neurological Disorders

Coupling physics-based simulation and data-driven modeling have demonstrated great power in predicting complex systems. This talk focuses on integrating an advanced finite element method called isogeometric analysis (IGA) with deep learning and digital twins to address challenging problems in investigating neurological disorders. To investigate neurodevelopmental disorders, we introduce a novel phase field model coupled with tubulin and synaptogenesis concentration to simulate intricate neurite outgrowth and disorders using IGA, dynamic domain expansion and local refinement. By integrating IGA with deep learning and digital twins, we conduct thorough investigations into the functional role of various parameters affecting the neurodevelopmental disorder with comparison to experimental results. To investigate intracellular transport induced neurodegenerative disorders, we develop a PDE-constrained optimization model to simulate traffic jams induced by microtubule reduction and swirl. We also build a novel IGA-based physics-informed graph neural network to quickly predict normal and abnormal transport phenomena in complex neuron geometries.

Spencer Szczesny, Y. C. Fung Early Career Award

Title: To Be or Not To Be: Questions on Tendon Development and Inclusive Science

Tendons have a complicated hierarchical structure that enables them to sustain high tensile loads and facilitate functional activities of daily living. While several structure-function relationships have been identified in mature tendons, the key structural changes that produce a robust tensile loadbearing tissue during development remain unclear. This talk will describe my research utilizing multiscale structural, mechanical, computational, and biological techniques to understand how mature tendons come into being. Additionally, I will discuss my broader efforts to create a more inclusive scientific community and facilitate the development of biomedical engineers. Specifically, I will describe a novel open-source load-controlled tensile bioreactor intentionally designed without a feedback control system to minimize accessibility barriers. Additionally, I will present my research investigating whether the incorporation of education on inequality and bias into engineering curricula improves the sense of belonging and retention of women in biomedical engineering.

Tuesday, June 24, 2025, 9:45 – 10:45 AM, Tamaya D Ballroom

3C 2025

Kai-Nan An, H. R. Lissner Medal

Title: Biomechanics of the Upper Extremities - A Rewarding Career at the Mayo

I was recruited to the Mayo Clinic in the mid-1970s to contribute to the development of arthroplasties for joint replacement of the upper extremities. At the time, I had limited knowledge of design, so fundamental studies were initiated. Experimental measurements and theoretical analyses were conducted. The methods, principles, and concepts developed not only contributed to implant design but also facilitated the clinical understanding of disorder etiologies, diagnoses, treatments, and even prevention. In this lecture, I will discuss the application of biomechanics principles in various areas: pulley reconstruction of the flexor tendon in the hand, tendon transfer in the shoulder, restoration of elbow stability, potential etiology and prevention of carpal tunnel syndrome, and the clinical applications of elastography for soft tissue assessments. Throughout my rewarding career, the most fulfilling aspect has been the fruitful and blessed collaborations between engineers, scientists, and physicians—particularly with my mentors and fellows.

Wednesday, June 25, 2025, 1:00 – 2:00 PM, Tamaya D Ballroom

ATP-Bio Team: John Bischof & Mehmet Toner, Edward Grood Medal

Title: Advanced Technologies for the Preservation of Biological Systems (ATP-Bio): A Shining Example of Convergent Team Science

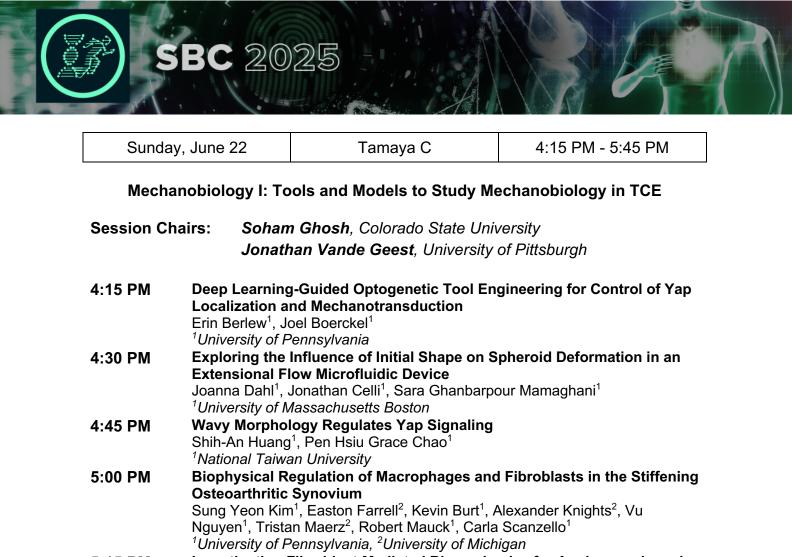
This NSF ERC ATP-Bio focuses on halting biological time to preserve living products, thereby advancing healthcare, biodiversity, and food sustainability. Co-led by the University of Minnesota and Massachusetts General Hospital, ATP-Bio includes six institutions and over 40 partners. The project's biological testbeds encompass cells for therapy, tissues for drug discovery, organs for transplantation, and whole organisms to preserve genetic models, agricultural products, and biodiversity. Its breakthrough technologies, such as high subzero supercooling and cryogenic vitrification, enable long term organ and organoid preservation to address organ shortages and providing treatments for diabetes and liver failure. Additionally, ATP-Bio works to prevent loss or genetic drift of model organisms like Drosophila and Zebrafish, with future plans for supporting a lunar biorepository for other critical species. Along with research, ATP-Bio trains the workforce for the emerging "Cryo Supply Chain" and evaluating governance and societal adoption with its ethical, legal, and societal implications (ELSI) team.

Umut Atakan Gurkan, Savio L-Y. Woo Medal

Title: Bridging the Gap: Innovative Point-of-Care Diagnostics and Personalized Medicine for Global Health Equity

We are in a transformative era for healthcare with innovations like point-of-care diagnostics and genome editing. However, there's a stark gap in access, especially in low- and middle-income countries where diseases like sickle cell anemia disproportionately affect millions, leading to high child mortality. My group's research focuses on understanding biomechanics and biophysics of hemoglobin, red blood cells, and microcirculation, leading to new diagnostic technologies that enhance timely treatment. I'll discuss our approach to engineering solutions tailored for underserved regions, presenting real-world impacts from our clinical studies worldwide, including the deployment of Gazelle Hb Variant technology in over 40 countries.

Scientific Sessions


- 5:15 PM Computational Simulations of Pregnancy Show Biomechanical Benefit of Cervical Cerclage Abigail Laughlin¹, Erin Louwagie², Michael House³, Mirella Mourad¹, Kristin Myers¹ ¹Columbia University, ²Wayne State University, ³Tufts Medical Center
- 5:30 PM Advanced Glycation Endproducts Modulate Collagen Mechanics in Fibrosis: Insights from a Mikado Discrete Network Model Yuxuan Huang¹, Xiangjun Peng², Wenyu Kong², Yanan Du², Guy Genin¹ ¹Washington University in St. Louis, ²Tsinghua University

Sunda	ay, June 22	Tamaya B	4:15 PM - 5:45 PM	
	Grov	wth and Remodeling Mec	hanics	
Session Chairs: Morten Jensen, University of Arkansas				
	Stepha	ane Avril, Ecole des Mines	de Saint-Etienne	
4:15 PM	Numerical Stu Karan Taneja ¹ ,	the Brain Result from Corte dy Maria Holland ¹ , Kengo Saito ² lotre Dame, ² Kanazawa Unive	², Hiroshi Kawasaki²	
4:30 PM	Time Depende Interosseous I Natalia Mciver ¹	nt Mechanical Properties of igament: Evaluating Fiber , Christina Salas ¹ , Deana Mer <i>of New Mexico</i>	f the Scapholunate Recruitment	
4:45 PM	Effects of Axia Aorta of Hyper Ali Akbar Karkh		d Remodeling in the Thoracic	
5:00 PM	The Role of Sex and Testosterone in Tricuspid Valve Leaflet Remodelin Colton Kostelnik ¹ , Chien-Yu Lin ¹ , Shreya Sreedhar ¹ , Magda Piekarska ² , Boguslaw Gaweda ² , Austin Goodyke ² , Tomasz Timek ² , Manuel Rausch ¹ ¹ The University of Texas at Austin, ² Corewell Health			
5:15 PM	Aortic Geomet Hadi Wiputra ¹ , I	t ry and Material Properties i Matthew Bersi ² , Craig Goerge <i>Iinnesota Twin Cities, ²Washi</i>	en ³ , Victor Barocas ¹	
5:30 PM	Postpartum Va Lily Buchanan ¹ ,	aginal Remodeling in Mice of , Matthew Bersi ² , Kristin S. Mi of Texas at Dallas, ² Washing	iller ¹	

SBC 2025

- 5:15 PM Investigating Fibroblast-Mediated Biomechanics for Angiogenesis and Reperfusion in a Three-Dimensional Microfluidic Model Vaishali Bala¹, Mary Katherine Sewell-Loftin¹
 ¹University of Alabama at Birmingham
 5:30 PM High-Throughput Automated Atomic Force Microscope Elastography
 - Using Convolutional Long Short-Term Memory Neural Networks Jonathan Haydak¹, Evren Azeloglu¹ ¹Icahn School of Medicine at Mount Sinai

Sunda	ay, June 22	Wolf AB	4:15 PM - 5:45 PM		
	Head & Injury I				
Session Chairs: Marzieh Memar, The University of Texas at San Antonio Kaveh Laksari, University of California, Riverside					
4:15 PM Material Properties of Arachnoid Trabeculae Using Inverse Finite Element Analysis Leonardo Marin ¹ , Brittany Coats ¹ ¹ University of Utah					
4:30 PM					
4:45 PM	Cortical Curvedness Patterns Alter with Volumetric Expansion During Infancy: A Longitudinal Analysis Cameron Godin ¹ , Maria Holland ¹ ¹ University of Notre Dame				
5:00 PM	The Impact of Perfusion on Hippocampal Brain Mechanics Caitlin M Neher ¹ , Em Triolo ¹ , Oleksandr Khegai ² , Priti Balchandani2, Mehmet Kurt ¹ ¹ University of Washington ² Icahn School of Medicine				
5:15 PM	Human Brain Ruth Okamoto ¹ Philip Bayly ¹ ¹ Washington U	of Head Rotation on the Mech , Jordan Escarcega ¹ , Ahmed Als niversity in St. Louis, ² University	shareef ² , Curtis Johnson ³ ,		
5:30 PM	Football Helm Alireza Abbasi	ffects on the Dynamic Impact et Padding Ghiri ¹ , Morteza Seidi ¹ of Texas at San Antonio	Behavior of American		

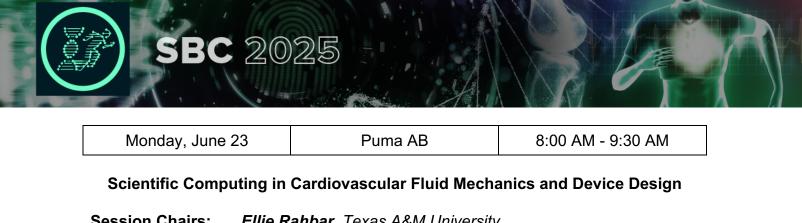
SBC 2025

Sunday, June 22 Eagle A 4:15 PM - 5:45 PM Innovations in Bioengineering Education Pedagogies **Session Chairs:** Hoda Hatoum, Michigan Technological University Joanna Dahl, University of Massachusetts Boston Assessing Self-Assessment Contract Grading in an Engineering Design 4:15 PM **Group Project** Sara Wilson¹ ¹University Of Kansas **Redefining the Use of Evaluation Metrics in Assessing Convolutional** 4:30 PM **Neural Networks for Semantic Segmentation Tasks with Class** Imbalances Sohaila Aboutaleb¹, Nellie Haug¹, Prachi Keni-Mccray², Arthur Mccray³, Heidi Phillips⁴, Stephanie Keating⁴, Julian Norato⁵, David Cohen⁵, Amy Wagoner Johnson¹ ¹University of Illinois Urbana-Champaign, ²Stanford University, ³Stanford University, ⁴UIUC College of Veterinary Medicine, ⁵University of Connecticut Virtual Immersion in Biomedical Engineering (Vibe): Exposing 4:45 PM Undergraduates to Culturally Sensitive Engineering Design and **Professional Experiences at Scale** Kristen Billiar¹, Taimoor Afzal¹, Solomon Mensah¹, Funmi Ayobami² ¹Worcester Polytechnic Institute, ²University of Massachusetts Chan Medical School **Beyond Traditional Metrics: Evaluating Modern Approaches to Research** 5:00 PM Attribution in Biomedical Engineering Anjelyka Fasci¹, Connor Evans², Lyle Hood¹ ¹University of Texas at San Antonio, ²University of Texas Health Science Center at San Antonio Fostering Healthy Competition in the Stem Setting: An Experiential 5:15 PM Workshop Fatiesa Sulejmani¹, Ahmad Bshennaty², Hoda Hatoum² ¹Georgia Institute of Technology, ²Michigan Technological University Virtual Reality for Clinical Immersion 5:30 PM Jennifer Wayne¹, Toru Oyama¹, Cameron Moore¹, Wallace Lages², Farrell Adkins³ ¹Virginia Tech, ²Northeastern University, ³Virginia Tech Carilion School of Medicine

8:00 AM - 9:30 AM Monday, June 23 Tamaya A **Reproductive Mechanics I** Session Chairs: Kara Peak. University of Minnesota Rouzbeh Amini, Northeastern University **Biaxial Contractility and Remodeling of the Murine Uterus with Age** 8:00 AM Mari Domingo¹, Abigail Fisk², Niyousha Karbasion², Raffaella De Vita³, Matthew Bersi², Kristin Miller¹ ¹University of Texas at Dallas, ²Washington University in St. Louis, ³Virginia Tech 8:15 AM Scar-Induced Remodeling of Murine Uterus Involves Dynamic **Biomechanical and Histological Changes** Savannah Chatman¹, Abigail Fisk¹, Niyousha Karbasion¹, Perry Ann Brody¹, John Engelbach¹, Jeffrey Neil¹, Joel Garbow¹, Matthew Bersi¹ ¹Washington University in St. Louis 8:30 AM Methods for in Situ Mechanical Testing of the Murine Vagina Ritika Singh¹, Kristin Miller², Raffaella De Vita¹ ¹Virginia Polytechnic Institute and State University, ²The University of Texas at Dallas 8:45 AM **Regional Differences in Rabbit Vaginal Smooth Muscle Structure and Vaginal Contractile Function** Sophya Breedlove¹, Gabrielle King², Pamella Moalli², Katrina Knight¹ ¹University of Pittsburgh, ²Magee-Womens Research Institute Impact of Cgas Deletion on Vaginal Biomechanics and Composition in a 9:00 AM Mouse Model of Pelvic Organ Prolapse Triniti Vanoven^{1,2}, Mari Domingo², David Matayo², Haolin Shi¹, Maria Florian-Rodriguez¹, Kristin Miller², Isaac Pence¹ ¹UT Southwestern Medical Center, ²The University of Texas at Dallas Statistical Shape Modeling for Quantitative Assessment of Perineal 9:15 AM Body Motion in Patients with an Avulsion Injury to Their Pelvic Floor Durwash Badr¹, Liam Martin¹, Henry Chill², Ali Hadizadeh³, Ghazala Rostaminia³, Steven Abramowitch¹ ¹University of Pittsburgh, ²Hebrew university of Jerusalem, ³University of Chicago, NorthShore University Health System

BC 202

Monday, June 23		Tamaya B	8:00 AM - 9:30 AM
Vascular Biomechanics I			
Session Chairs: Sara Roccabianca, Washington University in St. Louis			
	Ender Fi	nol, The University of Te	exas al San Antonio
3:00 AM	Hemodynamic Ir Vivo Porcine Res Seda Aslan ¹ , Enz Hayashi ⁴ , Joey H Olivieri ⁷ , Narutosh	npact of Graft Displacem sults e Chen ² , Miya Mese-Jones uddle ⁵ , Jed Johnson ⁵ , Mark ni Hibino ⁴ , Axel Krieger ¹ , Th	
¹ Johns Hopkins University, ² University of Wisconsin-Madison, ³ Children's National Hospital, ⁴ University of Chicago, ⁵ Nanofiber Solutions, ⁶ University Maryland, ⁷ University of Pittsburgh			
8:30 AM	Sex- and Region-Specific Differences in Microstructural Remodeling and Passive Biomechanics of the Aorta Correlate with Aneurym Propensity in a Mouse Model of Marfan Syndrome Krashn Dwivedi ¹ , Yufan Wu ¹ , Jacob Rother ¹ , Jessica E Wagenseil ¹		
8:45 AM	 ¹Washington University in St. Louis On the Role of Structural Wall Stress in Aortic Growth Prognosis of Acute Uncomplicated Type B Aortic Dissection Yuhang Du¹, Hannah Cebull², Asanish Kalyanasundaram³, Hai Dong², Marina Piccinelli², John Oshinski³, John Elefteriades³, Rudolph Gleason Jr⁴, Bradley Leshnower², Minliang Liu¹ ¹Texas Tech University, ²Emory University, ³Yale University, ⁴Georgia Institute of Technology 		
9:00 AM	Time and Sex-Dependent Effects of High-Fat Diet and Perivascular Adipose Tissue on Aortic Mechanics in Dahl-Ss Rats Maxwell Hakun ¹ , Dillon Mcclintock ¹ , Matthew Fular ² , Sydney Bush ² , Stephanie Watts ² , Lisa Sather ² , Adam Lauver ² , Gregory Fink ² , Nathan Tycocki ² , Sara Roccabianca ¹ ¹ Washington University in St. Louis, ² Michigan State University		
9:00 AM	Exploring the Mechanical Heterogeneity and Inflammation of Giant Cerebral Aneurysms Sergio Pineda-Castillo ¹ , Yashar Ebadi ¹ , Andrew Grande ¹ , Patrick Alford ¹ ¹ University of Minnesota		
9:15 AM	Experimental an Local Density ar Pete Gueldner ¹ , N Kumbakonam Ra	d Computational Investig Id Failure Strength in Por	y Chung ¹ , T. Kevin Hitchens ¹ , David Vorp ¹



		- 14	
Monday, June 23		Tamaya C	8:00 AM - 9:30 AM
		Engineered In Vitro Mode	ls
Session Cl	Birming	Kathryn Sewell-Loftin, Univ gham niel Dyment, University of F	-
8:00 AM	Tensional Homeostasis in Tissue Equivalents Arises from a Balance Between Cell Contractility and Extracellular Matrix Densification Victor Nguyen ^{1,2} , Andrew Glick ¹ , Bishant Karki ¹ , Huocong Huang ² , Jacopo Ferruzzi ^{1,2} ¹ University of Texas at Dallas, ² University of Texas Southwestern Medical Center		
8:15 AM	A Multi-Physic Mechanisms ir Xun Wang ^{1,2} , Zl Proestaki ¹ , Zhe Roger Kamm ¹	is 3D Human Brain Model Re n Alzheimer's Disease hengyu Zhang ¹ , Annabel Tiong ngpeng Wan ¹ , Rudolph Tanzi ² <i>s Institute of Technology, ²Mas</i>	g ¹ , Seunggyu Kim ¹ , Maria ² , Ming Guo ¹ , Se Hoon Choi ² ,
8:30 AM	Mechanical Tra Organoids Shahrzad Shira Bertucci ² , Sally	auma Causes Genotype-Dep vi ¹ , Alexandra Yufa ¹ , Dylan Mu Temple ² , John Finan ¹ <i>linois at Chicago, ²Neural Sten</i>	urphy ² , Steven Lotz ² , Taylor
8:45 AM	and Surroundi Ascending The Panagiotis Chat Alkiviadis Tsam	ng Tissue of Healthy and An oracic Aortic Wall tzisavvas ¹ , Petros Kroustalias ¹	, Maria Ntina ¹ , David Vorp ² ,
9:00 AM	Investigating A via Non-Destru Density Elizabeth McDo Barroso ² , David	Acquired Resistance in Her2 uctive Assessment of Morph onough ¹ , Lilian R. Murphy ¹ , Ca	+ Breast Tumor Aggregates ology and Regional Cell ssandra L. Roberge ¹ , Margarida
9:15 AM	Development o Stiffening Usin	of an Engineered in Vitro Mo ng Two-Step Photocrosslink Michael Arrington ¹ , Kristan W	del of Outer Retinal Tissue ing

Session Chairs: Ellie Rahbar, Texas A&M University Ethan Kung, Clemson University

- 8:00 AM Optimization of a Pulsatile Fontan Conduit in a Confluence Configuration Zinan Hu¹, Kb Ko¹, Tain Yen Hsia², Jay Humphrey³, Alison Marsden¹ ¹Stanford University, ²Arnold Palmer Hospital for Children, ³Yale University
 8:15 AM Real-Time Shape Optimization of Patient-Specific Fontan Surgical Planning Procedures via Reduced Order Models Imran Shah^{1,4}, Francesco Ballarin², Zhenglun Wei³, Lakshmi Dasi^{1,4}, Alessandro Veneziani⁴
 - ¹Georgia Institute of Technology, ²Università Cattolica del Sacro Cuore, ³Worcester Polytechnic Institute, ⁴Emory University
- 8:30 AM Computational Investigation of Embolic Injury Risk in Patient-Specific Aortas During Cardiopulmonary Bypass Nafis Arefin¹, Bryan Good¹ ¹University of Tennessee
- 8:45 AM Design Optimization to Minimize Hemolysis in a Maglev Centrifugal Left Ventricular Assist Device

Huang Chen¹, Lakshmi Dasi², Nobuyuki Kurita³ ¹University of Nevada, Las Vegas, ²Georgia Institute of Technology, ³Baylor College of Medicine

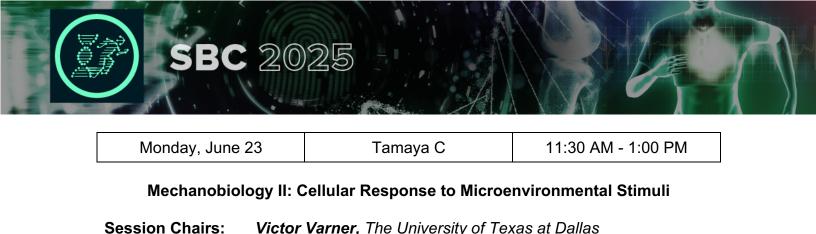
- 9:00 AM Characterizing Uncertainty in Patient-Specific Computational Fluid Dynamics Models of Coronary Arteries Muhammad Usman¹, Akil Narayan², Lucas Timmins¹
 - ¹Texas A&M University, ²University of Utah Realistic and High-Fidelity Hemodynamic Simulation
- 9:15 AM Realistic and High-Fidelity Hemodynamic Simulations of Patient Specific Aneurysm with Flow Diverting Stents Debarun Das¹, Karthik Muthuraman¹, Benedikt Koenig², Avinash Jammalamadaka¹, Gregory Laskowski¹

¹Dassault Systems North America, ²Dassault Systèmes Deutschland

Monday, June 23		Wolf AB	8:00 AM - 9:30 AM	
	Spine and Joints			
Session Chairs: Grace O'Connell, University of California, Berkeley Jill Middendorf, Johns Hopkins University				
8:00 AM Development of a Force Sensing Spinal Rod Bending Simulation Device Joshua Bland ¹ , Hannah Levy ¹ , Alexander Hooke ¹ , Brett Freedman ¹ , Charles Mechas ¹ , Chunfeng Zhao ¹ ¹ Mayo Clinic				
8:15 AM	Using Unique Multiaxial Compressive and Tensile Experiments to Validate an Existing Constitutive Model of the Annulus Fibrosus Craig Almeida ¹ , Jill Middendorf ¹ ¹ Johns Hopkins University			
8:30 AM	Multiscale Modeling for Intervertebral Disc Fatigue Prediction During Long Flight Lance Frazer ¹ , Sarah Shaffer ¹ , Jack Seifert ² , Brian Stemper ² , Dan Nicolella ¹ ¹ Southwest Research Institute, ² Medical College of Wisconsin			
8:45 AM	Enhancing Fracture Risk Prediction for Metastatic Spines by Integrating Baseline Bone Strength Mehran Fereydoonpour ¹ , Asghar Rezaei ² , Areonna Schreiber ² , Lichun Lu ² , Mariusz Ziejewski ¹ , Ghodrat Karami ¹ ¹ North Dakota State University, ² Mayo Clinic			
9:00 AM	Association of Bone Mineral Density with Failure Force During Dynamic Compression of the Lumbar Spine Verushca Gasiorowski ¹ , Rachel Cutlan ¹ , William Curry ¹ , Brian Stemper ¹ ¹ Medical College of Wisconsin			
9:15 AM	Responses in Katie Gallagher	npact Loading Induces DNA Cartilage Explants ¹ , Stephanie Ellyse Schneider Colorado Boulder, ² University o		

8:00 AM - 9:30 AM Monday, June 23 Eagle A Precision health innovations Session Chairs: Chung-Hao Lee, University of California, Riverside Rita Patterson, University of North Texas Performative Characterization of Shape Memory Polymer Scaffolds for 8:00 AM **Endovascular Cerebral Aneurysm Therapeutics** Tanner Cabaniss¹, Yingtao Liu¹, Bradley Bohnstedt², Chung Hao Lee³ ¹The University of Oklahoma, ²Indiana University School of Medicine, ³University of California, Riverside Design of a Preclinical Validation Platform for Patient-Specific Planning 8:15 AM of Pulmonary Artery Reconstruction Shannen B Kizilski¹, Jocelyn M Davee¹, Dominic P Recco¹, Nicholas E Kneier¹, Patrick D Earley¹, Peter E Hammer¹, David M Hoganson¹ ¹Boston Children's Hospital 8:30 AM Older Adult Frontal Plane Angular Momentum and Lateral Distance During 90 Degree Turns While Walking Zahava Hirsch¹, Mitchell Tillman¹, Jun Ming¹, Janine Molino², Antonia Zaferiou¹ ¹Stevens Institute of Technology, ²Brown University Tricuspid Valve Mechanics During Transcatheter Edge-to-Edge Repair: 8:45 AM **Insights From in Vitro Experiments** Collin Haese¹, Trace Larue¹, Diego Guajardo¹, Tomasz Timek², Manuel Rausch¹ ¹The University of Texas at Austin, ²Corewell Health Cardiocomposer: Flexible and Compositional Anatomic Structure 9:00 AM **Generation with Localized Geometric Guidance** Karim Kadry¹, Shoaib Goraya², Ajay Manicka¹, Farhad Nezami², Elazer Edelman¹ ¹Massachusetts Institute of Technology, ²Brigham and Women's Hospital 9:15 AM Patient-Specific 3D Reconstruction of Coronary Stents Using Intravascular Ultrasound: Validation and Applications Wei Wu¹, Usama Oguz¹, Shijia Zhao¹, Changkye Lee¹, Yiannis Chatzizisis¹ ¹University of Miami

8:00 AM - 9:30 AM Monday, June 23 Eagle B **Biotransport: Biotechnology Applications** Session Chairs: Joanna Dahl, University of Massachusetts Boston Vivek Sree, Eli Lilly and Company 8:00 AM Measurement and Correction of Lead Wire Conduction Error for Deep Tissue Sensing Dhru Patel¹, Sara Ho¹, Jalen Dobelbower¹, Emily Brata¹, Alexandra Fowler¹, Jake Richards¹, Hannah Melton¹, Sepideh Khoshnevis¹, Kenneth Diller¹ ¹The University of Texas at Austin Two-Photon Excited Microparticle Thermoluminescence as Thermal 8:15 AM **Conductivity Probe in Biological Systems** Alexandro Deanda¹, Chen Xie¹, Hugo Stolarczyk², Marigold Milano³, Guosong Hong³, Zhenpeng Qin¹ ¹University of Texas at Dallas, ²University of Reims Champagne-Ardenne, ³Stanford University Multi-Functional Medical Foam for Battlefield Wound Care 8:30 AM Amelia Stoner¹, Lynn Pezzanite¹, Steven Dow¹, Kirk Mcgilvray¹ ¹Colorado State University Improving Combat Airway Management: Evaluation of a Multifunctional 8:45 AM Suction System Through Structured End-User Testing in Military Medical Contexts Maria J. Londono¹, Saketh R. Peri¹, Jacqueline Kaase¹, Angeles Gomez¹, Sophia Cavanaugh¹, Anjelyka Fasci¹, Jacob Provencio¹, David Restrepo¹, Robert A. De Lorenzo¹, R. Lyle Hood¹ ¹The University of Texas at San Antonio **Ocular Surface Treatment by Ocufoam Intervention** 9:00 AM Jacqueline Linn¹, Steven Dow¹, Lynn Pezzanite¹, Ethan Young¹, Kirk Mcgilvrav¹ ¹Colorado State University Dielectrophoretic Characterization of HI-60 Cells Infected with 9:15 AM Anaplasma Spp. Sai Deepika Reddy Yaram¹, Soumya K Srivastava¹ ¹West Virginia University



Monday, June 23 11:30 AM - 1:00 PM Tamaya A **Reproductive Mechanics II** Session Chairs: Megan Routzong, University of California, San Diego Lei Shi, Kennesaw State University 11:30 AM Biomechanical Effects of Cesarean Section Scar Location and Niche Presence on the Second Trimester Maternal Anatomy Erin Louwagie¹, Adrienne Scott², Amrita Banerjee³, Maria Ivan³, Abigail Laughlin⁴, Kristin Myers⁴, Raffaele Napolitano³, Anna David³, Michelle Oyen¹ ¹Wayne State University, ²Washington University in St. Louis, ³University College London, ⁴Columbia University **Relaxin Regulates Equilibrium Mechanical Response of the Mouse** 11:45 AM **Cervix During Pregnancy** Serena Russell¹, Bex Pendrak¹, Nicole Lee¹, Sudeshna Tripathy², Mala Mahendroo³, Kristin Myers¹ ¹Columbia University, ²Oregon National Primate Research Center, ³University of Texas Southwestern Medical Center Viscoelastic Properties of Murine Placenta Measured via Micro-12:00 PM Indentation Sean Harrington¹, Ana Vargas¹, Lukas Bose¹, Rouzbeh Amini¹, Frederick Sebastian¹ ¹Northeastern University 12:15 PM Impact of Pregnancy on the Mechanical Behavior of Third-Order **Mesenteric Arteries** Wendell Choi¹, Dillon Mcclintock¹, Katrina Linning-Duffy², Joseph Lonstein², Nathan Tykocki², Sara Roccabianca¹ ¹Washington University in St. Louis, ²Michigan State University Image-Based Computational Modeling of Uterine Mechanics with 12:30 PM **Excitation During Late Pregnancy** Olivia Mergler¹, Parker Mixon¹, Abigail Laughlin¹, Lei Shi², Kristin Myers¹, Vijay Vedula¹ ¹Columbia University, ²Kennesaw State University Increasing Vessel Wall Thickness in a Finite Element Simulation Does 12:45 PM Not Significantly Alter Umbilical Coiling or Tissue Stress Kara Peak¹, Sarah Wernimont¹, Kyoko Yoshida¹, Victor Barocas¹ ¹University of Minnesota

Monday, June 23 11:30 AM - 1:00 PM Tamaya B Vascular Biomechanics II Session Chairs: Mianling Liu, Texas Tech University Hadi Wiputra, University of Minnesota 11:30 AM **Towards Lesion-Specific Stenting Strategies: Establishment and** Validation of a Computational Framework for Vascular Stent Deployment David Jiang¹, Brandon Zimmerman², Steve Maas³, Jeffrey Weiss³, Gerard Ateshian⁴, Lucas Timmins¹ ¹Texas A&M University, ²Lawrence Livermore National Laboratory, ³The University of Utah, ⁴Columbia University Geometry, Mechanics and Axial Stretch Vary Along the Length of 11:45 AM Porcine Aorta Ruturaj Badal¹, Nathan Huntley¹, Weihua Guan¹, Paul laizzo¹, Victor Barocas¹ ¹University of Minnesota Vascular Deformation Mapping Calibration with Physics-Based 12:00 PM Synthetic Data: Applications to 3D Aortic Strain Estimation Taeouk Kim¹, Timothy J. Baker¹, Nicholas S. Burris², C. Alberto Figueroa¹ ¹University of Michigan, ²University of Wisconsin-Madison Biomechanical Implications of Medial Gaps in Cerebral Bifurcations: The 12:15 PM Coupled Role of Collagen Fiber Orientation and Material Heterogeneity Mehdi Ramezanpour¹, Anne M. Robertson¹, Evelyn Hsu², Simon Watkins¹ ¹University of Pittsburgh, ²Harvard University Changes in Aortic Centerline Length/curvature Predict Diameter Growth 12:30 PM of Chronic Type B Aortic Dissection Xue Liang¹, Marc- *Philipp Schmid*², Minliang Liu³, Hannah Cebull¹, John Oshinski¹, John Elefteriades⁴, Rudolph Gleason², Hai Dong¹, Bradley Leshnower¹ ¹Emory University, ²Georgia Institute of Technology, ³Texas Tech University, ⁴Yale University 12:45 PM **Provisional Stenting of Coronary Bifurcations: Insights into Different** Post-Dilatation Strategies by Computational Modeling Shijia Zhao¹, Wei Wu¹, Sartaj Tanweer¹, Changkye Lee¹, Yiannis Chatzizisis¹ ¹University of Miami

 Kristan Worthington, The University of Iowa
 11:30 AM Time-Lapse Analysis of Stress Fiber Organization and Force Evolution Following Stretch Ruiyuan Chi¹, Patrick Alford¹

¹University of Minnesota

- **11:45 AM** Flow–mediated Autologous Chemotaxis of Tumor Cells Aditya Paspunurwar¹, Hector Gomez¹ ¹Purdue University
- 12:00 PM Residual Stress in the Minipig Brain Supports an Expansion-Driven Model of Cortical Folding Ramin Balouchzadeh¹, Christopher Kroenke², Kara Garcia³, Philip

Ramin Balouchzadeh¹, Christopher Kroenke², Kara Garcia³, Philip Bayly¹

¹Washington University in St. Louis, ²Oregon Health and Science University, ³Indiana University School of Medicine

- 12:15 PM Adipokine Dysfunction Alters Meniscus Cell Mechano-Response to Microenvironmental Cues Meghan Kupratis¹, Darcy Huang¹, Elizabeth Bernstein¹, Robert Mauck¹ ¹University of Pennsylvania
- 12:30 PM Contractile Structure-Function Relationship in Umbilical Artery Smooth Muscle Cells After Exposure to Pregnancy Hormones Paige Nielsen¹, Kyoko Yoshida¹ ¹University of Minnesota
- 12:45 PM Compliance Matching of a Trilayer Vascular Graft Decreases Marker of Intimal Thickening Over Long Term Remodeling Katarina Martinet¹, David Maestas¹, Keishi Kohyama¹, Reyhaneh Gholami¹, Kang Kim¹, William Wagner¹, Jonathan Vande Geest¹ ¹University of Pittsburgh

Monday, June 23		Wolf AB	11:30 AM - 1:00 PM
	,		
Joint Biomechanics			
Session Chairs: Stephanie Cone, University of Delaware Luke Mattar, University of Pittsburgh			
11:30 AM	M Stability Contribution of the Linking Component in Total Elbow Arthroplasty Alexander Hooke ¹ , Hiroki Nishikawa ¹ , Gaku Niitsuma ¹ , Ausberto Velasquez Garcia ¹ , Joshua Bland ¹ , James Fitzsimmons ¹ , Chunfeng Zhao ¹ , Mark Morrey ¹ , Shawn O'driscoll ¹ ¹ Mayo Clinic		
11:45 AM	In Vitro Force Measurements During Passive Knee Flexion After Simulated Reconstruction of the Anterior Cruciate Ligament – Does the Magnitude of Graft Tensioning Affect Outcomes Bryan Medina De La Paz ¹ , Natalia Mciver ¹ , Leilani Baker ¹ , Christina Salas ¹ ¹ The University of New Mexico		
12:00 PM	Impact of Sagittal Slope Reducing High Tibial Osteotomy Versus Lateral Extra-articular Tenodesis on ACL Force in Knees with Increased Lateral Tibial Slope: A Biomechanical Computational Study Reza Pourmodheji ¹ , Mark Amirtharaj ¹ , Matthieu Olivier ² , Thomas Wickiewicz ¹ , Andrew Pearle ¹ , Danyal Nawabi ¹ , Carl Imhauser ¹ ¹ Hospital for Special Surgery, ² Aix-Marseille University		
12:15 PM	In-Vivo Joint Dynamics Conserve the Compression and Recovery Responses of Cartilage in Cadaveric Joints Tejus Surendran ¹ , Axel Moore ¹ ¹ Carnegie Mellon University		
12:30 PM	Spring Ligament Reconstruction for Flatfoot Repair: A Biomechanical Comparison of Two Techniques Hui Zhang ¹ , Mahant Malempati ¹ , Maksat Idris ¹ , Bonnie Chien ¹ , Thomas Gardner ¹ , Justin Greisberg ¹ ¹ Columbia University		
12:45 PM	Low Bone Min Failure Under Clarisse Zigan ¹	eral Density Correlates to a Tka Tibial Implants , Peter Sculco ¹ , Cynthia Kahl ¹ , David Mayman ¹ , Jonathan vedo Gonzalez ¹	enberg ¹ , Joseph Lipman ¹ ,

12:30 PM Phase Change Material Based Numerical Model of a Head Cooling System for Firefighters Nabin Khanal¹, Rupak K. Banerjee¹

¹University of Cincinnati

12:45 PM A Novel, 3-D Force Measuring Insole for 'In the Wild' Gait Analysis Seth Siemens¹, Ember Krech², Nicolas Philipp¹, Andrew Fry¹, Benjamin Abell¹, Stephen Houston², Lance Frazer³, Tylan Templin³, Travis Eliason³, Nathan Louis³, Jonathan Miller¹ ¹The University of Kansas, ²Axioforce, ³Southwest Research Institute

Monday, June 23 11:30 AM - 1:00 PM Eagle B **Biotransport: Nano and Micro** Sihong Wang, The City College of New York Session Chairs: Li Zhan, Purdue University **Development of a Vascularized 3D Microfluidic Platform to Investigate** 11:30 AM Lymphovascular Space Invasion and Tumor-Vessel Interactions in Inflammatory Breast Cancer Marissa Nichole Rylander¹, Wendy Woodward², Bisrat Debeb², Melika Mehrabi Dehdezi¹ ¹The University of Texas at Austin, ²University of Texas MD Anderson Cancer Center 11:45 AM Elastin Collagen Nanovesicles - a Novel Platform for Collagen Targeting and Controlled Drug Delivery Ann Thomas¹, Sanjna Rao¹, Kristi Kiick¹, Christopher Price¹ ¹University of Delaware Investigating Cardiac Strain and Glycocalyx Modifications as 12:00 PM **Biomarkers of Cardiotoxicity** Kelsey Buonodono¹, Manuel Sanchez², Roberto Ribas², Ramon Sun², Colleen Crouch¹ ¹University of Tennessee, ²University of Florida Electrospun Nanofibers for Controlled Drug Delivery of Antioxidants 12:15 PM Towards Treatment of Myocardial Infarction Mason Ferbert¹, Frances Imarhia², Zakhar Lyakhovych², Amy Oh², Jane Albro², Rayane Teixeira², Rajeev Kant², Peter Wipf³, Ruhul Abid², Sankha Bhowmick¹ ¹University of Massachusetts Dartmouth, ²Brown University, ³University of Pittsburgh **Development of a Dual-Gel Microfluidic Device with Spatially** 12:30 PM **Configurable Co-Culture** Malgorzata Dwulat¹, Sihong Wang¹, Jing Fan¹ ¹The City College of New York Microphysiological System of Neuroinflammation at Blood-Brain-12:45 PM Interface Ali Akalin¹, S. Choi¹, N. Ospina-Munoz¹, H. Gwak¹, S. Kang¹, M. Luo¹, Y. Chang², X. Bao², A. Wolberg¹, M. Gillette¹, H. Kong¹, Bumsoo Han¹ ¹University of Illinois at Urbana-Champaign ²Purdue University

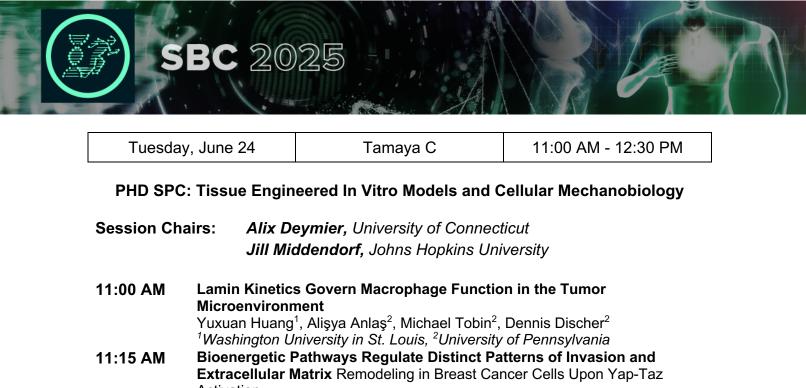
Tuesday, June 24 8:00 AM - 9:30 AM Tamaya B **Cardiac Biomechanics** Session Chairs: Vijay Vedula, Columbia University Lik-Chuan Lee, Michigan State University 8:00 AM A Physics-Informed Neural Network for Patient-Specific Left Ventricular **Finite Element** Modelling with Image-Consistency and Myocardial Stiffness and Active Tension Estimation Siyu Mu¹, Wei Xuan Chan¹, Yap Choon Hwai¹ ¹Imperial College London Learning Disease: Feasibility of Modeling of Myocardial Infarction Using 8:15 AM a Neural Network Finite Element Approach Shruti Motiwale¹, Michael Sacks¹ ¹The University of Texas at Austin Personalized Cardiac Mechanics: Evaluating Diffusion Tensor Imaging 8:30 AM and Rule-Based Methods for Cardiomyocyte Orientation Devin Seyler¹, Aaron Brown¹, Tyler Cork¹, Daniel Ennis¹, Alison Marsden¹ ¹Stanford Universitv The Impact of Right Ventricular Fiber Re-Orientation on Inter-Ventricular 8:45 AM Mechanical Energy Transfer: A Numerical Study Menggian Zhang¹, Vitaly Oleg Kheyfets¹, Kurt Stenmark¹, Helena Adele Turton², Edda Spiekerkoetter², Sue Gu¹, Kenzo Ichimura³ ¹University of Colorado Anschutz Medical Campus, ²Stanford University, ³University of Cincinnati College of Medicine Cardiac Digital Twins for Hypertrophic Obstructive Cardiomyopathy: 9:00 AM The Role of Epicardial Boundary Conditions and Myocardial Fibrosis Hannah Haider¹, Nathasha Thalpaguruge¹, Yu Hohri¹, Lei Shi², Jay Leb¹, Hiroo Takayama¹, Vijay Vedula¹ ¹Columbia University, ²Kennesaw State University Optimizing Curve Fitting for Rate-Dependent Soft Hydrated Tissues: A 9:15 AM Case Study in Blood Clot Mechanics Jose Monclova¹, Keefe Manning¹, Francesco Costanzo¹ ¹Pennsylvania State University

Tuesday, June 24 8:00 AM - 9:30 AM Tamaya C Special session: Cancer Mechanobiology **Session Chairs:** Jacopo Ferruzzi, The University of Texas at Dallas Jeremiah Zartman, University of Notre Dame Metabolic Profiling of Compressed Stromal Cells in the Breast Peritumor 8:00 AM Julian Najera¹, Hao Chen¹, Scott Howard¹, Meenal Datta¹ ¹University of Notre Dame Mechanical Strain Drives Changes in Migration and Proliferation in 8:15 AM Triple Negative Breast Cancer Shalarria Cooper¹, Michael Knight¹ ¹The University of Alabama at Birmingham Stromal Remodeling and Tissue Stiffening are Linked to Increased 8:30 AM Epithelial Mechanosensing and Proliferation in Early Onset Colorectal Cancer Jacocpo Ferruzzi¹ ¹University of Texas at Dallas Mechanosensitive Cancer Cells Active Long-Distance Intercellular 8:45 AM Calcium Communications to Enhance Tumor Invasion and Growth Chenyu Liang¹, Xin Tang¹ ¹University of Florida Shining light on Calcium-Mediated Growth Conrol and Tumor 9:00 AM **Progression with Optogenetics** Jeremiah Zartman¹ ¹University of Note Dame 9:15 AM Dynamic Biomaterials to Elucidate Vasculogenic Mimicry witin Tumor Microenvironment Donny Hanjaya-Putra¹ ¹University of Note Dame

BC 202

Tuesday, June 24 8:00 AM - 9:30 AM Eagle B Head & Injury II Session Chairs: Mehmet Kurt. University of Washington Ahmed Alshareef, University of South Carolina Expression of Injury Biomarkers in Avulsed Neonatal Brachial Plexus 8:00 AM Gautam Moon¹, Baishakhi Mahapatra², Anita Singh¹, R.K. Singh^{1,2} ¹Temple University, ²Banaras Hindu University Protective Capabilities of Recreational Sports Helmets in Blunt Impacts 8:15 AM to the Upper Face Lenka Stepan¹, Alexander Horst¹, Garrett Porter¹, Tyler Shaw², Irving Scher² ¹Guidance Engineering and Applied Research Precise Identification of Hyperelastic Material Parameters Through 8:30 AM **Optimal Experiment** Amirreza Asadi¹, Kaveh Laksari¹ ¹University of California, Riverside Data-Driven Discovery of Reduced-Order Models in Brain Biomechanics 8:45 AM Amir Hossein Ghorbanpour Arani¹, Ahmed Alshareef², Ruth Okamoto¹, Philip Bayly¹ ¹Washington University in St. Louis, ²University of South Carolina A Biomechanical Analysis of Infant Head Trauma: Madymo Modeling of 9:00 AM a Fall Resulting in Subdural Hematomas and Retinal Hemorrhages Keith D Button¹, Luis Nolasco¹, Yun Cai¹, Brian Weaver¹ ¹Explico Inc. **Compression Reduces Synaptic Density and Neuronal Activity Through** 9:15 AM Activation of Inflammatory and Hypoxia Response Pathways in Neurons and Glia Maksym Zarodniuk¹, Anna Wenninger¹, Jihaeng Lee¹, Julian Najera¹, Jack Markillie¹, Bianca Batista¹, Christopher Patzke¹, Meenal Datta¹ ¹University of Notre Dame

BC 202



Activation Adil Khan¹, Haider Ali¹, Bishant Karki¹, Jacopo Ferruzzi¹ ¹The University of Texas at Dallas

- 11:30 AM Development of a Cerebral Organ-on-a-Chip Model for Identifying Injury Thresholds in Traumatic Brain Injury Anthony Baker¹, Natalie Smith², Tony Yuan³, Zane Lybrand², Michaelann Tartis¹ ¹New Mexico Institute of Mining and Technology, ²Texas Woman's University, ³Uniformed Services University of the Health Sciences
- **11:45 AM 3D-Printed Scaffolds with Microtopography Guides Vascular Tissue Organization and Regeneration** Rao Fu¹, Evan Jones², Boyuan Sun², Guillermo Ameer², Cheng Sun², Yonghui Ding¹

¹Worcester Polytechnic Institute, ²Northwestern University

12:00 PM Spontaneous Calcium Signaling and Cell-Cell Communication in Human Articular Cartilage

Ying Peng¹, Annie Porter¹, Michael Axe¹, X. Lucas Lu¹ ¹University of Delaware

12:15 PM Breaking Down Glycated Collagen Reverses Pulmonary Fibrosis Wenyu Kong¹, Meiyue Song², Xiangjun Peng¹, Lu Bai², Jia'nan Zeng¹, Kaini Liang¹, Yuhong Jin¹, Jiaxin Wang², Xue Wang², Yuxuan Huang³, Lyu Zhou¹, Hanxun Jin³, Yudi Niu¹, Xi-Qiao Feng¹, Chen Wang², Guy M. Genin³, Jing Wang², Yanan Du¹

¹Tsinghua University, ²Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, ³Washington University in St. Louis

PHD SPC: Biomechanical Investigations of Tissue Remodeling			
Session Cha	airs: Callan Luetkemeyer, University of Illinois Urbana Champaign Erin Berlew, University of Pennsylvania		
11:00 AM	Characterizing Amplified Femtosecond Laser Ablation Within Tendon Extracellular Matrix Diane Stonestreet ¹ , Nelly Andarawis-Puri ¹ ¹ Cornell University		
11:15 AM	Toroidal Indentation for Measuring Cell Mechanical Anisotropy Juanyong Li ¹ , Chaokai Zhang ¹ , Songbai Ji ¹ , Kristen Billiar ¹ ¹ Worcester Polytechnic Institute		
11:30 AM	Effect of Microgravity and Mechanical Unloading on Chromatin, Epigenetics, and Tissue Biomechanics Kanita Hrustanovic ¹ , Katie J Sikes ¹ , Benjamin C Gadomski ¹ , Susan Bailey ¹ , Soham Ghosh ¹ ¹ Colorado State University		
11:45 AM	Distortion Energy as a Mechanobiological Driver for Fibroblast Activity and Matrix Remodeling Amevi Semodji ¹ , Dalia Delacruz ¹ , Samantha Jamison ¹ , Anamaria Zavala ¹ , Sean Howard ¹ , Shaughnessy Murphy ¹ , Gunes Uzer ¹ , Trevor Lujan ¹ ¹ Boise State University		
12:00 PM	Mechanosensing in Adipose Stromal Cells Is Dependent Upon Adipose Tissue Origin Dakota Kamm ¹ , Akash Shaji ¹ , Kathryn Bohnert ¹ , Jay Keener ¹ , Amit Pathak ¹ , Gretchen Meyer ¹ ¹ Washington University in St. Louis		
12:15 PM	Collagen Fiber Micromechanical Properties in Tendon Are Modulated by Hyaluronic Acid Hannah Larson ¹ , Natalie Hawley ¹ , Olivia Ward ¹ , Alysse Defoe ¹ , Jason Burdick ¹ , Sarah Calve ¹ ¹ University of Colorado Boulder		

Tuesday, June 24 Wolf AB 11:00 AM - 12:30 PM PHD SPC: Musculoskeletal Biomechanics Session Chairs: Mariana Kersh, University of Illinois Urbana-Champaign Nathaniel Dyment, University of Pennsylvania 11:00 AM Evaluation of a Simplified Modeling Approach to Predict Strain in the Cartilage and Labrum of the Hip with Application to Femoroacetabular **Impingement Syndrome** Luke Hudson¹, Lindsay Schuring¹, Brooklyn Vargas¹, Jeffrey Weiss¹, Andrew Anderson¹ ¹University of Utah Adaptive vs Degenerative Tendon Response to Overload Is Duration and 11:15 AM Age Dependent Lily Lin¹, Rita Marqueti², Hailey Bonelli¹, Justin Parreno¹, Karin Silbernagel¹, Dawn Elliott¹ ¹University of Delaware, ²University of Brasilia 11:30 AM Advancing Healing Assessments of Femoral Fractures Through a Subject-Specific Finite Element Approach Farhan Muhib¹, Kylie Williams², Robert Guldberg³, Jeffrey Weiss¹ ¹University of Utah, ²Penderia Technologies, ³University of Oregon Characterizing Meniscal Wear Behavior: Influence of Cross-Shear and 11:45 AM Loading Magnitude Kate Benfield¹, Katherine Fors¹, Trevor Black¹, Gigi Brandes¹, Karlee Macaw¹, Trevor Lujan¹ ¹Boise State University Mechanical Hyperalgesia Threshold Changes Over Time in a Rat Model 12:00 PM of Post Traumatic Elbow Contracture Rebecca Reals¹, Ryan Castile¹, Alexander Gadin¹, Benjamin Zmistowski¹, Spencer Lake¹ ¹Washington University in St. Louis Passive Autoregulation of Blood Flow in the Lamina Cribrosa 12:15 PM Qi Tian¹, Yuankai Lu¹, Bingrui Wang¹, Susannah Waxman¹, Ian Sigal¹ ¹University of Pittsburgh

Tuesday, June 24 11:00 AM - 12:30 PM Eagle A PHD SPC: Biotransport and Modeling Systems Session Chairs: **Debanjan Mukherjee**, University of Colorado Boulder Fatemeh Esmailie, University of North Texas 11:00 AM Mechano-Lysis in Whole Blood Clots: On How Mechanics Affect Clot Lysis, and How Lysis Affects Clot Mechanics Grace Bechtel¹, Gabriella Sugerman¹, Tatum Eades¹, Sapun Parekh¹, Manuel Rausch¹ ¹The University of Texas at Austin Voltage-Controlled Electroporation Enhances Drug Uptake in Vascular 11:15 AM Tissue and Smooth Muscle Cells Devaughn Rucker¹, John Cashin¹, Sophia Pyeatte¹, Maxwell Braasch¹, Christian Zemlin¹, Guy Genin¹, Mohamed Zayed¹ ¹Washington University in St. Louis 11:30 AM Experimental Stent Retriever Forces in a Tortuous Model of Acute **Ischemic Stroke** Demitria Poulos¹, Michael Froehler², Bryan Good¹ ¹University of Tennessee, ²Vanderbilt University Medical Center Advancing Shape Memory Polymer Metamaterials for the Effective 11:45 AM **Treatment of Complex, Irregular Intracranial Aneurysms** Tanner Cabaniss¹, Yingtao Liu¹, Bradley Bohnstedt², Chung-Hao Lee³ ¹The University of Oklahoma, ²Indiana University School of Medicine, The University of California, Riverside Is Frequency Analysis the Key to Untangling Ascending Thoracic Aortic 12:00 PM Aneurysm Growth and Stiffening with 0D Modeling? Lily Watkins¹, Victor Barocas¹ ¹University of Minnesota The Impact of Proteoglycan Degradation and Fragmentation on T1rho 12:15 PM **Relaxation Times** Joanna Veres¹, Noah Bonnheim², Aaron Fields² ¹University of California, Berkeley, ²University of California, San Francisco

2:15 PM - 3:45 PM Wednesday, June 25 Tamaya A Multiscale Mechanics I: Nano to Tissue Session Chairs: Matthew Bersi, Washington University in St. Louis Arina Korneva, Virginia Tech Establishing Methods for Analyzing 3D Reconstruction, Geometry and 2:15 PM Structure of Tendon Fibrils Jamie Benson¹ ¹University of Delaware Multiscale Biomechanical Properties of Murine Intervertebral Discs Are 2:30 PM Altered with Aging Leonardo Campos¹, Mark Kim¹, Hagar Kenawy¹, Clark Hung¹, Nadeen Chahine¹ ¹Columbia University 3D Micromechanical Simulations of Electrospun Meshes for Organ 2:45 PM Replacement Evan He¹, Shruti Motiwale¹, Elizabeth Cosgriff- Hernandez¹, Michael Sacks¹ ¹The University of Texas at Austin 3:00 PM Cell-ECM Feedback Results in Spontaneous Cell Polarization and ECM Alignment in 3D Discrete-Fiber Models of Cell Remodeling Adam Ley¹, Sabin Adhikari¹, Kevin Dorfman¹, Victor Barocas¹ ¹University of Minnesota **Biphasic Mechanoregulation of Cell-ECM Interactions in 3D** 3:15 PM Nanoarchitectures Kailin Chen¹, Alexander Bolanos Campos¹, Mistica Lozano Perez¹, Erin Berlew¹, Ran Tao¹, Arnold Mathijssen¹, Julia Greer², Joel Boerckel¹, Alessandro Maggi², Ottman Tertuliano¹ ¹University of Pennsylvania, ²California Institute of Technology Ventilator-Induced Lung Injury in Rats Using Multiscale Characterization 3:30 PM Matthew Shankel¹, Mona Eskandari¹ ¹University of California, Riverside

2:15 PM - 3:45 PM Wednesday, June 25 Tamaya B **Heart Valve Biomechanics Session Chairs:** Gediminas Gaidulis. The University of Memphis Michael Sacks, The University of Texas at Austin 2:15 PM **Comparison Between Pre-Transcatheter Aortic Valve Replacement Computational Modeling Derived Geometric Predictors of Leaflet** Thrombosis in Balloon and Self-Expandable Valves Aniket Venkatesh¹, Noah Tregobov², Marco Moscarelli³, Katelynne Berland¹, Breandan Yeats¹, Khalil Fattouch³, Stephanie Sellers², Lakshmi Dasi¹ ¹Georgia Institute of Technology, ²St. Paul's Hospital, ³Maria Eleonora Hospital Transcatheter Tricuspid Repair Simulations Are Highly Sensitive to 2:30 PM **Boundary Conditions** Collin Haese¹, Vijay Dubey¹, Mrudang Mathur¹, Alison Pouch², Tomasz Timek³. Manuel Rausch¹ ¹The University of Texas at Austin, ²University of Pennsylvania, ³Corewell Health 2:45 PM **Functional Chordal Structure Optimization for Predictive Leaflet Biomechanics in Image-Derived Heart Valve Simulations** Justin Unger¹, Devin Laurence¹, Nicolas Mangine¹, Wensi Wu², Steve Maas³, Jeffrey Weiss³, Matthew Jolley¹ ¹Children's Hospital of Philadelphia, ²University of Pennsylvania, ³University of Utah Evaluating the Pinwheeling Index as a Surrogate for Accelerated Leaflet 3:00 PM **Degeneration in Transcatheter Heart Valves** Dong Qiu¹, Ali Azadani¹ ¹Universitv of Denver 3:15 PM First Evidence of Mitral Valve Leaflet Tissue Plasticity Following Transcatheter Edge-to-Edge Repair in Humans Natalie Simonian¹, Carina Gipson¹, Neha Palsikar¹, Nivin Sunesh¹, Sneha Vakamudi², Mark Pirwitz², Robert Gorman³, Michael Sacks¹ ¹The University of Texas at Austin, ²Ascension Texas Cardiovascular, ³Gorman-Gillespe Structural Heart In Vitro Biomechanical Examination of Excised Calcified Aortic Leaflet 3:30 PM Tissue for Material Property Assessment and Improved in Silico Tavr Modeling Kyle Baylous¹, Salwa Anam¹, Brandon Kovarovic¹, Marvin Slepian², Danny Bluestein¹ ¹Stony Brook University, ²The University of Arizona

Wednesday, June 25		Wolf AB	2:15 PM - 3:45 PM
Soft Tissue Mechanics			
Session Chairs: Soham Ghosh, Colorado State University David Pierce, University of Connecticut			
2:15 PM	Tissue Change Porcine Mode Margaret Elizat Morris ^{1,2} , Elizat Fisher ^{1,2}	nges to the Knee Meniscus Oc es After Anterior Cruciate Liga beth Easson ^{1,2} , Jacob Thompsor beth Keeley ^{1,2} , Lauren Schnabel ¹ of State University, ² University of J	ment Injury in a Juvenile 1 ^{,2} , Danielle Howe ^{1,2} , Rachel , Jeffrey Spang ² , Matthew
2:30 PM	Emergent Cell the Developing Meghan Kupra Tufa ³ , Douglas Mauck ¹ ¹ University of F	Subpopulations and Time-Eve g Porcine Meniscus tis ¹ , Jiaqi Xiang ² , Kevin Burt ¹ , Yu Keene ³ , Nathaniel Dyment ¹ , Lin Pennsylvania, ² Drexel University, the Hospital of Philadelphia	olving Biophysical Cues in Iqi Zhang ¹ , Bryan Kwok ² , Sara Han ² , Eiki Koyama ⁴ , Robert
2:45 PM	Comparative Analysis of Magnetic Force to Design Fiber Alignment in Neuron-Collagen Constructs: Mechanical Properties & Neuronal Responses to Failure Loading Chang Wang ¹ , Prabesh Ghimire ¹ , Esther Appiah ¹ , Beth A. Winkelstein ¹ ¹ University of Pennsylvania		
3:00 PM	Gluteus Maxin Madison Wissn	ne Changes in Gluteal Muscle nus Tendon Transfer for Hip A nan ¹ , Cecilia Pascual Garrido ¹ , M niversity in St. Louis	bductor Insufficiency
3:15 PM	Elastohydrody Superlubricity	namic Lubrication at Last - M by Tissue Properties ¹ , Tanmayee Joshi ¹ , Kayla Sicilia pher Price ¹	-
3:30 PM	Annie Porter ¹ , ` Lucas Lu ¹	cture Correlation of Temporon Ying Peng ¹ , Michael Santare ¹ , Li Delaware, ² Drexel University	

2:15 PM - 3:45 PM Wednesday, June 25 Eagle A **Cancer Mechanics and Microfluidics Session Chairs:** Maria Holland, University of Notre Dame Donny Hanjaya-Putra, University of Notre Dame 2:15 PM DNA Origami-Cyanine Nanocomplex for Precision Imaging of Kras-**Mutant Pancreatic Cancer Cells** Hye- Ran Moon¹, Sae Rome Choi², Seongmin Seo¹, Jong Hyun Choi¹, Bumsoo Han¹ ¹Purdue University, ² University of Illinois at Urbana-Champaign A Microfluidic Device to Assess Endothelial Cell Stimulus-Specific 2:30 PM **Response to Multidirectional Wall Shear Stress** Kevin Moore¹, Yuki Bao¹, David Holdsworth¹, Geoffrey Pickering¹, Tamie Poepping¹ ¹Western Universitv A Novel Microfluidic-Based Lateral Diffusion Assay for Quantifying 2:45 PM Intracellular Kinase Activity in Metastatic Breast Cancer Cells in **Response to Spatial Growth Factor Gradients** Brendan Fuller¹, Travis Jones¹, Jonathan Song¹ ¹The Ohio State University A Novel Diffusion Tensor Based Three-Dimensional Constitutive Model 3:00 PM for Human Breast Tissue Michael Sacks¹, Benjamin Thomas¹ ¹The University of Texas At Austin 3:15 PM Heparan Sulfate on Vascular Endothelial Cells Collaborates with Endothelin B Receptor to Enhance Endothelin-1 Synthesis Camden Holm¹, Son Nguyen¹, Solomon Mensah¹ ¹Worcester Polytechnic Institute Mechanical- and Microgravity-Based Approaches to Better Model 3:30 PM Immunomechanics and Mechano-Immunology in the Glioblastoma Microenvironment Alice Burchett¹, Hao Chen¹, Maksym Zarodniuk¹, Fionn Lay¹, Ina Satpathy¹, Anya Zhao², Karyme Hernández Torrens³, Haley Marco¹, Maria Mendes¹, Julian Najera¹, Shelby Giza⁴, Jason Rexroat⁴, Paul Kuehl⁴, Twyman Clements⁴, Scott Howard¹, Meenal Datta¹ ¹University of Notre Dame, ²Smith College, ³University of Puerto Rico at Mayagüez, ⁴Space Tango

2:15 PM - 3:45 PM Wednesday, June 25 Eagle B **Biotransport: Computational Modeling** Session Chairs: Christopher Rylander, The University of Texas at Austin Fateme Esmailie, University of North Texas 2:15 PM **Computational Modeling of Pulsed Field Ablation for Pulmonary Vein** Isolation Ashkan Bagherzadeh¹, Tony Gao¹, Lik-Chuan Lee¹ ¹Michigan State University Model Predictive Control to Minimize Eddy Current Heating for Magnetic 2:30 PM Nanoparticle Hyperthermia Anilcahndra Attaluri¹, Shreeniket Pawar¹, Ma'moun Abu-Ayyad¹, Herschel Pangborn² ¹Penn State Harrisburg, ²Penn State University Towards the Determination of the Impacts of the Geometric Parameters 2:45 PM of a Stepped Catheter on Backflow During Infusion into an Agarose Gel William Gallie¹, Joshua Smith¹ ¹Lafayette College 3:00 PM An Image-Based 3D Biphasic Computational Model of the Human Brain Isabel Rivera Santiago¹, Prabhu Acharya², James R. Ewing³, Hassan Bagher-Ebadian³, Malisa Sarntinoranont¹ ¹University of Florida, ²Oakland University, ³Henry Ford Hospital Advanced Computational Models for Nanoparticles Targeting Bacterial 3:15 PM Membranes Danh Nguyen¹, Swagata Bhattacharya², Yan Yu², Ying Li¹ ¹University of Wisconsin-Madison ²Indiana University, Bloomington Combined Laser Interstitial Thermal Therapy and Interstitial-3:30 PM Photodynamic Therapy for Enhanced Tumor Ablation Anilchandra Attaluri¹, Yash Lad¹, Emily Gawrys², Gal Shafirstein² ¹Pennsylvania State University, ²Roswell Park Comprehensive Cancer Center

4:00 PM - 5:30 PM Wednesday, June 25 Tamaya A Multiscale Mechanics II: Nano to Tissue Session Chairs: Daniel Cortes, Pennsylvania State University Natasha Case, St. Louis University 4:00 PM Using Gravitational Permeation to Measure Tissue Hydraulic Permeability at Low Pressures and High Fluid Fluxes Kimberly Kroupa¹, Raphael Kepecs¹, Haoyu Zhang¹, Clark Hung¹, Gerard Ateshian¹ ¹Columbia University 4:15 PM Mesoscale Brain Model Mesh Convergence and Impact on Axonal Strain at the Gray-White Matter Interface Nan Lin¹, Wei Zhao¹, Songbai Ji¹ ¹Worcester Polytechnic Institute The Breathing Strains of Artificially and Physiologically Ventilated 4:30 PM Human Cadaveric Lungs Crystal Mariano¹, Kathrine Quiros¹, Mona Eskandari¹ ¹University of California, Riverside 4:45 PM Isolated Effects of Loading Conditions on Left Ventricular and Aortic Functions: Insights from Ex-Vivo Beating Heart Experiments Chenghan Cai^{1,2}, Lei Fan^{1,2} ¹Marquette University, ²Medical College of Wisconsin Prediction of Aneurysm Rupture Location Using a Multiscale Discrete 5:00 PM Fiber Model Incorporating Microstructural Data Yashar Ebadi¹, Sergio Pineda-Castillo¹, Elizabeth Shih¹, Ryan Mahutga¹, Victor Barocas¹, Andrew Grande¹, Patrick Alford¹ ¹University of Minnesota In Search of Pulse-Induced Peristaltic Strains Along Axons Within the 5:15 PM **Optic Nerve Head** Adam Galloy¹, Emmanuelle Richer-Maisonneuve², Mark Lesk², Santiago Costantino², Ian Sigal¹ ¹University of Pittsburgh, ²Rosemont Hospital Research Center

3C 202

Puma AB 4:00 PM - 5:30 PM Wednesday, June 25 Al and Machine Learning in Biofluids Modeling **Session Chairs:** Maria Holland, University of Notre Dame **Reza Avaz,** Texas A&M University 4:00 PM Extracting Coronary Microvascular Geometry from Swine Hearts Using Microscopy and Deep Learning Domingo Uceda¹, Victoria Sturgess¹, Nadia Korovesis¹, Ali Citalan Madrid¹. Katherine Stangis¹, Sal Essajee², Vibujithan Vigneshwaran³, Gregory Sands³, Daniel Lawrence¹, Geoffrey Murphy¹, Daniel Beard¹, Johnathan Tune², C Alberto Figueroa¹ ¹University of Michigan, ²University of North Texas Health Science Center at Forth Worth, ³University of Auckland 4:15 PM Non-Invasive Estimation of Pulmonary Vasculature Pressure via 1D FSI and Transformer Model Rana Raza Mehdi¹, Sunder Neelakantan¹, Sukanya Sahoo¹, Kyle Myers¹, Gaurav Choudhary², Reza Avazmohammadi¹ ¹Texas A&M University, ²Brown University A Modular Multi-Physics and Multi-Scale In-Silico Model of Coronary 4:30 PM Artery Disease Progression with Tetrahedral Mesh Integration Jeremy Warren¹, Anna Corti², Clark Meyer¹, Heather Hayenga¹ ¹The University of Texas at Dallas, ²Politecnico di Milano **Deep Learning Generation of Realistic Intracranial Aneurysms** 4:45 PM Geometries to Specific Morphometric Parameters, for Fluid Dynamics Investigations Wenhao Ding¹, Kangjun Ji¹, Simão Castro², Yihao Luo¹, Choon Hwai Yap¹ ¹Imperial College London, ²Instituto Superior Técnico ILPN-GANET: A Deep Learning Framework for Inverse Modeling of 5:00 PM Lumped-Parameter Cardiovascular Networks Yue li¹, Lei Shi¹ ¹Kennesaw State University 5:15 PM **Discovering the Reaction-Diffusion Equation of Neutrophil Swarming Using Physics-Informed Machine Learning** Xincheng Wang¹, Maria Holland¹ ¹University of Notre Dame

BC 202

Wednesday, June 25 Wolf AB 4:00 PM - 5:30 PM **Topics in Bone & Joint Mechanics** Session Chairs: **Deva Chan**, Purdue University Corey P. Neu, University of Colorado Boulder Intra-Articular Delivery of Recombinant Interleukin-1 Receptor 4:00 PM Antagonist (Anakinra) Enhances Graft Function in a Porcine Model of **Osteochondral Repair** Brendan Stoeckl¹, Rachel Flaugh¹, Akbar Syed¹, Elisabeth Lemmon¹, Kendall Masada¹, Elizabeth Bernstein¹, Austin Jenk¹, Lorielle Laforest¹, Natalie Fogarty¹, Bijan Dehghani¹, Robert Mauck¹, David Steinberg¹ ¹University of Pennsylvania Continuous Stiffness of the Knee Complex in Isolated McI and 4:15 PM Combined Mcl + Acl Injuries: Application to Knee Bracing Luke Mattar¹, Tianyu Chen¹, Jumpei Inoue¹, Martin Fagerström², Volker Musahl¹, Richard Debski¹ ¹University of Pittsburgh, ²Chalmers University of Technology **Development of an Ovine Critical-Sized Defect Bone Transport Model** 4:30 PM Chloe Brekhus¹, Christian Puttlitz¹, Kirk Mcgilvray¹, Jeremiah Easley¹, Drew Koch¹, Yunzhi Peter Yang², Benjamin Gadomski¹ ¹Colorado State University, ²Stanford University A Chemo-Mechano-Biological Framework for Evolving Cartilage: 4:45 PM Predicting Heterogeneous Degeneration Using 3-D Biphasic Finite Elements Muhammed Rahman¹, Paul Watton², Corey Neu³, David Pierce¹ ¹University of Connecticut, ²The University of Sheffield, ³University of Colorado Boulder 5:00 PM Novel Application of Bendable Osteochondral Allografts in **Carpometacarpal Osteoarthritis Treatment** Sarah Deiters¹, Katherine Spack¹, Clark Hung¹, Melvin Rosenwasser¹, Gerard Ateshian¹ ¹Columbia University Statistical Shape Modeling of Carpal Tunnel Cross Section 5:15 PM David Jordan¹, Mary Henderson¹, Zong-Ming Li¹ ¹University of Arizona

BC 202

4:00 PM - 5:30 PM Wednesday, June 25 Eagle A Cardiovascular Mechanics & Mechanobiology Session Chairs: Abhay Ramachandra, Iowa State University Ana Estrada, Yale University 4:00 PM Epigallocatechin Gallate Partially Prevents Elastase-Induced Mechanical and Microstructural Changes in the Mouse Ascending Aorta in Vitro Luis Castro¹, Dongfang Chen¹, Aidan Scannlain¹, Krashn Dwivedi¹, Keshav Kailash¹, Jacob Rother¹, Christie Crandall¹, Robyn Roth¹, Carmen Halabi¹, Jessica Wagenseil¹ ¹Washington University in St. Louis 4:15 PM Effects of Mitraclip Sizes on Functional Mitral Regurgitation Repair **During the Full Cardiac Cycle** Gediminas Gaidulis¹, Muralidhar Padala² ¹University of Memphis, ²Nyra Medical Inc. Identification of in Vivo Constitutive Parameters of Thoracic Aortic 4:30 PM Aneurysms Based on the Unified-Fiber-Distribution (UFD) Model Xue Liang¹, Wenbin Mao², Rudolph Gleason³, Bradley Leshnower¹, Hai Dong¹ ¹Emory University, ²University of South Florida, ³Georgia Institute of Technology A Multi-Center Comparison of Three Computed Tomography Image 4:45 PM Segmentation Methods for Abdominal Aortic Aneurysm Katherine Kerr¹, Pete Gueldner¹, Indrani Sen², Tiziano Tallarita², Joseph Wildenberg², Nathan Liang², David Vorp¹, Timothy Chung¹ ¹University of Pittsburgh, ²Mayo Clinic A Microvascular Transport Framework to Study Spatial and Temporal 5:00 PM Heterogeneities in Myocardial Tissue PO₂ Victoria Sturgess¹, Domingo Uceda¹, Daniel Beard¹, C. Alberto Figueroa¹ ¹University of Michigan Multi-Cell, Multiscale Model of Inflammation-Driven Aortic Growth and 5:15 PM Remodeling Ana C. Estrada¹, Jay Humphrey² ¹*Fairfield University*, ²*Yale University*

3C 202

Wednesday, June 25 Eagle B 4:00 PM - 5:30 PM Extracellular Matrix Dynamics & Remodeling Session Chairs: **Xun Wang**, Massachusetts Institute of Technology Kevin Labus, Colorado State University Autonomous Cryoprotectant Loading of the Oocyte Using Microfluidics 4:00 PM Transistors Li Zhan^{1,2,3}, Hunter Hinnen^{2,4}, Kaustav A. Gopinathan^{2,3}, Mehmet Toner^{2,3,5} ¹Purdue University, ²Massachusetts General Hospital, ³Harvard medical School, ⁴Massachusetts Institute of Technology, ⁵Shriners Children's Hospital Engineering the Tumor Microenvironment with Cold-Responsive 4:15 PM Nanotechnology for Cancer Cryoimmunotherapy Wenquan Ou¹, Xiaoming He¹ ¹Universitv of Marvland Microtubule Stability Modulates Schlemm's Canal Cell Mechanobiology 4:30 PM and Pore Formation Haiyan Li¹, Kristin Perkumas², Todd Sulchek¹, W. Daniel Stamer², C. Ross Ethier¹ ¹Georgia Tech, ²Duke University The Direct Impact by Age Adducts on Mechanical and Conformational 4:45 PM **Properties of Tropocollagen Molecules** Yu-Bai Xiao¹, Anna Tarakanova¹ ¹University of Connecticut **Detecting Microstructural Changes in Damaged Blood Vessel Wall** 5:00 PM **Collagen Using Raman Microscopy** William Anderl¹, Kenneth Monson¹ ¹University of Utah Exploring the Role of Collagen Fiber Networks During in Situ Cutting of 5:15 PM **Collagenous Membranes** Shaobo Zhan¹, Shelby Hutchens¹, Amy Wagoner Johnson¹ ¹University of Illinois at Urbana-Champaign

3C 202

Poster Sessions

Posters will be presented in two sessions as listed below. See the Instructions for Poster Presenters section on page 10 for additional information. All poster sessions will take place in the Forum exhibition hall. BS and MS Level posters will be on display for both sessions. Future faculty posters will be held during the Poster Session I.

Poster Session I	Monday, June 23, 1:00 – 2:30 PM, Tamaya EFGH Ballroom
Poster Session II	Tuesday, June 24, 12:30 – 2:00 PM, Tamaya EFGH Ballroom

BS Level Competition Posters

PA 1. Parametric Finite Element Analysis of Protective Padding for Pediatric Commotio Cordis Mitigation

Ciara Woellhof¹, Chaudry Hassan¹, Yi Xian Qin¹ ¹Stony Brook University

3C 2025

PA 2. Computational Modeling of Hemodynamics Following Left Ventricular Assist Device Implantation

Michael Ferguson¹, Mia Bonini¹, Marc Hirshvogel², Frank Pagani¹, David Nordsletten¹ ¹University of Michigan, ²Politecnico di Milano

PA 3. An in Vitro Benchtop Model for Cerebral Circulation and Drug Transport

Alena Tucker¹, Adiba Ashrafee¹, Debanjan Mukherjee¹ ¹University of Colorado Boulder

PA 4. Computational Hemodynamic Analysis of Left Ventricle Segmentation in Bicuspid Aortic Valve Patients: A Comparison with Hypoattenuated Leaflet Thickening Morphology

Malvika Sawant¹, Aniket Venkatesh¹, Lakshmi Dasi¹ ¹Georgia Institute of Technology

PA 5. Reducing Measurement Error in Three-Point Bend Test: A Linear Gradient Correction Model for Catheter Flexural Rigidity

Juan Becerra-Garcia¹, Charlie Suskin¹, Michael Qiu¹, Guy Genin¹ ¹Washington University in St. Louis

PA 6. Semi-Automated Trabecular Tracking During Cyclic Inflation James Utton¹, Leonardo Marin¹, Brittany Coats¹ ¹University of Utah

PA 7. Characterization of Mechanosensitive Ion Channels in Limb Regeneration Maren Ritterbuck¹, Vineel Kondiboyina¹, Tim Duerr¹, Melissa Miller¹, James Monaghan¹, Sandra Shefelbine¹

3C 202

PA 8. Biophysical Characterization of Placental Tissue to Inform Oxygen Transport

Sudha Anilkumar¹, Samyuktha Kolluru², Patrick Yang², Adrienne Scott², Michelle Oyen³ ¹University of Delaware, ²Washington University in St. Louis, ³Wayne State University

PA 9. Investigation of Retractor Blade Geometry on Esophageal Stress and Deformation **During Anterior Cervical Discectomy and Fusion**

Chihtong Lee¹, Alex Flores², Arman Kavoussi², Eddie Liou², Alexander Ropper², Raudel Avila¹ ¹Rice University, ²Baylor College of Medicine

PA 10. Development and Validation of a Test Device to Quantify in Vivo Rat Elbow Joint **Mechanics**

Alexander Gadin¹, Rebecca Reals¹, Genevieve Jarrell¹, Ryan Castile¹, Spencer Lake¹ ¹Washington University in St. Louis

PA 11. Development of a Novel Animal Model of Elbow Instability

Genevieve Jarrell¹, Rebecca Reals¹, Ryan Castile¹, Alexander Gadin¹, Benjamin Zmistowski¹, Spencer Lake¹

¹Washington University in St. Louis

PA 12. Lim-Nebulette Regulates Podocyte Mechanoresponse

Cristopher S. Guaman^{1,2}, Jacob M. Wright¹, Evren U. Azeloglu¹ ¹Icahn School of Medicine at Mount Sinai ²New Jersey Institute of Technology

PA 13. Finite Element Model to Measure Softening of Cerebral Blood Vessels with Magnetic Resonance Elastography

Lucas Bolster¹, Brittany Coats¹, Henrik Odeen¹, Allison Payne¹, Ken Monson¹ ¹University of Utah

PA 14. Analysis of Generated Cortical Bone Samples via Finite Element Simulation Zachary Toth¹, Joshua Gargac¹

¹Ohio Northern University

PA 15. Protecting Ligaments from Overuse Injuries with Periodic Rest and Recovery Karlee Macaw¹, Katherine Fors¹, Trevor Lujan¹, Amevi Semodji¹ ¹Boise State University

PA 16. Development and Calibration of Digital Twins for Human Skin Growth in Tissue Expansion

Joel Laudo¹, Tianhong Han¹, Ariel Figueroa², Arun Gosain², Taeksang Lee³, Adrian Buganza Tepole¹

¹Purdue University, ²Northwestern University, ³Myongji University

PA 17. The Effect of Lung Tumor Outgrowth on Strain Distributions in the Nearby Alveolar Walls Sylvia Pack¹ ¹University of Utah

PA 18. Viscoelastic Analysis of Intermediate Catheters Based on Tikhonov Regularization Helen Long¹

¹Washington University in St. Louis

PA 19. A Viscoelastic Shear Lag Model of Podocyte Foot Process in Glomerular Filtration Mingxuan Bi¹, Hanxun Jin¹, Pongpratch Puapatanakul¹, Yuxuan Huang¹, Chengging Qu¹, Jeffrey H. Miner¹, Hani Y. Sulelman¹, Guy. M. Genin¹ ¹Washington University in St. Louis

PA 20. A Quantitative Study of the Human Brain Entry-Exit Vascular System

Annabel Tiong¹, Seunggyu Kim¹, Zhengyu Zhang¹, Se Hoon Choi^{2,3}, Roger Kamm¹, Xun Wang^{1,3}

¹Massachusetts Institute of Technology, ²Harvard Medical School, ³Massachusetts General Hospital

PA 21. Decoding Fractional Killing: The Role of Substrate Stiffness and Cell Morphology in Predicting Cancer Cell Death

Natalie Calahan¹, Renzo Spagnuolo¹, Soumik Ghosh¹, Ashok Prasad¹, Soham Ghosh¹ ¹Colorado State University

PA 22. A High Throughput Leukemia-on-a-Chip for Modeling and Therapy Screening Mahan Gillin¹, Jingwei Liu¹, Akinori Yamazaki¹, Lunan Liu¹ ¹New York University

PA 23. Synergistic Impact of Mechanical Strain and Hyaluronic Acid on Ovarian Cancer Progression in Ovcar-8 Variant

Emerson Cutcliffe¹, Maranda Kramer¹, Kamari Marzette¹, Mary Kathryn Sewell-Loftin¹ ¹University of Alabama at Birmingham

MS Level Competition Posters

PA 24. Thermal Effects of Fab-Functionalized Gold Nanoparticles During High Intensity Focused Ultrasound (HIFU) Ablation in Mice

Nabin Khanal¹, Michael Marciniak², Marie-Christine Daniel², Liang Zhu², Keith Stringer¹, Charles Dumoulin³, Rupak K Banerjee¹

¹University of Cincinnati, ²University of Maryland Baltimore County, ³Cincinnati Children's Hospital Medical Center

PA 25. Determining a Model to Predict Fluid Flow Through a Polymeric Membrane

SBC 2025

Sidharth Enagala¹, Ryan Smolchek², Jack Famiglietti², Briony Weragoda¹, Malisa Sarntinoranont¹ ¹University of Florida, ²Aurita Bio

PA 26. Understanding Arterial Pressure Crossover in Peripheral Venous Pressure Signals: A Benchtop Study on Vessel Parameters

Bree Scott¹, Cassidy Caffin¹, Sam Stephens¹, Robert Saunders¹, Jingxian Wu¹, Hannah Jensen¹, Kevin Sexton², Morten Jensen¹ ¹University of Arkansas, ²Vanderbilt University

PA 27. Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes for Electrophysiology Recording

Naiyan Wu¹ ¹Washington University in St. Louis

PA 28. Developing a Noninvasive Foot Controller for a Multi-Degree-of-Freedom Belowthe-Shoulder Prosthetic Arm

Gerbert Funes Alfaro¹, Peter Bishay¹ ¹California State University, Northridge

PA 29. Impact of Extracorporeal Membrane Oxygenation Design on Blood Flow Topology Bray Moll¹, Farhad Nezami², Zhongwang Dou¹, Amirhossein Arzani³ ¹Northern Arizona University, ²Brigham and Women's Hospital, ³University of Utah

PA 30. Temporal Trends of Lumped Hemodynamic Parameters in a Rat Model of Pulmonary Arterial Hypertension

Ahmad Shaikh¹, Daniela Valdez-Jasso¹ ¹University of California, San Diego

PA 31. Computational Fluid Dynamics Analysis of Peak Systolic Hemodynamics in Healthy and Stenotic Aortic Valves

Mashrur Muntasir Nuhash¹, Ruihang Zhang¹, Victor K Lai¹, Abm Nazmus Salehin Nahid¹ ¹University of Minnesota Duluth

PA 32. Wall Shear Stress Based Differentiation of Pre-Eclampsia from Hypertension Using Ultrasound-Based CFD

Evan Turner¹, Juan Pablo Gonzalez-Pereira¹, Jenna Racine¹, Igor Iruretagoyena¹, Alejandro Roldan- Alzate¹

¹University of Wisconsin - Madison

PA 33. Microvascular Resistance Influence on Diagnostic Indices of Coronary Hemodynamics

Tej Jolly¹, Arnav Garcha¹, Noelia Grande Gutiérrez¹ ¹Carnegie Mellon University

PA 34. Characterization of Cerebrospinal Fluid Flow Dynamics in the Spinal Subarachnoid Space with 2D Phase Contrast MRI

Sergio Martin-Moreno Nsue¹, Vitaliy Rayz¹ ¹Purdue University

BC 2025

PA 35. Machine Learning Approach to Train a Surrogate Model for Predicting Core Body Temperature in Frontline Workers

Sai Yeshwanth Vejendla¹, Israel Ajiboye¹, Rao Marepalli¹, Amit Bhattacharya¹, Rupak Banerjee¹ ¹University of Cincinnati

PA 36. Enhancing Wall Shear Stress Estimation From 4D Flow MRI Using Physics-Guided Neural Networks Trained on Idealized Vascular Geometries

Moses Hamm¹, Farshid Goudarzian¹, Neal Patel¹, Vitaliy Rayz¹ ¹*Purdue University*

PA 37. Development of Simulated Osseointegration to Reduce Age and Sex-Based Disparities with In Vitro Orthopedic Biomechanics Research

Logan Shannon¹, Robb Colbrunn¹, Tara Nagle¹ ¹Cleveland Clinic Lerner Research Institute

PA 38. Full-Field Indentation Microscopy (FIM) Recovers Anisotropic Properties via Indentation

Yuvam Kulkarni¹, Jose Rosa¹, Callan Luetkemeyer¹ ¹University of Illinois Urbana-Champaign

PA 39. Development of a Small Animal Device for Measuring in Vivo Muscle-Tendon Loading After Traumatic Injury

Patrick Hinkle¹, Fuad Al Hasan Bin Enam¹, Koyal Garg¹, Alex Reiter¹ ¹Saint Louis University

PA 40. The Role of Ion Currents and Gap Junctions in Regulating the Contractility of the Murine Uterus During Pregnancy

Parker R Mixon¹, Vijay Vedula¹ ¹Columbia University

PA 41. Design and Validation of a Bulge-Inflation Apparatus for Aortic Aneurysm Biomechanical Characterization

Hayley Yap¹, Antonio Cillero Rodrigo², Daniella Eliathamby¹, Jennifer Chung², Craig Simmons¹ ¹University of Toronto, ²University Health Network

PA 42. In-Vitro Stress Relaxation Response of Human Neonatal Peripheral Nerves Kalyani Ghuge¹, Sriram Balasubramanian², Anita Singh¹ ¹*Temple University*, ²*Drexel University*

PA 43. The Significance of Overstretch Direction in Cerebral Artery Softening

Kerrigan Denham¹, Joseph Bail¹, Kenneth Monson¹ ¹University of Utah

3C 202

PA 44. Constitutive Modeling of Uterine Wound Healing: Applications to Surgical Scarring and Postpartum Involution

Abir Hamdaoui¹, Savannah Chapman¹, Abigail Fisk¹, Matthew Bersi¹ ¹Washington University in St. Louis

PA 45. Characterizing the Effect of Mechanical Wear on Meniscal Fiber Fraying Katherine Fors¹, Kate Benfield¹, Gigi Brandes¹, Vanessa Bowman¹, Cindy Keller-Peck¹, Trevor Black¹, Karlee Macaw¹, Trevor Lujan¹ ¹Boise State University

PA 46. Using Finite Element Modeling to Predict Impact of Vertebral Body Tethering Treatment for Scoliosis

Yousuf Abubakr¹, Matthew Halanski², Grace O'connell¹ ¹University of California, Berkeley, ²Phoenix Children's Hospital

PA 47. In House vs Commercial Human Adipose Derived Mesenchymal Stem Cell Extracellular Vesicle and Their Effect on Vascular Cells

Amanda Pellegrino¹, Ande Marini², Justin Weinbaum¹, David Vorp¹ ¹University of Pittsburgh, ²Standford University

PA 48. Dynamic and Reversible Boundary Constraints to Guide Engineered Meniscus Tissue Formation

Darcy Huang¹, Yuqi Zhang¹, Meghan Kupratis¹, Elizabeth Bernstein¹, Georgios Kotsaris¹, Robert Mauck¹ ¹University of Pennsylvania

PA 49. Evaluating User Variability and Slicing Plane Influence on 3D Morphological Measurements of Multicellular Tumor Spheroids Using Oct and Imaris

Kaiya Gants¹, Elizabeth Mcdonough¹, Percy Smith¹, Garret Cahill¹, David Corr¹ ¹*Rensselaer Polytechnic Institute*

Poster Session I

Biotransport

PA 50. Dynamics of Red Blood Cell Desaturation and Sickling in Sickle Cell Disease Dillon Williams¹, David Wood¹

¹University of Minnesota

PA 51. Comsol Multiphysics Modeling and Simulation of Dielectrophoretic Biotransport for High-Throughput Sorting of Tenogenically Differentiating Mesenchymal Stem Cells Raphael Oladokun¹, N Schiele¹, M Pei¹, S K Srivastava¹ ¹West Virginia University

PA 52. Inverse Heat Transfer for Sensor Position Correction in Magnetic Nanoparticle Hyperthermia

Anilchandra Attaluri¹, Shreeniket Pawar¹ ¹Penn State Harrisburg

3C 202

PA 53. Market Review of Heatstroke Cooling Devices for Prehospital Care

Maria J. Londono¹, Anjelyka Fasci¹, Nicholas Gualtieri¹, Isaac Alvarez¹, Nicholas Forche¹, Connor J. Evans¹, R. Lyle Hood¹, Robert A. De Lorenzo¹ ¹The University of Texas at San Antonio

PA 54. A Study of Potential Anti-Metastasis Compounds for Colorectal Cancer via PTEN Signaling Pathways Using an Optimized Microfluidic 3D Culture System Ajeyo Yusuf¹, Sara Grace Chapala¹, Sihong Wang¹ ¹City College of New York

PA 55. Computational Modeling of Pulsed Field Ablation with Sub-Microsecond Pulses Indra Vandenbussche¹, Bailey Mccorkendale¹, Leila Seidabadi¹, Rowan Fink¹, Roya Kamali², Fateme Esmailie¹ ¹University of North Texas, ²Field Medical, Inc.

Dynamics, Dynamics and Rehabilitation

PA 56. Influence of Vacuum Pressure Dynamics and Pipe Geometry on Suction Flow: Experimental and Computational Insights for Medical Device Design Rakib Hasan¹, Pratik Mitra¹, Joby Job¹, Saketh Ram Peri¹, Connor J Evans¹, Robert A Delorenzo¹, R. Lyle Hood¹ ¹The University of Texas at San Antonio

PA 57. A Test Setup for Assessing the Effect of Virtual Reality Training on the Proficiency of Controlling a Transradial Prosthetic Arm Using a Foot Controller

Peter Bishay¹, Jacob Hinkel- Lipsker¹, Stefanie Drew¹, Don Shin³, Yash Bangera², Gerbert Funes Alfaro¹, Ian Sherrill¹, Thomas Chan¹ ¹*California State University, Northridge,* ²*CrossComm, Inc.*

PA 58. An Autonomous / Remote Control Operating Light for Optimized Surgical Illumination

Carson Benner¹, Connor Gilliland¹, Anthony Salazar¹, Jack Wingard¹, Rawan Al-Jubory¹, Zachary Butterfield¹ ¹Texas A&M University

PA 59. An Integrated Workflow for Lumbar Spine Modeling for Postural Angular Measurements: From Statistical Shape to Finite Element Model of Lumbar Segments

Faris Almalki¹, Daniel Cortes¹ ¹Pennsylvania State University

PA 60. Validation of a Dynamic Ankle Orthosis to Reduce Tibial Bone Strain Compared to a Standard of Care Walking Boot

Denis Diangelo¹, Perri Johnson¹ ¹The University of Tennessee Health Science Center

3C 202

PA 61. Knee Artificial Intelligence Sleeve (Kairs)

Chinmay Singh¹, Samanyu Dixit¹, Sahaj Sapovadia¹, Hieu Doan¹ ¹University of North Carolina at Chapel Hill

PA 62. Origami-Inspired Soft Pneumatic Inchworm Double Balloon for Robotic Colonoscopy

Allison Cheng¹, Amber Kashay¹, Ian Morales¹, Hannah Yared¹, Nadine Hassanieh¹, Hannah Jin¹, Meena Annamalai¹, Fiona Wong¹, Isaac Rodney¹, Anirudh Kannan¹, Caleb Liow¹, Benjamin Flom¹, Melanie Quintana¹, Emilie Liao¹ ¹University of California, Los Angeles

PA 63. Musculoskeletal Modelling and Predictive Simulation of Elite Baseball Pitching to Maximize Performance and Mitigate Injury Using Forward Dynamic and Optimal Control Techniques

Cedric E. Attias¹, Thomas K. Uchida², John Mcphee¹ ¹University of Waterloo, ²University of Ottawa

Education

PA 64. Optimizing Squeaking Ceramic-on-Ceramic Hip Arthroplasty Design Using Triz Methodology Manish Paliwal¹

¹The College of New Jersey

PA 65. Code, Create, Collaborate: Arduino Learning Through the Lens of Generative Al Nafiseh Mohammadianaftah¹, Sara Wilson¹ ¹University of Kansas

Fluid Mechanics

PA 66. Automatic Construction of Patient-Specific Vascular Models of Diverse Anatomy: From Medical Image to Application

Númi Sveinsson Cepero¹, Shawn Shadden¹ ¹University of California, Berkeley

3C 202

PA 67. An in Silico Methodology for Discerning Etiology of Embolic Stroke of Undetermined Source

Ricardo Roopnarinesingh¹, Sreeparna Majee¹, Leon Rinkel², Jonathan Coutinho², Kelly Cao¹, Debanjan Mukherjee¹ ¹University of Colorado - Boulder, ²Amsterdam University Medical Center

PA 68. Impact of Stent Strut Malapposition on Coronary Hemodynamics: A Patient-Specific CFD Analysis

Wei Wu¹, Sartaj Tanweer¹, Ruben Tapia- Orihuela¹, Parth Munjal¹, Yash Trivedi¹, Shijia Zhao¹, Changkye Lee¹, Yiannis Chatzizisis¹ ¹Uinversity of Miami

PA 69. Development of an Artificial Intelligence Model to Classify Severity of Hemorrhagic Shock Using Arterial Pressure Waveform Data

Fahim Mobin¹, Antonio Renaldo¹, Micaela Gomez¹, Sandra Januszko¹, Jacob Dooley¹, James Jordan¹, Oguz Akbilgic¹, Timothy Williams¹, C. Alberto Figueroa², Elaheh Rahbar³ ¹Wake Forest School of Medicine, ²University of Michigan, ³Texas A & M University

PA 70. Characterizing Mitochondrial Network Remodeling During Endothelialization Using Holotomographic Microscopy

Juliette Noyer¹, William Leineweber², Patrick Jurney¹ ¹San Jose State University, ²Stanford University

PA 71. Phenotyping Patients with Bronchopulmonary Dysplasia Using Cfd Derived Work of Breathing

Christopher Boles¹, Chamindu Gunatilaka¹, Qiwei Xaio¹, Jason Woods¹, Paul Kingma¹, Alister Bates¹

¹Cincinnati Children's Hospital Medical Center

PA 72. Unmasking Tavr Failure: Insights from Left Ventricular Pressure-Volume Loop Analysis

Zahra Keshavarz-Motamed¹ ¹McMaster University

PA 73. Preliminary Strain-Based Hemolysis Modeling Framework Validated With in Vitro Erythrocyte Deformation Data

Hannah Palahnuk¹, Nicolas Tobin¹, Keefe Manning¹ ¹Pennsylvania State University

PA 74. 3D Velocity and Pressure Field Reconstruction in the Cardiac Left Ventricle Using Physics Informed Neural Network and 3D Colour Doppler Guidance

Hong Sean Wong¹, Wei Xuan Chan¹, Wenbin Mao², Choon Hwai Yap¹ ¹Imperial College London ²University of South Florida

PA 75. Detection of Vascular Obstruction Using Acoustic Signals

David Donahower¹, Karl Schwarz², Steven Day¹, Jason Kolodziej¹ ¹Rochester Institute of Technology, ²University of Rochester

PA 76. Effects of Microgravity on Predisposing Factors for Thrombosis in Atrial Fibrillation

Grace Hoeppner¹, Ahmad Bshennaty¹, Brennan Vogl¹, Ghasaq Saleh², Mohamad Alkhouli², Hoda Hatoum¹ ¹*Michigan Technological University*, ²*Mayo Clinic*

PA 77. A High-Efficiency Left Atrium Unloading Device: From Concept to Testing

Bryce Clinkenbeard¹, Hiroto Bauer¹, Ellen Corr¹, Dong Qiu¹, Victor Caicedo², Fernando Anzellini², Nicolas Anzellini², Ali Azadani¹

¹University of Denver, ²Cardiost Inc.

PA 78. Investigating the Effect of Different Rheological Models on the Blood Flow in a Capillary Segment

Masah Abubaker¹, Sefik Evren Erdener², Ozgur Ekici³ ¹University of Notre Dame, ²Institute of Neurological Sciences and Psychiatry, ³Hacettepe University

PA 79. Computational Fluid Dynamics and Fluid Structure Interaction Modeling in Healthy Vertebral Arteries: A Comparative Study Bryce Clinkenbeard¹, Ali Azadani¹ ¹University of Denver

PA 80. Rethinking Stroke Risk: Beyond Stenosis to Hemodynamics Ryan Gedney¹, Ravikumar Veeraswamy¹, Ethan Kung² ¹*Medical University of South Carolina*, ²*Clemson University*

Solid Mechanics

PA 81. A Comparative Analysis of Abdominal Aortic Aneurysm Classification Outcomes Using Ensemble Tree Models

Juan Restrepo¹, Satish Muluk², Mark Eskandari³, Ender Finol¹

¹University of Texas at San Antonio, ²Department of Thoracic and Cardiovascular Surgery, Allegheny Health Network, Allegheny General Hospital, ³Northwestern University School of Medicine

PA 82. Surrogate Knee for Mechanical Testing of Patellafemoral Joint Interaction Nathan Flath¹, Alexander Hooke¹, Joshua Bland¹, Mario Hevesi¹, Chunfeng Zhao¹

¹Mayo Clinic

PA 83. Time-Dependent Microstructural and Mechanical Properties of Murine Vaginal Tissue

Clara Gimenez¹, Raffaella De Vita¹ ¹*Virginia Tech*

PA 84. Investigation of Bone Graft Choice for Pelvic Ring Reconstruction Following a Hemipelvectomy

Ritika Raj Menghani¹, Karthik Tappa², Alexander Mericli², Matthew Hanasono², Shalin Patel², Laurence Rhines², Patrick Lin², Valerae Lewis², Justin Bird², Raudel Avila¹ ¹*Rice University,* ²*MD Anderson Cancer Center*

PA 85. Ventilation-Induced Lung Injury in Alzheimer's Disease: Effects of NIrp3 Deletion in Mice

Dessarae Lampkins¹, Smridhi Madan¹, Brunnet Makava¹, Dong Sun¹, Rebecca Heise¹ ¹Virginia Commonwealth University

PA 86. Accurate 3-Dimensional Reconstruction of an Embryo From Histological Images

Kayla Whatley¹, An Tran¹, Brittany Hufft- Martinez¹, Irfan Saadi¹, Kenneth Fischer¹ ¹University of Kansas

PA 87. Fracture Mechanics of Embedded Fiber Networks

Matthew Lohr¹, Sotirios Kakaletsis¹, Manuel Rausch¹ ¹The University of Texas at Austin

PA 88. A Novel Statistical Shape Modeling Approach for Type B Aortic Dissection Using Voxel-Based Shape Representations

Zhuofan Li¹, John Oshinski², John Elefteriades³, Rudolph L Gleason⁴, Bradley G Leshnower², Minliang Liu¹

¹Texas Tech University, ²Emory University, ³Yale University, ⁴Georgia Institute of Technology

PA 89. Head Kinematics and Injury Risks During Head Impacts with Vertical Polymer Panels

Daniel Mcfarland¹, Nicholas Yang¹, Alexander Horst¹, Garrett Porter¹, Lenka Stepan¹, Irving Scher¹

¹Guidance Engineering and Applied Research

PA 90. Age Effects on Mechanical Behavior and Collagen Fiber Engagement in Human Anterior Cerebral Arteries

Atiyeh Taheri¹, Samuel C. Halvorsen¹, Anastasia Gkousioudi¹, Thor D. Stein¹, Katherine Yanhang Zhang¹

¹Boston University

PA 91. Chromatin Remodeling Under Mechanical Stretching Is Determined by Epigenetic Modifiers

Addison Lambert¹, Scott Burlingham¹, Tim Stasevich¹, Soham Ghosh¹ ¹Colorado State University

PA 92. Regional and Temporal Changes in Early Structural Remodeling Following Myocardial Infarction

Catherine Eberman¹, Yuming Liu¹, Kevin Eliceiri¹, Colleen Witzenburg¹ ¹University of Wisconsin – Madison

3C 202

PA 93. The Role of Load Direction in Vertebral Fracture Risk: A Computational and Experimental Study

Mehran Fereydoonpour¹, Asghar Rezaei², Areonna Schreiber², Lichun Lu², Mariusz Ziejewski¹, Ghodrat Karami¹ ¹North Dakota State University, ²Mayo Clinic

PA 94. Predictive Redo-Tavr Computational Modeling Assessment Using Post-Procedural CT Reconstruction

Courtney Ream¹, Pradeep Yadav², Vinod Thourani², Lakshmi Dasi¹ ¹Georgia Institute of Technology, ²Piedmont Atlanta Hospital

PA 95. Personalized Intervention Cardiology for Transcatheter Aortic Valve Replacement with a Doppler-Exclusive Diagnostic Framework

N. Bahadormanesh¹, Zahra K. Motamed¹ ¹*McMaster University*

PA 96. Human Lung Parenchymal Mechanics and Smoking Impacts

Talyah Nelson¹, Mona Eskandari¹ ¹University of California Riverside

PA 97. Mechanical Heterogeneity of Phosphorylated Tau (P-Tau) in Alzheimer's Disease Mohammad Tabatabaei¹, Lakiesha Williams¹

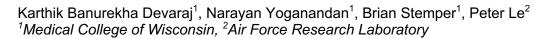
¹University of Florida

PA 98. Computational Study of Algebraic Inversion of the Differential Wave Equation in Heterogenous and Anisotropic Samples

Kayla Lehtola¹, Victor Barocas¹ ¹University of Minnesota

PA 99. Comparative Analysis of Anatomic Models in Personalized Cardiac Electromechanics Simulations

Aaron Brown¹, Lei Shi², Matteo Salvador³, Fanwei Kong⁴, Ian Chen¹, Vijay Vedula⁵, Alison Marsden¹


¹Stanford University, ²Kennesaw State University, ³Pasteur Labs & ISI, ⁴Washington University in St. Louis, ⁵Columbia University

PA 100. Using Mechanics to Better Understand Lamina Cribrosa Microstructure Yingzhe Han¹, Xuehuan He¹, Qi Tian¹, Ian A. Sigal¹ ¹University of Pittsburgh

PA 101. Regional and Level Differences in Human Cervical Disc Morphologies and Implications for Segmental Neck Loading

PA 102. Tricuspid Valve Leaflet Strains in Whole Porcine Hearts Using Digital Image Correlation

Trace LaRue¹, Collin Haese¹, Diego Guajardo¹, Allison Pouch², Jan Fuhg¹, Tomasz Timek³, Manuel Rausch¹

¹The University of Texas at Austin, ²University of Pennsylvania, ³Corewell Health

PA 103. Flexural Stiffness of 3D-Printed, Shape-Memory Orthodontic Aligners

David Nedrelow¹, Tong Liu¹, Brent Larson¹ ¹University of Minnesota

3C 202

PA 104. Frequency Response of Minipig Brain to Skull Vibration

Ruth Okamoto¹, Kevin Eckstein¹, Curtis Johnson², Philip Bayly¹ ¹Washington University in St. Louis, ²University of Delaware

PA 105. Total Knee Arthroplasty with Medial Collateral Ligament Repair: A Biomechanical Study

Leilani Baker¹, Natalia McIver¹, Nicholas Brady¹, Devin Maez¹, Samer Kakish¹, Michael Decker², Christina Salas¹ ¹University of New Mexico, ²Medical College of Wisconsin

PA 106. Poroelastic Model of Stress and Flow Distribution in a Lymph Node

James Baish¹, Timothy Padera², Lance Munn² ¹Bucknell University, ²Massachusetts General Hospital

PA 107. Towards Developing a Multiphysics Digital Twin for Patient-Specific Esophagus Modeling

Lei Shi¹, Anand Jain² ¹*Kennesaw State University,* ²*Emory University*

PA 108. Biophysics-Informed Computational Platform of Shear Wave Elastography for Cervical Health Assessment

Camilo Duarte Cordon¹, Ivan Rosado- Mendez², Kristin Myers¹ ¹Columbia University, ²University of Wisconsin – Madison

PA 109. Comparison of 5th, 50th and 95th Percentile 75-Year-Old Occupants to Frontal Crash

Karthik Somasundaram¹, Balaji Harinathan¹, Narayan Yoganandan¹ ¹Medical College of Wisconsin

PA 110. Effect of Enzymatic Digestion of Gags on Ex Vivo Shear Properties of Porcine Cornea

Hamed Hatami-Marbini¹, Md Emu¹ ¹University of Illinois Chicago

PA 111. Comparison of Dynamic and Static Loading Responses of Anterior Cervical Discectomy and Fusion Using Finite Element Modeling

Balaji Harinathan¹, Narayan Yoganandan¹ ¹Medical College of Wisconsin

3C 202

PA 112. Contactless Mechanical Material Characterization of Hyperelstic Membranes Using Stereoscopic Depth Map

Rahul Maurya¹, Avinash Kumar¹, Samarth Raut¹ ¹Indian Institute of Technology Dharwad

PA 113. Force-Deflection Corridors of the Human Thorax from Projectile Impacts and Their Use in Finite Element Modeling

Balaji Harinathan¹, Kalaimani Pugazhenthi², Alok Shah¹, Jared Koser¹, Narayan Yoganandan¹, Carol Chancey³, Joseph Mcentire³

¹Medical College of Wisconsin, ²Vellore Institute of Technology, Chennai, India, ⁴U.S. Army Aeromedical Research Laboratory, Fort Novosel

PA 114. Enzymatic Tunability of Collagen Microstructure and Mechanics in Hydrogels Nicholas Gigliotti¹, Vivian Su¹, Mitra Taheri¹ ¹Johns Hopkins University

PA 115. Role of the Medial Collateral Ligament in Mid-Flexion Sagittal Stability in Posterior-Stabilized Total Knee Arthroplasty: A Computational-Experimental Study Reza Pourmodheji¹, Cynthia Kahlenberg¹, Erin Berube¹, Eytan Debbi¹, Brian Chalmers¹, William Long¹, Timothy Wright¹, Geoffrey Westrich¹, David Mayman¹, Peter Sculco¹, Carl Imhauser¹ ¹Hospital for Special Surgery

PA 116. When Is a Tortuous Path Better Than a Direct One? A Strategy for Overcoming Elevated Translaminar Pressure

Bingrui Wang¹, Yingzhe Han¹, Yuankai Lu¹, Ashley Linton¹, Susannah Waxman¹, Ian A. Sigal¹ ¹University of Pittsburgh

PA 117. The PDMS Device Aging Mystery Solved: Storage and Mixing Ratios for Long-Lasting Hydrophobicity and Stiffness

Shuyu Zhang¹, Anne Staples² ¹Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, ²Virginia Tech

PA 118. Comparative Biomechanical Characterization of Porcine Atrial Septum and Ventricular Septum

Houjia Chen¹, Kasra Kolyaei¹, Brandon Wells¹, Yi Hong¹, Kyati T. Nguyen¹, Pietro Bajona², Matthias Peltz², Jun Liao¹ ¹University of Texas at Arlington, ²UT Southwestern Medical Center

PA 119. Development and Validation of a Mechanical Test Device to Simulate Breathing and Coughing on Intact Herniated, and Mesh-Repaired Cadaveric Abdominal Tissues

Alexander Gadin¹, Cole Hanan¹, Evan Maples¹, Spencer Lake¹ ¹Washington University in St. Louis

Tissue and Cellular Engineering

PA 120. A Method for Creating a Pre-Vascularized Multi-Component Scaffold for Bone Tissue Engineering

Levi Olevsky¹, Lynne Li¹, Peter Bertone¹, Eric Holmgren¹, Katherine Hixon¹ ¹Dartmouth College

PA 121. Cyclic Stretch Inhibits Invasion of Cells in 3D Collagen Gels

Rozanne Mungai¹, Grace Jolin¹, Kristen Billiar¹ ¹Worcester Polytechnic Institute

3C 2025

PA 122. Non-Muscle Myosin Isoforms Differentially Regulate Deltoid Tuberosity Initiation and Maturation

Mary Kate Evans¹, Ngoc Hoang², Tonia Tsinnman¹, Xi Jiang¹, Ellie Fergurson¹, Joel Boerckel¹, Lin Han², Eiki Koyama³, Robert Mauck¹, Nathaniel Dyment¹ ¹University of Pennsylvania, ²Drexel University, ³Children's Hospital of Philadelphia

PA 123. Fluctuations in Skin Wound Perfusion Using Solid State On-Demand H₂S Gas Generation

Matt Justus¹, Pierce Massie¹, Deepali Kulkarni¹, Carolyn Pace¹, Jenna Marek¹, Bill Brooks², Debra Friedrichsen², Reza Shekarriz², Ross Clark¹ ¹The University of New Mexico, ²Exhalix LLC

PA 124. The Non-Linear Visco-Hyperelastic Damage Mechanics of Individual Electrospun PCL Fibers: Experiments and Modeling

Alberto Madariaga¹, Sascha L. Granhold¹, Matthew J. Lohr¹, Sarah Jones¹, Andrew J. Robinson¹, Elizabeth Cossgriff- Hernandez¹, Emma Lejeune², Berkin Dortdivanlioglu¹, Manuel K. Rausch¹

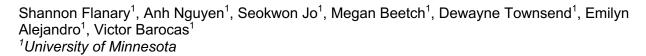
¹The University of Texas at Austin, ²Boston University

PA 125. Limitations in Achieving Optical Transparency in Live Mice

Jenna Marek¹, Matt Justus¹, Pierce Massie¹, Deepali Kulkarni¹, Carolyn Pace¹, Ross Clark¹ ¹The University of New Mexico

PA 126. Characterization of Collagen Network in Short Cervix Model

Vivian Su¹, Marina Better¹, Nicholas Gigliotti¹, Mitra Taheri¹ ¹Johns Hopkins University


PA 127. Sulfide-Based, Pro-Regenerative, Anti-Inflammatory Vascular Grafts: Impregnation of Slow-Released Sulfide Signals into Graft Implants

Anh Thy Nguyen¹, Richard Johnson¹, Ansha Zhao², Michael Rafuse¹, David Madukwe³, Aurora Battistella¹, Wei Tan¹

¹University of Colorado Boulder, ²SouthWest Jiaotong University, ³Clemson University

PA 128. Sex-Dependent Cardiovascular Biomechanical Changes in Hyperglycemic Mice with and without Sglt2 Inhibition

PA 129. Development of a Novel Tool to Measure Bending Moduli (κ) of Fibers Within a 3D Hydrogel

Sarah Eldeen¹, Bora Keresteci¹, Elliot Botvinick¹ ¹University of California, Irvine

3C 202

PA 130. Using a Fiber Skeletonization Approach Towards Extracellular Matrix FEA Modeling in Human Ascending Thoracic Aortic Aneurysm Media

Petros Kroustalias¹, Panagiotis Chatzisavvas¹, Nikolaos Ntinas¹, David Vorp², Alkiviadis Tsamis¹

¹University of Western Macedonia, ²University of Pittsburgh

PA 131. Tendon-Mimetic Scaffold Microstructure Influences Mechanical Properties, Cellular Morphology, and Secretome

Harrison Broadaway¹, Kari Shama¹, Brittany Taylor¹ ¹University of Florida

PA 132. Electrowriting of Cellulose-Based Materials for Biomedical Applications Melissa Willis¹, Sam Winston¹, Kevin Labus¹ ¹Colorado State University

PA 133. Enhanced Heat Transfer for Scalable Vitrification-Based Cryopreservation Zongqi Guo¹

¹University of South Florida

Future Faculty Poster Session

- PA 134. Hanxun Jin, Washington University in S. Louis
- PA 135. Imtiaz Qavi, Texas Tech University
- PA 136. Xun Wang, Massachusetts Institute of Technology
- PA 137. Pete Gueldner, University of Pittsburgh
- PA 138. Crystal Mariano, University of California, Riverside
- PA 139. Hadi Wiputra, Universiy of Minnesota
- PA 140. Sebastian Hendrickx-Rodriguez, Stanford University
- PA 141. Kara Peak, University of Minnesota

PA 142. Redowan Ahmed Niloy, University of Notre Dame Nan Lin, Worcester Polytechnic Institute

- PA 143. Karan Taneja, University of Notre Dame
- PA 144. Pan Du, University of Notre Dame
- PA 145. Connor Evans, University of Texas Health Science Center

Poster Session II

Biotransport

PA 50. Featherweight, Insect-Inspired Microfluidic Infusion Pumps for Personalized, Needle-Free Drug Delivery: Comparative Benchtop and Human Subject Performance Analysis

Shuyu Zhang¹, Rafael Davalos², Anne Staples³

3C 202

¹Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, ²Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech-Emory University, ³Department of Mechanical Engineering, Virginia Tech

PA 51. Immune Cell Migration in Response to Interstitial Flow and Chemokine Gradients

Daniel Watson¹, Jennifer Frattolin¹, Francesca Masci², Robert Nibbs², Matthew Russell³, Bindi Brook³, James Moore¹

¹Imperial College London, ²University of Glasgow, ³University of Nottingham

PA 52. Diamond-P: Digital Plasmonic Nanobubble Detection for Enzyme- and Compartment-Free Single Protein Absolute Quantification

Tingting Zhang¹, Y Gao, Y Liu, Zhengpeng Qin^{1,2} ¹University of Texas at Dallas ²University of Texas Southwestern Medical Center

PA 53. Medical Provider Perspectives on Airway Management Tools and Techniques: A Survey Study

Jacob Provencio¹, Connor J. Evans², Don Petersen¹, Robert De Lorenzo², R. Lyle Hood¹ ¹University of Texas at San Antonio, ²University of Texas Health Science Center at San Antonio

PA 54. Double Integrating Sphere Optical Properties Measurements of Thermally-Damaged Porcine Dermis

Anjelyka Fasci¹, Maria Hoffman², Mark Keppler², Matthew Macasadia², Andrea Smith², Amanda Peterson², Amanda Tijerina², Michael Delisi², Joel Bixler², R. Lyle Hood¹ ¹University of Texas at San Antonio, ²Air Force Research Lab

PA 55. Morphometric Analysis of Pediatric Chiari Malformation: Age-Related Changes and Comparative Study with Adult Populations

Farnaz Feyli¹, M M Al Samman¹, M Karamzadeh¹, J R Bapuraj², P Allen³, R A Bhadelia⁴, D Loth¹, R Amini,¹ A Loth¹ ¹Northeastern University ²University of Michigan Ann Arbor ³University of Akron ⁴Harvard University

Dynamics, Dynamics and Rehabilitation

PA 56. Modeling the Foreign Body Response and Its Long-Term Effects on Diffusive Transport in Medical Devices

Martin L Tanaka¹ ¹Western Carolina University

PA 57. Detection of Error-Related Potentials Evoked by Haptic Feedback of Elbow Flexion and Extension

Dylan Page¹, Tori Scales¹, Miles Canino¹ ¹Rose-Hulman Institute of Technology

PA 58. Effects of Nmes on Muscle Atrophy and Heel-Rise Test Performance 12-Week After Achilles Tendon Rupture

Shabnam Rahimnezhad Baghche Jooghi¹, Morgan Potter², Morgan Voulo³, Brian Sonak¹, Dov Bader¹, Paul Sherbondy³, Paul Herickhoff ³, Karin Grävare Silbernagel², Daniel Cortes¹ ¹Penn State University, ²University of Delaware, ³Penn State College of Medicine

PA 59. Dielectric Elastic Actuators From "Everyday" Materials and Their Limits

Juan Heredia¹, Dayana Chavez¹ ¹Reedley College

PA 60. Anchorcat: Intracardiac Echocardiography (Ice) Catheter Fixation Device

Sumin Jeong¹, Vivian Lang¹, Jonathan Makhoul¹, Alexi Pierre- Louis¹, Alice Tian¹, Sam Wu¹ ¹*Rice University*

PA 61. A Novel Growth-Accommodating Pediatric Stent for Vascular Stenosis Applications

Niharika Narra¹, Dean Stornello¹, Osinanna Okonkwo¹, Abigail Russell¹, Gianna J. Stinsa¹, Sherry L. Harbin¹, Asem Aboelzahab¹, Aditya Shanghavi¹, Jeremy L. Herrmann² ¹Purdue University, ²Indiana University School of Medicine

PA 62. Pediatric Foley Catheter with Safety Release Mechanism

Hannah Lehrfeld¹, Isabelle O'grady¹, Julia Amato¹, Sean Runkle¹, Taylor Schreiber¹, Xochitl Triana¹

¹The University of Arizona

PA 63. Somniguard: A Smart Sleeping Mask for Personalized Sleep Therapy

Aaron Li¹, Asher Kim¹, Caden Davis¹, Madeleine Doi¹, Landon Hiley¹, Keira Hundhausen¹, Vyas Koduvayur¹, Abeni Liu¹, Jason Liu¹, Melissa Perez- Rodriguez¹, Kyra Sunil¹, Matthew Tsai¹, Shirley Xiang¹, Ellen Zulkarnain¹ ¹University of California, Los Angeles

Education

PA 64. Assessing Conceptual Learning by Implementing Inquiry-Based and Video-Based Homework Modules in Undergraduate Heat Transfer Course Liang Zhu¹, Shuyan Sun¹, Ronghui Ma¹ ¹University of Maryland Baltimore County

PA 65. Modeling the Cerebrospinal Fluid Dynamics of Ventricular Shunt Failure Bryan Good¹, Dylan Fuentala¹, Ashley Handy- Miner¹, Stephanie Termaath¹ ¹University of Tennessee

PA 66. Discrete Platelet Wall Attraction Model for Arterial Scale Flows

Arnav Garcha¹, Noelia Grande Gutierrez¹ ¹Carnegie Mellon University

3C 202

PA 67. Computational Modeling of Catheter Flow Dynamics in Pediatric Hydrocephalus

Christopher Roberts¹, Brandon Rocque², Leopold Arko³, Mino Zucchelli⁴, Elliot Widd¹, Carolyn Harris¹

¹Wayne State University, ²Children's of Alabama, ³Children's of Michigan, ⁴IRCCS Istituto Scienze Neurologiche di Bologna

PA 68. Predicting Alzheimer's Progression with a Coupled 0D-1D Glymphatic Flow Model Parameterized with 4D MRI

Daehyun Kim¹, Kaidi Hu¹, Mahsa Mirzaee¹, Jeffrey Tithof¹ ¹University of Minnesota

PA 69. Effect of Myocardial Motion on Coronary Hemodynamics

Yurui Chen¹, Hannah Zhai¹, Ian Chen², Vijay Vedula¹ ¹Columbia University, ²Stanford Cardiovascular Institute

PA 70. Left Ventricular Hemodynamics Pre- and Post-Mitral Valve Repair: Relationship Between Intracardiac Vortices and Myocardial Motion

Tanmay Mukherjee¹, Babak Peighambari¹, Akila Bersali², Dipan Shah², Reza Avazmohammadi¹ ¹Texas A&M University, ²Houston Methodist DeBakey Heart & Vascular Center

PA 71. Automated Workflow for Atomic Force Microscopy Using Machine Learning Segmentation on DNA

Blythe Dumerer¹, Sita Sirisha Madugula², Ruben Millan-Solsona², Liam Collins², Rama Vasudevan² ¹University of California, Berkeley, ²Oak Ridge National Laboratory

PA 72. Patient-Specific FSI Analysis in Subjects with Sickle Cell Disease and Pulmonary Hypertension

Fatemeh Bahmani¹, Alex Vadati¹, Veeranna Maddipati¹, Stephanie George¹ ¹East Carolina University

PA 73. Modeling Hypercoagulable States in Left Atrial Appendage Occlusion Patients

Ahmad Bshennaty¹, Brennan Vogl¹, Ghasaq Saleh², Alessandra Bavo³, Matthieu De Beule³, Jens Erik Nielsen-Kudsk⁴, Ole De Backer⁵, Mohamad Alkhouli², Hoda Hatoum¹ ¹Michigan Technological University, ²Mayo Clinic, ³FEops, ⁴Aarhus University Hospital, ⁵Copenhagen University Hospital

PA 74. Temperature and Viscosity Effects on Nitinol-Framed Seld-Expanding Transcatheter Aortic Valve Performance in a Patient-Specific In-Vitro Model

Ahmad Bshennaty¹, Brennan Vogl¹, Zhongtian Zhang¹, Ghasaq Saleh², Bruce Lee¹, Mohamad Alkhouli², Hoda Hatoum¹

¹*Michigan Technological University,* ²*Mayo Clinic*

PA 75. Precision Stroke Medicine: A Data-Driven Atlas of Cerebral Blood Flow Dynamics & Vascular Morphology

Aditi Deshpande¹, Laith Altaweel², Jing Wang², Seajin Yi², Pravin George², Pouya Fahadan², Kaveh Laksari¹

¹University of California, Riverside, ²Inova Fairfax Medical Campus

PA 76. Advance in Predictive Modeling of Left Ventricular Assist Device Implantation Hemodynamics: Two Patient Specific Cases

Abraham Umo¹, Brett Welch², Steven Keller³, Arman Kilic², Ethan Kung¹ ¹Clemson University, ²Medical University of South Carolina, ³Johns Hopkins University

PA 77. Effects of Boundary Conditions on Temperature and Humidity Distribution in Cystic Fibrosis Airways

Hamideh Hayati¹, Qiwei Xiao¹, Chamindu Gunatilaka¹, Alister Bates¹ ¹Cincinnati Children's Hospital Medical Center

PA 78. Shear-Mediated Platelet Adhesion Dynamics: Modeling the Effect of Von Willebrand Disease and Multi-Platelet Aggregates

Peineng Wang¹, Jawaad Sheriff¹, Peng Zhang¹, Yuefan Deng¹, Danny Bluestein¹ ¹Stony Brook University

PA 79. A Multiplexed Microfluidic Device to Assess Blood Coagulation

Mohammad Nikmaneshi¹, James Baish², Noel-Adrian Hollosi¹, Gabriel Gruionu³, Lance Munn¹ ¹Massachusetts General Hospital, ²Bucknell University, ³Indiana University School of Medicine

PA 80. A Diffusion-Based Generative Model for Multi-Branch Aortic Vessels Using Nurbs Parameterization

Pan Du¹, Minqi Xu², Jian-Xun Wang² ¹University of Notre Dame, ²Cornell University

Solid Mechanics

PA 81. Effect of Residual Stresses on Network Reorganization in Composite Fiber Networks Driven by Cellular Interactions

Ashutosh Mishra¹, Hamed Hatami-Marbini¹ ¹University of Illinois Chicago

PA 82. Fatigue Fracture of Mineralized Collagen Fibrils in 3D

Riti Sharma¹, Stephen Ching¹, Luc Capaldi¹, Kailin Chen¹, Xianghui Xiao², Ottman A. Tertuliano¹ ¹University of Pennsylvania, ²National Synchrotron Light Source II, Brookhaven National Laboratory

PA 83. Age Differences in Clitoral Anatomy Across the Adult Lifespan

Shaniel Bowen¹, Pamela Moalli², Arijit Dutta³, Krystyna Rytel⁴, Holly Richter⁵, Mark Lockhart⁵, Sara Perelmuter⁶, Elazer Edelman¹, Steven Abramowitch⁷

¹Massachusetts Institute of Technology, ²Magee Womens Research Institute, ³University of Maryland, ⁴National Human Genome Research Institute, ⁵University of Alabama at Birmingham, ⁶Weill Cornell Medical College, ⁷University of Pittsburgh

PA 84. Inversion in Shear Wave Elastography Using Traveling Wave Expansion

Shengyuan Ma¹, Guang-Zhong Yang¹, Yuan Feng¹ ¹Shanghai Jiao Tong University

3C 202

PA 85. Graph Neural Network for Soft-Body Contact Mechanics

Vijay Dubey¹, Collin E. Haese¹, Osman Gültekin¹, Jan Fuhg¹, Manuel K. Rausch¹ ¹The University of Texas at Austin

PA 86. A Systems Mechanobiology Approach to Understanding Transgender Cardiac Remodeling

Christian Andrade Herrera¹, Adhithi Lakshmikanthan¹, Pim Oomen¹ ¹University of California, Irvine

PA 87. Mechanical and Microstructural Markers of Healthy Uterine Decidualization and Pregnancy

Catalina Bastias¹, Arpna Sharma¹, Anuurag Aravindan¹, Matt Dean¹, Callan Luetkemeyer¹ ¹University of Illinois Urbana-Champaign

PA 88. A 3D Analysis of the Intervertebral Disc in Adolescent Idiopathic Scoliosis

Anna Iacocca¹, Jacob Jordan², Thomas Coleman³, Patrick Cahill³, Axel Moore¹ ¹Carnegie Mellon University, ²University of Pennsylvania Perelman School of Medicine, ³Children's Hospital of Pennsylvania

PA 89. Multicomponent Mechanical Characterization of Diseased Human Coronary Artery with an Image-Based Computational Framework

Yifan Wang¹, Caleb Berggren², Stewart Yeoh², Steve Maas², Jeffrey Weiss², Edward Hsu², Lucas Timmins¹ ¹Texas A&M University, ²University of Utah

PA 90. Functions of Prolyl Hydroxylation in Elastin

Chengeng Yang¹, Christian Schmelzer², Anna Tarakanova¹ ¹University of Connecticut, ²Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS

PA 91. Creep Response of the Pig and Cow Optic Nerves Under Compression Katherine Kauffman¹, Katie Metrey¹, Arina Korneva¹ ¹Virginia Tech

PA 92. Tricuspid Valve Leaflet Remodeling in Sheep with Biventricular Heart Failure: A **Comparison Between Leaflets**

The University of Texas at Austin, Colewen Health

BC 202

PA 93. Mouse Specific Fluid-Structure Interaction Simulation for Investigating the Role of Aortic Hemodynamics in Age- and Sex- Specific Aneurysm Progression in Marfan Syndrome

Krashn K Dwivedi¹, Yufan Wu¹, James D Quirk¹, Marisa Bazzi², Hadi Wiputra², Victor H Barocas², Jessica E Wagenseil¹ ¹Washington University in St. Louis, ²Washington University in Saint Louis

PA 94. Computational Poroelastic Framework Coupling Left Ventricular Mechanics with Myocardial Perfusion

Haowei An¹, Vahid Ziaei-Rad¹, Lik Chuan Lee¹ ¹*Michigan State University*

PA 95. Rapid Cardiac Functional Simulation Using the Jax Numerical Framework

Benjamin Thomas¹, Kenneth Meyer¹, Ulas Akyuz¹, Christian Goodbrake¹, Michael Sacks¹ ¹The University of Texas at Austin

PA 96. Hydraulically Actuated Asymmetric Flexible Hinge: A Bio-Inspired Design Principle

Eugene Starostin¹, Geoff Goss¹ ¹London South Bank University

PA 97. An Ex Vivo Mastication Simulator for Wear Testing of Temporomandibular Joint Implants

Anton Pavlov¹, Hassan Mahmoud¹, Ben Gadomski¹, Kevin Labus¹ ¹Colorado State University

PA 98. Prediction of Mechanical Response and Tear Development in Vaginal Tissue Using Machine Learning

Mostafa Zakeri¹, Justin Krometis¹, Traian Iliescu¹, Raffaella De Vita¹ ¹Virginia Tech

PA 99. Patient-Specific Simulation of Stent Graft Deployment for Risk Assessment in Thoracic Endovascular Aortic Repair

Zhongxi Zhou¹, Zhaoming He¹, Bradley G Leshnower², Minliang Liu¹ ¹Texas Tech University, ²Emory University School of Medicine

PA 100. Alveolar Microdynamics from 4D Micro CT Image Registration Daniel Meggo¹, Sarah Gerard¹, Jacob Herrmann¹ ¹University of Iowa

PA 101. Classification of Abdominal Aortic Aneurysms Using Graph Neural Networks Julian Carvajal Rico¹, Juan C. Restrepo¹, Satish C. Muluk², Mark K. Eskandari³, Ender A. Finol¹

¹The University of Texas at San Antonio, ²Department of Cardiothoracic Surgery, Allegheny Health Network, ³Division of Vascular Surgery, Northwestern University School of Medicine

PA 102. The Use of Region-Dependent Material Parameters in Simulating Cerebral Atrophy

Nicole Tueni¹, Emma Griffiths¹, Silvia Budday¹ ¹*Friedrich-Alexander-Universität Erlangen-Nürnberg*

PA 103. Porcine Vertebral Endplate Biomechanical Analysis Under Four-Point Bending

Verushca Gasiorowski¹, Jack Seifert¹, William Curry¹, Lance Frazer², Timothy Bentley³, Daniel Nicolella², Narayan Yoganandan¹, Frank Pintar¹, Brian Stemper¹ ¹Medical College of Wisconsin, ²Southwest Research Institute, ³Office of Naval Research

PA 104. Zero-Shot Deep Learning-Based Strain Calculation Framework Using Cotracker 3 Model: An Application in Active Contraction of the Bladder Tissue

Alireza Asadbeygi¹, Anne Robertson¹ ¹University of Pittsburgh

PA 105. Mechanics and Failure of Single Sutures in Ovine Tendon

Charlotte Andreasen¹, Nell Hasler¹, Emily Graham¹, Ellen Arruda¹ ¹University of Michigan

PA 106. Computational Stent Simulation in Patient-Specific Artery Model Using Simplex Mesh

Changkye Lee¹, Wei Wu¹, Shijia Zhao¹, Rakshita R. Bhat¹, Priyansh Patel¹, Yiannis S. Chatzizisis¹ ¹University of Miami

PA 107. Site-Dependent Mechanical Properties of the Meniscus

Satoshi Yamakawa¹, Takashi Kanamoto¹, Akira Tsujii¹, Ken Nakata¹ ¹Osaka University

PA 108. Impact of Seat Angle on Cervical Spine Degeneration in High-G Environments: A Computational Biomechanics Study Ann Reyes Kadozono¹, Reuben Kraft¹ ¹Pennsylvania Stata University

PA 109. Amplified Cine-MRI of the Healthy Human Brain at 3Tesla and 7Tesla

Tyson Lam¹, Emily Triolo¹, Fargol Rezayaraghi¹, Mehmet Kurt¹ ¹University of Washington

PA 110. Alcohol Ablation and Its Influence on Myocardial Mechanics in the Context of Transcatheter Mitral Valve Implantation

Steven Said¹, Mina Shafiei¹, Dong Qiu¹, Ali Azadani¹ ¹University of Denver

PA 111. The Cxl Effects on Corneal Mechanical Property Anisotropy Md E Emu¹, Hamed Hatami-Marbini¹

¹University of Illinois Chicago

PA 112. A Computational Model of Neonatal Pulmonary Artery Development Erica Schwarz¹, Abhay Ramachandra², Nicola Yeung³, Edward Manning¹, Dar Weiss⁴, Jay Humphrey¹ ¹Yale University, ²Iowa State University, ³University of Cambridge, ⁴University of Denver

PA 113. A Model of Nonlinear Lung Compliance Coupled to Time- and Pressure-Dependent Recruitment

Jacob Herrmann¹ ¹University of Iowa

PA 114. Modeling Nonlocal Behavior of Stochastic Fibrous Materials Using a Finite Element Implementation of Micromorphic Linear Elasticity

Zachary Knowlan¹, Jacob Merson¹ ¹Rensselaer Polytechnic Institute

PA 115. Computational Modeling of Right Ventricle Mechanics: Interventricular Septal Curvature as a Potential Biomarker for Disease Diagnosis

Chenghan Cai^{1,2}, Lei Fan^{1,2} ¹*Marquette University,* ²*Medical College of Wisconsin*

PA 116. The Relation Between Glycosaminoglycan Content and Mechanical Property of Human Cornea

Md Esharuzzaman Emu¹, Hamed Hatami- Marbini¹ ¹University of Illinois Chicago

PA 117. Tension in the Deep Zone Collagen Network Contributes to the Residual Stress in Mature Bovine Articular Cartilage

Kimberly Kroupa¹, Haoyu Zhang¹, Clark Hung¹, Gerard Ateshian¹ ¹Columbia University

PA 118. Microfluidic Synthesis of Alginate Microbeads to Quantify Intra-Tumoral Compressive Stress

Bryce Thompson¹, Erica Rios Hernandez¹, Zachary Fowler¹, Allison Johnson¹, Joseph Chen¹ ¹University of Louisville

PA 119. Comparative Study of Spinal Cord Stress Distribution and Range of Motion in Anterior Cervical Surgeries

Yuvaraj Purushothaman¹, Hoon Choi¹, Narayan Yoganandan² ¹Cleveland Clinic Florida, ²Medical College of Wisconsin

PA 120. Substrate Stiffness Influences Fungal Biofilm Morphogenesis and Mechanical Properties

Richa S Thakur¹, Joushua Tamayo¹, Arvind Gopinath¹ ¹University of California Merced

SBC 2025

PA 121. Age and Sex Associations of Aortic Area and Circumferential Strain in Patients with Unique Cardiac Disease States

Alice Guest¹, Petra Alsahwi¹, Tanveer Parhar¹, Rylan Marianchuk¹, Dinah Labib¹, James A. White¹, Elena Di Martino¹ ¹University of Calgary

PA 122. Quantification of Dynamic Fluidic Sloshing Force During Impact and Effect on Neuron Cells

Raisa Akhtaruzzaman¹, Ashfaq Adnan¹ ¹University of Texas at Arlington

PA 123. Biomechanical Effects of Bertolotti Syndrome on Lumbar Kinematics: A Cadaveric Study

Elizabeth Pace¹, Jeremy Loss¹, Mario-Cyriac Tcheukado¹, Robb Colbrunn¹, Logan Shannon¹, Michael Steinmetz¹

Tissue and Cellular Engineering

PA 124. Immune Activation Through Pattern Recognition Receptor Agonists Modulate Functional Rotator Cuff Healing in a Rat Model

Sam Winston¹, Devin Von Stade¹, Cody Plaisance¹, Renata Impastato¹, Lyndah Chow¹, Lynn Pezzanite¹, Steven Dow¹, Kirk Mcgilvray¹ ¹Colorado State University

PA 125. Role of the Osteocyte Compressibility on the Controlled Canalicular Volume Flow Rate and Its Biological Implications

Jaemin Kim¹, Youngho Lee¹, Soonmoon Jung¹, Hyeyeong Song¹, Seungyun Oh¹, Jiwoo Jang¹, Inyeop Na¹, Junghwa Hong¹ ¹Korea University

PA 126 Integration of Mathematical and Agent-Bas

PA 126. Integration of Mathematical and Agent-Based Models in Finite Element Frameworks to Simulate Murine Bone Fracture Healing

Ahmad Hedayatzadeh Razavi^{1,2}, Nazanin Nafisi^{1,2}, Mohammad Sadegh Ghiasi², Ara Nazarian^{1,2} ¹Boston University, ²Beth Israel Deaconess Medical Center

PA 127. Targeting the Mechano-Epigenetic Pathway: A Novel Approach for Primary Mesenchymal Stem Cell Manufacturing to Achieve Quality and Quantity

Lauren Monroe¹, Soham Ghosh¹ ¹Colorado State University

PA 128. Compromised Load Transfer within Human Elastin Network with Aging Yeganeh Taheri¹, Anastasia Gkousioudi¹ ¹Boston University

PA 129. Sex Differences in Immune Response to Extracellular Matrix Nanoparticle Treatment of Endotoxin-Induced Lung Injury Casie Slaybaugh¹, Jessica Nguyen¹, Keith Li¹, Rebecca Heise¹

¹Virginia Commonwealth University

PA 130. Reproducibility Issues with Explant Models of Tendon and Ligament Mechanobiology

Brad Foster¹, Lauren Paschall², Krishna Pedaprolu³, Spencer Szczesny¹ ¹Pennsylvania State University, ²National Cancer Institute, ³Hospital of Special Surgery

PA 131. Vasculogenic "Code Switching": Exploring Vascular Smooth Muscle Cell Transcriptomics During Vasculogenesis

Mohammad Nikmaneshi¹, Lennard Weide¹, Noel-Adrian Hollosi¹, Marc Holl¹, Rieke Schleinhege¹, Dan Duda¹, Lance Munn¹ ¹Massachusetts General Hospital

PA 132. Automated Dendritic Spine Counting With Machine Learning for Analyzing Mechanical Injury of Neurons in Vitro

Avik Mukherjee¹, Dehzi Liao¹, Patrick Alford¹ ¹University of Minnesota

PA 133. Assessment of Mesoscale Cutting Accuracy in Tissue Engineered Vascular Grafts Using Two-Photon Subtractive Manufacturing

Tiffany Moreno¹, Brock Pemberton¹, Markus Boettcher², William Wagner¹, Jonathan Vande Geest¹

¹University of Pittsburgh, ²Miltenyi Biotec B.V. & Co.

PA 134. Spatially Graded Tissue Engineering Scaffolds from Multi-Diameter Melt Electrowritten Fibers

Dylan Scheller¹, Sam Winston¹, Kirk Mcgilvray¹ ¹Colorado State University

PA 135. Effect of Exposure to Light of Different Wavelengths on Viability of Sh-Sy5y Cell

Sumaya Sharmin¹, Raisa Akhtaruzzaman¹, Ashfaq Adnan¹ ¹University of Texas at Arlington

PA 136. Pgg-Stablized Acellular Porcine Epicardial Layer as a Cardiac Patch Scaffold Sara R. McMahan, Alan Taylor, Jiazhu Xu, Zhiping Liu², Pietro Bajona², Matthias Peltz², Yi Hong¹, Jun Liao¹ ¹University of Texas at Arlington

²UT Southwestern Medical Center

Thank You to Our ASME SBC 2025 Sponsors!

GOLD SPONSORS	SILVER SPONSOR			
PITT SWANSON ENGINEERING BIOENGINEERING	BIOMEDICAL ENGINEERING	Berkeley Mechanical Engineering		
BRONZE & LANYARD SPONSOR	BRONZE SPONSORS			
COLLEGE OF ENGINEERING BIOMEDICAL ENGINEERING AND MECHANICS VIRGINIA TECH.	Exponent®	WashU McKelvey Engineering		
COMMUNITY & CULTURE SPONSO	R EXHIBITORS			
Department of Mechanical Science and Engineering	TEXAS A&M UNIVERSITY J. Mike Walker '66 Departme Mechanical Engineerin			
EDROCK VIP SPONSOR				
Wei Biomec La ADVERTISING SPONSORS	hanics The FEBio Pe b Finite Elements for Bio	omechanics		
	Kent Scie CORPORA	Northeastern University College of Engineering Bioengineering		
The American Society of Mechanical E	ngineers ®	ACA		

SETTING THE STANDARD

ASME[®]

ENGINEERING

Editors: Vicky Nguyen | C. Ross Ethier

PUBLISH YOUR RESEARCH WITH ASME

The Journal of Biomechanical Engineering reports research results involving the application of mechanical engineering principles to the improvement of human health.

JOURNAL SCOPE:

· Biofluid/biomicrofluid systems mechanics

BC 2025

- Bioheat and biomass transfer
- · Biomechanics of reproduction and women's health
- Bone biomechanics and mechanobiology
- Cardiovascular biomechanics
- Cell and tissue engineering
- Cell mechanobiology and biomechanics
- Gait and kinesiology

- · Growth and remodeling
- Injury biomechanics
- Mechanics of biomaterials
- Orthopedic biomechanics
- Physiological systems
- Prothesis and artificial organs
- Pulmonary biomechanics
- Soft and hard tissue biomechanics

IMPACTFUL LEADING RESEARCH

EXPLORE CONTENT & SUBMIT YOUR RESEARCH

asmedigitalcollection.asme.org

in @asmedotorg

The American Society of Mechanical Engineers» ASME®

You wouldn't overfeed him...

...so why give him more anesthesia than he needs?

Mice aren't dogs—so why use dog-sized volumes of anesthetic?

Traditional anesthesia systems are designed for larger animals—or even humans—forcing researchers to use imprecise, high-flow delivery that leads to wasted anesthetic, inconsistent results, and unnecessary exposure to waste anesthetic gas (WAG).

- Too much anesthetic for a small animal means wasted resources and unnecessary exposure
- High-flow systems make precision difficult, leading to variability in research outcomes
- Excess waste gas exposure puts researchers at risk

Introducing the NEW SomnoFlo O₂Care

You know SomnoFlo—the precision–engineered, low-flow electronic vaporizer designed specifically for small animals.

SomnoFlo is now available with optional O₂Care—delivering precision oxygen percentages without the complication of external mixers or custom blends. Whether your animals need a quick oxygen boost during surgery or supplemental oxygen during recovery, SomnoFlo with O₂Care allows you to adjust oxygen concentration on the fly with the turn of a dial.

Learn more at: www.KentScientific.com

SomnoFlo

Can

MULTIPLE LABS ACROSS 3 LOCAL CAMPUSES

19 RESEARCH PROGRAMS

MORE THAN 60 CLINICAL COLLABORATORS

Two exceptional institutions. One outstanding educational experience.

Graduate Degrees Offered with Six Research Themes:

- Biomechanics & Rehabilitation Bioengineering
- Biomedical Imaging
- Computational Systems Biology & Medicine
- Medical Devices & Bioinstrumentation
- Molecular, Cellular & Tissue Engineering
- Neural Engineering & Neurorehabilitation

LEARN MORE

110

@MU_MCW_BME https://mcw.marquette.edu/biomedical-engineering/

BC 2025

Aim and Scope of *Biomechanics*

Biomechanics (ISSN 2673-7078) is an international, peer-reviewed, open access journal covering all aspects of biomechanics, which can be described as the application of principles and methods of mechanics to the quantitative study of biological problems. Its research scope ranges from whole organisms to systems and organs (including blood, body fluids, organs, and bones) within the human body as well as animals and plants.

Biomechanics publishes full research articles, reviews, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of papers. Full experimental details must be provided so that the results can be reproduced. Additionally, electronic files providing full details of the calculations and experimental procedures can be deposited as supplementary materials.

The scope of Biomechanics includes:

- Motion and Sports Biomechanics, Posture and Gait Analysis
- Injury Biomechanics, Kinesiology and Rehabilitation
- Cardiovascular, Musculoskeletal and Orthopedic Biomechanics
- Tissue Biomechanics
- Implant (Medicine), Orthotics, and Prosthesis
- Computational Biomechanics
 Biomechanical Modelling
- Animal Locomotion

Author Benefits

Open Access

Unlimited and free access for readers

No Copyright Constraints

Retain copyright of your work and free use of your article

Thorough Peer-Review

No Space Constraints, No Extra Space or Color Charges

No restriction on the maximum length of the papers, number of figures, or use of colors

Coverage by Leading Indexing Services

ESCI (Web of Science), Scopus, EBSCO, and other databases

Rapid Publication

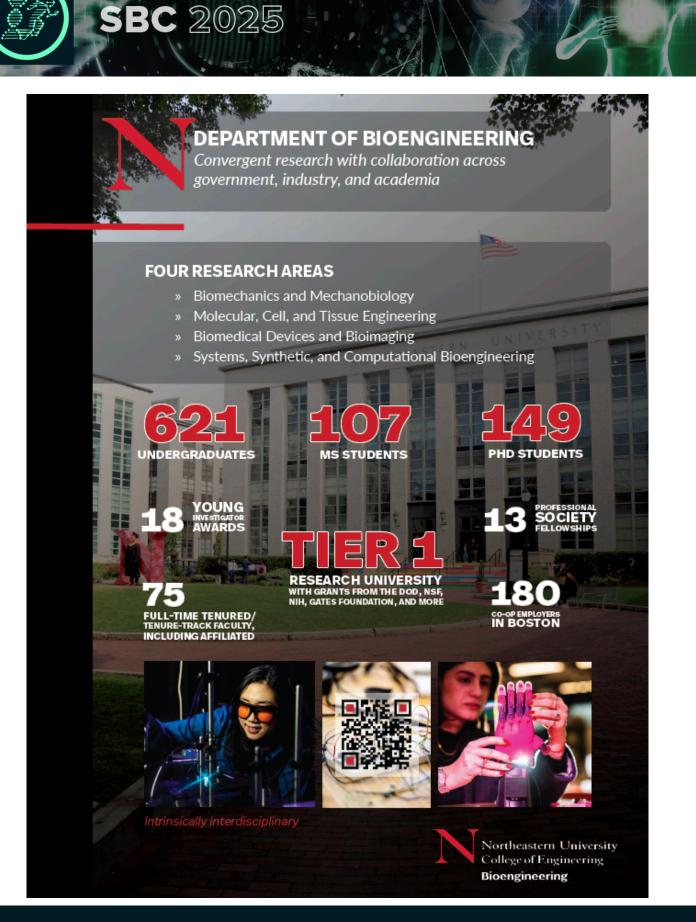
A first decision is provided to authors approximately 27.4 days after submission; acceptance to publication is undertaken in 6.6 days (median values for papers published in this journal in the second half of 2024)

mdpi.com/ journal/biomechanics Tracked for Impact Factor CiteScore 1.5

an Open Access Journal

by MDPI

Editor-in-Chief Prof. Dr. Tibor Hortobágyi


Editorial Office

MDPI Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 mdpi.com

The American Society of Mechanical Engineers ® ASME®

Gain the skills you need for a career-ready future

Established in 2010, UNM's Biomedical Engineering graduate program is highly interdisciplinary, with faculty participating from across the School of Engineering, School of Medicine and College of Arts and Sciences, as well as other universities and national laboratories across New Mexico. Our research areas include protein and nucleic acid engineering, biomedical instrumentation, biomolecular computation, biomaterials, biomechanics, tissue engineering, and bioinformatics.

The Biomedical Engineering Program offers an accelerated shared-credit B.S./M.S. program, as well as a Master of Science and Ph.D.

bme.unm.edu

It's Possible

BC 2025

Pitt's Department of Bioengineering combines hands-on experience with the solid fundamentals that students need to advance themselves in research, medicine, and industry. Our students utilize state-of-the-art facilities and a wide array of research opportunities while applying various forms of engineering principles, technology, and methodology to medical and life sciences problems.

engineering.pitt.edu/bioengine

University of Pittsburgh.

Swanson School of Engineering Bioengineering

The American Society of Mechanical Engineers ® ASME®

WAKE FOREST

SCHOOL OF BIOMEDICAL ENGINEERING AND SCIENCES World Class Faculty Three Campuses Two Prestigious Institutions **One Outstanding Program**

simVITRD Workshop

Best Practices in Robotic in vitro Joint Testing

Join us for an engaging workshop and interactive networking sessions, delving into cutting-edge advancements and solutions with *in vitro* joint biomechanics.

Wednesday, June 25th @ 8:30-11:30 AM

Cleveland Clinic BioRobotics Lab | simVITRO@ccf.org simVITRO.clevelandclinic.org | 216.505.0003

WashU McKelvey Engineering

Conducting **pioneering research** that advances science, technology, industry and communities. Collaborating with WashU Medicine to create **breakthrough solutions** in health.

Educating future leaders who can adapt to - and shape - a changing world.

Key research areas include:

- » Biomedical & biological imaging
- » Cell & molecular bioengineering
- » Orthopedic engineering
- » Women's health technologies

Engineer your way. Engineer at WashU.

Make a Bigger Impact

Use the QR code or click here to apply

The American Society of Mechanical Engineers ® ASME®

SBC 2025

Reviewers

The ASME SBC 2025 and Program Committees thank all of our abstract reviewers!

Abramowitch, Steven Ahmed. A.H. Rezwanuddin Alshareef. Ahmed Amini, Rouzbeh Anantha Krishnan, Ahilan Arefin, Nafis Auddya, Debabrata Avazmohammadi, Reza Badrou, Arif Bailoor, Shantanu Bansal, Manik Bansal, Sonia Berlew, Erin Bhushan, Abhinav Billiar. Kristen Blank, Jonathon Bowen, Shaniel Bush, Tamara Reid Case, Natasha Cebull, Hannah Chan. Deva Chao, Pen-hsiu Grace Chen, Huang Chen, Joseph Chen, Tony Cone, Stephanie Connizzo, Brianne Corr, David T. Cortes, Daniel Dahl. Joanna Dey, Shamudra Deymier, Alix Dharmangadan, Sree Vivek Dong, Hai Dou, Zhongwang Du, Liya

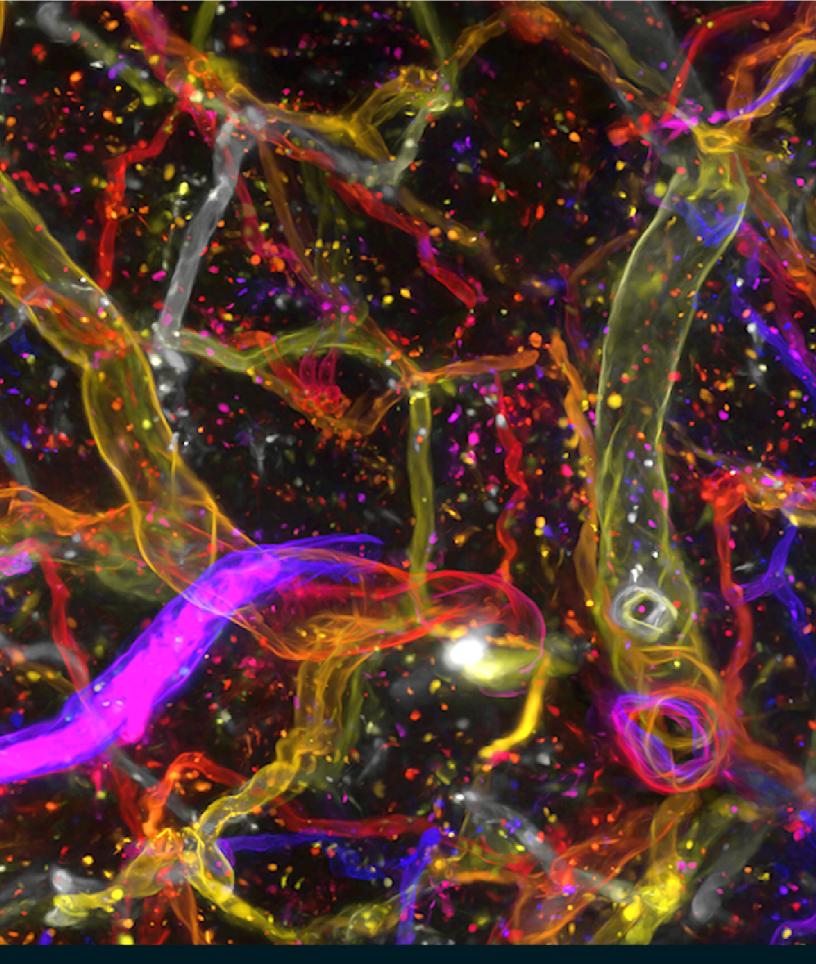
Duarte, Camilo Dwivedi, Krashn Dyment, Nathaniel Eberhardt, Alan Ebong, Eno Eden. Matthew Esmailie, Fateme Essafri, ilham Estrada, Ana C. Fan, Jing Fan, Lei Feola, Andrew Ferruzzi, Jacopo Finan. John Fischer, Kenneth Fisher. Matthew B. Gallo, Diego Galloy, Adam Gao, Jingjing Genin, Guy M. Ghosh, Soham Gkousioudi, Anastasia Goergen, Craig Good, Bryan Goswami, Debkalpa Guo, Zongqi Gurkan, Umut Hajighamemar, Marzieh Hatoum, Hoda Heise, Rebecca Henak, Corinne Herrmann, Jacob Hill, Michael Huang, Zhongping Hutcheson, Josh Hwang, Priscilla Islam, Mohammed Refatul Jafarabadi, Fatemeh

Jain. Kartik Jensen, Morten Jia, Dongjie Jin, Hanxun Johnson, Amy Wagoner Killian, Megan Kim, Byumsu Kim, Jeong Hee Kizilski, Shannen B. Kondiboyina, Vineel Korneva, Arina Kostelnik, Colton Kupratis, Meghan Labus, Kevin Lai, Victor Lake, Spencer Laksari, Kaveh Lall. Ravinder Lane, Brooks Lee, Chung-Hao Lejeune, Emma Li, Haiyan Li. Kewei Liu. Hao Mahmoudi, Mostafa Manegaonkar, Shreyash Milind Mathur, Mrudang Mattar, Luke McIlvain, Grace Mehdi. Rana Raza Menon, Karthik Meyer, Gretchen Meyers, Brett Middendorf, Jill Mizuno, Fumio Mojumder, Joy Monson, Ken

The American Society of Mechanical Engineers® ASME®

Montes, Andre Moore, Axel Moore, Emily Moore. James Morbiducci, Umberto Moshage, Sara Mullagura, Haritha Muthiah, Thirumurugan Naghizadehsafa, Babak Nedrelow, David Nguyen, Kim-Lien Ahmed, Niloy Redowan Oakes, Jessica O'Connell, Grace Okamoto, Ruth Oomen, Pim Ou, Wenquan Palnitkar, Harish Ravindra Panneerselvam, Karthikeyan Patel, Tejas Patnaik, Sourav Paulose, Jithu Peak, Kara Pedrigi, Ryan Peloquin, John Peterson. Ben Pierce, David Pillalamarri, Narasimha Rao Guzman, Roberto Pineda Pineda-Castillo, Sergio

Qin, Zhenpeng Qiu, Dong Rahbar, Elaheh Rahman, Akanda Shamimur Ramachandra, Abhay Rathod, Mitesh Rausch, Manuel Raut. Samarth Reiter, Alex Robbins, Andrew Roccabianca, Sara Roldan-Alzate, Alejandro Routzong, Megan Rylander, Christopher Prakrathi, S. Sacks. Michael Schiele, Nathan Seidabadi, Leila Seidi, Morteza Sigal, Ian A. Singh, Anita Singh-Gryzbon, Shelly Sise, Vincent Smith, Joshua Srinivasan, Venkatesh Staples, Anne Stott, Shannon Stylianou, Antonis Sucosky, Philippe Sun, Yubing Sun, Yueyi


Szafron, Jason Szczesny, Spencer Tabatabaei, Mohammad Taneja, Karan Tang, Xin Thomopoulos, Stavros Timmins, Lucas Tripathi, Anu Vande, Geest, Jonathan Vander, Roest, Alison Varner, Victor Vedula, Vijay Wang, Sihong Wang, Tianbai Wang, Xun Wang, Zhijie Winkelstein, Beth A. Wiputra, Hadi Witzenburg, Colleen Wojcik, Laura Worthington, Kristan Wright, Neil Wu, Naiyan Xin, Ying Yap, Choon Hwai Yoshida, Kyoko Yu, Yijiang Zaferiou, Antonia Zhan. Li Zhang, Ruih

SBC 2025 • PROGRAM AT-A-GLANCE									
Room:	Tamaya A	Tamaya B	Tamaya C	Puma AB	Wolf AB	Eagle A	Eagle B		
	SUNDAY, June 22, 2025								
11:30 - 1:00 pm	ASME EC Meeting								
1:00 – 2:00 pm				TCOM: Education	TCOM: Fluid Mechanics	TCOM: Industry	Student Leadership Committee		
2:00 – 3:00 pm				TCOM: Biotransport	TCOM: Tissue & Cell	TCOM: DDRR			
3:00 – 4:00 pm						TCOM: Solids			
4:15 – 5:45 pm	Emerging Computational BMMB	G&R Mechanics	Mechanobiology I	In Vitro & Computational Biofluids	Head & Injury Solids 1	Engineering Education	Exp. Mechanics & Mineralized Tissues		
6:00 – 7:10 pm	Plenary - Manu Platt (Tamaya D Ballroom)								
7:15 – 9:00 pm	Welcome Reception (Tamaya Foyer)								

	MONDAY, June 23, 2025							
8:00 – 9:30 am	Reproductive Mechanics I	Vascular Biomechanics I	Engineered In Vitro Models	Scientific Computing in CVD Fluids & Design	Spine & Joints	DDRR Precision Health Innovations	Biotransport: Biotechnology Applications	
9:45 -	Nerem ASME Medal (Alan Eberhardt) Mow ASME Meda (Yongjie Jessica Zhang) Fung ASME Medal (Spencer Szczesny)							
11:15 am	(Tamaya D Ballroom)							
11:15 – 11:30 am	Coffee Break							
11:30 – 1:00 pm	Reproductive Mechanics II	Vascular Biomechanics II	Mechanobiology II	Image-Driven Patient-Specific Modeling of CVD	Joint Biomechanics	DDRR Computational, Protective Devices, & Regulatory	Biotransport: Nano & Micro	
1:00 – 2:30 pm	POSTER SESSION I with Lunch, Including BS SPC Prospective Junior Faculty Poster Session (EFGH Ballroom)							
2:30 – 3:45 pm	Lavender Networking Event 1 st Time Attendee							
3:45 – 4:55 pm	ASME-SB3C Open Meeting Student Networking Event							

TUESDAY, June 24, 2025								
8:00 – 9:30 am	Emerging Experimental BMMB	Cardiac Biomechanics	Special session: Cancer Mechanobiology	Heart Valves & Vascular Flow: Exp & Comp	Special session: John Bischof 60 th Birthday	DDRR Clinical Translational Impacts to Improve Mobility	Head & Injury Solids II	
9:45 – 10:45 am	Lissner ASME Medal (Kai-Nan An) (Tamaya DEFGH Ballroom)							
10:45 – 11:00 am	Coffee Break							
11:00 – 12:30 pm	PhD SPC: Reproductive Mechanics	PhD SPC: Cardiovascular BMMB	PhD SPC: Tissue Engineering	PhD SPC: Biomechanical Investigations	PhD SPC: Musculoskeletal Biomechanics	PhD SPC: Biotransport & Modeling Systems		
12:30 – 2:00 pm	POSTER SESSION II with Lunch, Including MS SPC (EFGH Ballroom)							
2:00 – 3:30pm	Funding opportunities	Transitioning Between Academia and Industry workshop	Women's Health and Engineering			FDA Medical Device Workshop		
3:30 - 5:00pm	NIH/NSF Program Officer Webinar	Mentor-mentee workshop	Biological sex on tissue mechanics			How to apply for academic positions		
5:00 – 6:00 pm	Networking Events							
7:00 – 10:00 pm				CONCERT				
			WED	NESDAY, June 25	5, 2025			
8:30 – 10:00 am		CRIMSON	SimVascular	FEBio	simVITRO			
10:00 – 11:30 am	Scientific Advocacy (AIMBE)		Workshop	Workshop		Undergrad Design Competition		
1:00 - 2:00	0 - 2:00 Grood ASME Medal (ATP-Bio Team: John Bischof & Mehmet Toner) Woo ASME Medal (Umut Atakan Gurkan) (Tamaya D Ballroom)							
2:00-2:15	Coffee Break							
2:15 – 3:45 pm	Multiscale Mechanics I	Heart Valve Biomechanics	Tissue Regeneration, & Emerging TCE	CVD Biofluid Mechanics	Soft Tissue Mechanics	Cancer mechanics & Microfluids	Biotransport: Computational Modeling	
4:00 – 5:30 pm	Multiscale Mechanics II	Vascular Hemodynamics & Mechanobiology	Microenv. Stiffness & Physical Effects	AI & Machine Learning in Biofluids	Topics in Bone & Joint Mechanics	CVD Mechanics	Extracellular Matrix Dynamics & Remodeling	
7:00 – 7:30 pm	Banquet Reception (Tamaya DEFGH Ballroom)							
7:30 – 10:00 pm	Banquet and Awards Ceremony (Tamaya DEFGH Ballroom)							

