

ASME SMASIS 2023

The ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems

Program

CONFERENCE Sept 11 – 13, 2023

Location: Doubletree by Hilton Austin Austin, TX

https://event.asme.org/SMASIS

The American Society of Mechanical Engineers & ASME®

Contents

WELCOME LETTER	3
GENERAL INFORMATION	5
CONFERENCE EVENTS	7
STUDENT EVENTS	8
COMMITTEE MEETING SCHEDULE	
KEYNOTE PRESENTATIONS	
SYMPOSIA INVITED SPEAKERS	
AWARDS	
EXHIBITOR & SPONSORS	
SPONSOR ADVERTISEMENTS	
TECHNICAL SESSIONS	
AUTHOR INDEX	
LEADERSHIP	
SYMPOSIA CHAIRS AND CO-CHAIRS	
HOTEL FLOOR PLAN	

Dear SMASIS Attendee:

Welcome to the 16th annual conference of the Smart Materials, Adaptive Structures, and Intelligent Systems (SMASIS) community. Our goal, as in previous years, is to provide a friendly, casual forum for the exchange of ideas and the latest engineering innovations in the field. We sincerely thank all the presenters for choosing to share their work at this conference.

This year's SMASIS has evolved into seven symposia.

- Symposium 1: Development and Characterization of Multifunctional Materials
- Symposium 2: Mechanics and Behavior of Active Materials
- Symposium 3: Modeling, Simulation, and Control of Adaptive Systems
- Symposium 4: Integrated System Design and Implementation
- Symposium 5: Structural Health Monitoring
- Symposium 6: Bioinspired Smart Materials and Systems
- Symposium 7: Energy Harvesting

This year, Symposium 5: Structural Health Monitoring and Symposium 7: Energy Harvesting will host joint presentations to further collaboration across these two fields.

SMASIS is committed to the development of future leaders in science, technology, and engineering. This year's conference will have a SMASIS-in-Action Symposium. This symposium will have two special sessions to spotlight student work.

- Student Paper Competition
- Hardware Showcase Competition

Furthermore, the SMASIS-in-Action Symposium will also include high school outreach, a student career panel, and student gatherings to foster networking among the next generation of SMASIS researchers. We are quite proud of the fact that our students and young professionals are constantly looking for opportunities to give back to the community. Please take advantage of these events to meet our emerging stars and future colleagues and leaders!

This year's conference will feature three keynotes given by Dr. Jarret Riddick (Georgetown University), Dr. Nanshun Lu (The University of Texas at Austin), and this year's ASME Adaptive Structures Prize winner, Dr. Aditi Chattopadhay (Arizona State University), along with numerous invited talks.

This year's Pioneer Awards Banquet will be a traditional Texas barbecue at the lovely County Line on the Lake. This should be a wonderful opportunity to network and broaden your horizons, both intellectually and socially, and to enjoy the local cuisine.

This conference has been planned as a collaborative effort by members of the ASME Adaptive Structures and Material Systems Division. Our executive committee gave invaluable assistance and direction. We would not have been able to proceed without the contributions of the symposium chairs, co-chairs, and organizing committees. They deserve our gratitude for putting together an amazing technical program. Also, we extend an abundance of gratitude to the authors, keynote and invited speakers, and panel participants who have significantly contributed to the success of SMASIS. Finally, we would like to express our gratitude to our sponsors and exhibitors, General Motors, Toyota, and Fort Wayne Metals.

We appreciate your participation in this event and commitment to annually submitting your best work. Those of you whom we know personally, we eagerly anticipate our next meeting. And we look forward to introducing ourselves to those of you we have not yet met and participating in thoughtful scientific discussions.

Dr. James Gibert General Conference Chair Purdue University

Dr. Shahrzad Towfighian Technical Conference Chair Binghamton University

Dr. Johannes Riemenschneider Technical Program Co-Chair German Aerospace Center (DLR)

General Information

REGISTRATION INFORMATION

Registration will be located each day in the Phoenix Ballroom Pre-Function Foyer located on the Lobby Level.

The hours are as follows:

Sunday, September 10 3:00PM-6:00PM

Monday, September 11 7:00AM-6:00PM

Tuesday, September 12 7:00AM–5:00PM

Wednesday, September 13 7:00AM–3:00PM

ACKNOWLEDGMENT

The ASME Conference on Smart Materials, Adaptive Structures, and Intelligent Systems is sponsored by the SMASIS Division of the American Society of Mechanical Engineers.

HOTEL

Central Austin Convenience Near Downtown

Enjoy a warm DoubleTree cookie on arrival at this convenient location in Central Austin just three miles from The University of Texas and downtown and 20 minutes from Austin Bergstrom International Airport. Zilker Park, South Congress, and The Domain are all within a 20-minute drive. The hotel has an outdoor pool and spa, and a fitness center.

NAME BADGES

Please always wear your name badge for all functions. Admission to all conference functions will be by name badge. Your badge also provides a helpful introduction to other attendees.

TICKETED FUNCTIONS

Entrance to all social functions is included and allowable by wearing your conference badge. If you have purchased an additional ticket for the Pioneer Awards Banquet at County Line for Tuesday, September 12, for your spouse and/or guests. You will receive a ticket for your guest at registration. Please remember to bring it with you.

TAX DEDUCTIBILITY

The expense of attending a professional meeting, such as registration fees and costs of technical publications, are tax deductible as ordinary and necessary business expenses for U.S. citizens. However, recent changes in the tax code have affected the level of deductibility.

INTERNET ACCESS

Complimentary basic internet is provided in the sleeping rooms, if you are staying at the DoubleTree, and in the hotel's public space and meeting space provided by ASME. For access when onsite, please follow these steps:

- On your device, connect to "Hilton Honors Meeting."
- Click on "I have a Promotional Code."
- Read & accept the Terms of Service, click "continue."
- Enter the code SMASIS2023 and click "Connect".

MEMBERSHIP TO ASME (4 MONTHS FREE)

Registrants who paid the non-member conference registration fees will receive a four-month complimentary ASME Membership. ASME will automatically activate this complimentary membership for qualified attendees. Please allow approximately four weeks after the conclusion of the conference for your membership to become active. Visit www.asme.org/membership for more information about the benefits of ASME Membership.

General Information

PRESENTER ATTENDANCE POLICY

According to ASME's Presenter Attendance Policy, if a paper is not presented at the conference, the paper will not be published in the official Archival Proceedings, which are registered with the Library of Congress and are abstracted and indexed. The paper also will not be published in the ASME Digital Collection and may not be cited as a published paper.

EMERGENCY INFORMATION

If you are experiencing a health emergency, please dial 911. If you are able or someone else is able, please dial zero and inform the operator so that the hotel can be on the alert for the emergency response team. The hotel also has 24-hour security and officers trained in first aid, CPR, & AED service.

REGISTRANTS WITH DISABILITIES

Whenever possible, we are pleased to plan for handicapped registrants. Advance notice may be required for certain requests. For on-site assistance, please visit the registration area and ask to speak with a conference representative.

HAVE QUESTIONS ABOUT THE MEETING?

If you have any questions or need assistance, an ASME representative will be located at the registration area.

Conference Events

BREAKFAST

Monday, September 11–Wednesday, September 13 7:00AM–8:00AM

Phoenix Ballroom Central, Lobby Level

Starting with Monday morning prior to the start of the technical sessions, a full breakfast will be provided. All registered conference attendees are welcome! Immediately following breakfast will be the daily Keynote Presentation from 8:00AM to 9:00AM. See the Keynote section of this program for more details as well as information about our Invited Speakers.

COFFEE BREAKS

Monday, September 11–Tuesday, September 12 10:30AM–10:50AM and 3:00PM–3:30PM Phoenix Ballroom Pre-Function Foyer, Lobby Level

LUNCHES

Monday, September 11–Wednesday, September 13 12:10PM–1:40PM Phoenix Ballroom Central, Lobby Level

EXHIBIT

Tuesday, September 12 10:00AM–5:00PM Phoenix Ballroom Pre-Function Foyer, Lobby Level

Please take advantage of the opportunity to visit Fort Wayne Metals, from one of the leading industries in the field. They are making things happen, so be sure to stop by and meet them! Their experts will be on hand to speak with you.

Remember to please stop by. Our Sponsors/Exhibitors help support the conference, so let us support them!

SPECIAL SESSION ON DIVERSITY AND INCLUSION

Tuesday, September 12 9:50AM–11:10AM Phoenix Ballroom South, Lobby Level

Organizers: Oliver Myers, Clemson University

Dr. Oliver Myers, Associate Dean of Inclusive Excellence for Undergraduate Studies, Clemson University, was part of the inaugural class (M1) of the renowned Meyerhoff Scholars Program at University of Maryland, Baltimore County. Dr. Myers will discuss the value of programs aimed at supporting marginalized students in STEM and present the challenges and opportunities to making progress towards equity, justice, and inclusion.

PIONEER AWARDS CEREMONY BANQUET

Tuesday, September 12 6:30PM–8:45PM

COUNTY LINE ON THE LAKE

Please note: Buses will depart from the hotel at 6:00PM Sharp, arriving back at the hotel by 9:15PM. Times are approximate.

Please join us for a special evening at the beautiful County Line on the Lake Restaurant that will include the Awards Ceremony and a wonderful plated dinner.

Set in an old lake lodge, the County Line on the Lake is right on Bull Creek, just off Lake Austin, and has been well known for years as THE place in Austin for out-of-town guests. Enjoy the view from the large redwood deck overlooking the water.

Entrance to all social functions is included and allowable by wearing your conference badge. You will receive a ticket for your guest at registration. Please remember to bring it with you.

HIGH SCHOOL STUDENT EVENT: K-12 EDUCATIONAL OUTREACH

Monday, September 11 9:00AM–12:00PM Pheonix Ballroom South, Lobby Level

Chair: Patrick Walgren (AFRL)

High school students from Austin-area schools will be attending the conference to participate in a workshop on Smart Materials and Structures, in partnership with the Texas A&M Spark! K-12 outreach program. Students will learn about smart materials, participate in hands-on activitie, and meet with conference attendees. This event is led by two graduate students: Hannah Stroud and Priscilla Nizio.

STUDENT CAREER PANEL

Monday, September 11 3:30PM-4:50PM Magnolia Room, Lobby Level

Chair: Patrick Walgren (AFRL)

Have you ever wondered about the differences between working at a university, a government lab, or for an industrial R&D company? A panel of professionals from all three sectors will be discussing their career trajectories and responsibilities and will be answering questions about career options in their respective positions.

STUDENT AUSTIN OUTING

Monday, September 11 6:00PM–8:30PM Capital Cruises, Meet in Hotel Lobby

No visit to Austin would be complete without witnessing the breathtaking emergence of millions of bats from the Congress Avenue Bridge during sunset, the city's unique spectacle that will leave everyone in awe. Join us on Monday evening for an extraordinary bat watching tour and be a part of this unforgettable moment on our student outing event. Seats are limited RSVP!

STUDENT GAME NIGHT

Tuesday, September 12 10:00PM–12:00AM Lobby Colonnade

Not ready to call it a night after the fantastic banquet? Look no further - Everyone's welcome to join the game night at Lobby Colonnade. Bring friends, challenge them on board and card games, and keep the fun alive!

STUDENT TRIVIA LUNCH

Tuesday, September 12 12:10PM–1:40PM Phoenix Ballroom Central, Lobby Level

Are your trivia skills sharper than your SMASIS peers? Everyone is invited to test their knowledge of random and Texas-centric facts during the Trivia Lunch. Participants are encouraged to form multicultural, intergenerational teams by sitting at the same lunch table. A quizmaster will guide the teams through a multi-round "Pub" Style trivia competition, and the top teams will be awarded a unique prize!

BEST STUDENT PAPER COMPETITION

Monday, September 11 3:30PM-4:50PM Austin Room, Lobby Level

Chair: Vanessa Restrepo Perez, Texas A&M University

Witness top students compete with their cutting-edge research papers, showcasing innovation and passion across Smart Materials and Structures. Join us for an inspiring event that unveils the future of academia and promises to leave you captivated by the power of young intellect.

HARDWARE SHOWCASE

Monday, September 11 3:30PM–5:30PM Phoenix Ballroom South, Lobby Level

Chair: Paul Motzki: Saarland University Co-Chair: Maria Sakovsky: Stanford University

The hardware showcase features the latest research developments, technology demonstrators and smart material applications from every symposium. Students and researchers will present their work in live demonstrations and compete for the best hardware award. Get inspired by creatively realized prototypes and watch smart materials, adaptive structures, and intelligent systems in action!

Committee Meeting Schedule

SUNDAY, SEPTEMBER 10			
MEETING	TIME	ROOM	
Division Leadership Summit (By Invitation Only)	9:00PM-5:00PM	Dovers Room	

MONDAY, SEPTEMBER 11			
TECHNICAL COMMITTEE MEETINGS	ТІМЕ	ROOM	
Bioinspired Structures and Systems	12:10PM-1:40PM	Robertson	
Active Materials and/or Multifunctional Materials	12:10PM-1:40PM	Magnolia	
Active Material Technologies and Integrated Systems	12:10PM-1:40PM	Dovers	
Energy Harvesting Technical Committee Meeting	12:10PM-1:40PM	Dezavala	
Adaptive Systems Dynamics and Controls	12:10PM-1:40PM	Dewitt	
Structural Health Monitoring	12:10PM-1:40PM	Austin	
SMASIS Senate Meeting	6:30PM-9:30PM	Phoenix Ballroom South	

MONDAY, SEPTEMBER 11 8:00AM-9:00AM PHOENIX BALLROOM NORTH, LOBBY LEVEL

Jaret C. Riddick, Ph.D. Senior Fellow, CSET Georgetown University

PRESENTATION TITLE: NANOMATERIALS: THEN, NOW AND OVER THE HORIZON – POLICY IMPLICATIONS

ABSTRACT: The arc of my research career has tracked closely with the emergence of nanomaterials research in the United States. In 1991, the seminal Nature publication "Helical microtubules of graphitic carbon" announced Sumio lijima's discovery of carbon nanotubes (CNTs). By 1993, when lijima and Donald Bethune of IBM simultaneously discovered how to synthesize single-wall CNT, I was a recent college graduate launching a research career in computational structural mechanics focused on fiber-reinforced polymer composites. In 2000, U.S. President Bill Clinton announced the U.S. Nanotechnology Initiative (NNI). By 2003, I was a recent PhD graduate when then U.S. President George W. Bush signed into law the 21st Century Nanotechnology Research and Development Act making the NNI official. Over the two decades since, my nanomaterials research has touched upon an array of areas including multifunctional structural applications and advanced hierarchical modeling. Other breakthrough technological advances in nanomaterials over the same period included material synthesis, electro-optical and electro-magnetic applications, semiconductors, battery technology, and drug delivery. This presentation will focus on analysis of the nanomaterials research landscape using the Map of Science from the Emerging Technology Observatory (ETO) project of Georgetown University's Center for Security and Emerging Technology (CSET). ETO's Map of Science includes over 130 million scholarly publications from around the world, algorithmically organized into over 116,000 research clusters – groups of papers that cite each other most often.

The presentation will highlight key trends, hotspots, and concepts identified by filtering research clusters according to growth over time, key topics, countries, and other characteristics. I will also discuss what these trends mean for technical policymakers. Finally, I will explore what's likely to be next in nanomaterials using the tools provided by the Map of Science and discuss the implications for technical policy.

BIOGRAPHY: Dr. Jaret Riddick is a Senior Fellow at Georgetown University's Center for Security and Emerging Technology (CSET). Prior to joining CSET, he was the Principal Director for Autonomy in the Office of the Under Secretary for Research and Engineering (OUSD(R&E)), serving as the Senior DOD official for coordination, strategy, and transition of Autonomy research and development. As Principal Director, he created a DOD-wide initiative on trusted Autonomy, led efforts to advance Autonomy for undersea warfare with allied partners, and provided key strategic analysis to support development of the newest DOD universityaffiliated research center (UARC). Prior to OUSD(R&E), Jaret served in executive leadership roles in the US Army Research Laboratory (ARL), where he established a 200-acre robotics research collaboration campus and led ARL Senior leadership efforts to establish the research competencies of the Laboratory. He has also served in leadership roles in the Office of the Deputy Assistant Secretary of the Army for Research and Technology, and the former Office of the Under Secretary of Defense for Acquisition, Technology and Logistics. He holds a Ph.D. in Engineering Mechanics from Virginia Tech, M.S. in Mechanical Engineering from North Carolina A&T State University, and B.S. in Mechanical Engineering from Howard University.

TUESDAY, SEPTEMBER 12 8:00AM-9:00AM PHOENIX BALLROOM NORTH, LOBBY LEVEL

Aditi Chattopadhyay Regents' Professor Adaptive Structures Award Recipient Arizona State University Tempe, AZ

PRESENTATION TITLE: MULTISCALE METHODOLOGIES FOR MULTIFUNCTIONAL MATERIAL DESIGN

ABSTRACT: There is an increased need for new and improved materials with unprecedented functionalities, and tailorable properties to enhance mobility, maneuverability, survivability, and transportability of aerospace and other assets. The success of such material development requires a strong understanding of mechano-chemical interactions at the constituent scales, and their implementation requires a deeper understanding of deformation, damage, and time to failure in service environment, which depends on a multitude of variables that are stochastic and multiscale in nature. This talk will focus on our research on computationally assisted and experimentally validated high-fidelity models that incorporate multi-physics constitutive laws, scale-dependent experiments, and machine learning to advance the understanding of material failure allowing the exploitation of the multifunctional features for optimum design of advanced materials for use in NextGen applications.

Keynote Speakers

BIOGRAPHY: Dr. Aditi Chattopadhyay is a Regents' Professor at Arizona State University (ASU). She is the Ira A. Fulton Chair Professor of Mechanical and Aerospace Engineering in the School for Engineering of Matter, Transport and Energy and the Director of the Adaptive Intelligent Materials & Systems (AIMS) Center at ASU. She received her B. Tech (Hons) in Aerospace Engineering from the Indian Institute of Technology Kharagpur, followed by M.S. and Ph.D. degrees in Aerospace Engineering from the Georgia Institute of Technology. Her current research areas include multifunctional materials and adaptive structures, hightemperature materials, multiscale modeling, and systems health management. She has been the PI on numerous grants and has collaborated with defense and government labs on significant technical transitions. She graduated 45 Ph.D. students and 25 M.S. students and supervised 20 Postdoctoral Fellows and four Research Assistant Professors. She has published 246 archival journal papers, 385 refereed conference publications, book chapters, and NASA TMs, and is the holder of five patents. She is the recipient of several academic, research and best paper awards. She received the Georgia Institute of Technology Council of Outstanding Young Engineer Award and the Distinguished Alumnus Award from the Indian Institute of Technology. She is the recipient of the Faculty Achievement Award – Excellence in Research, Arizona State University. She has served as an associate editor and/or editorial board member of many journals and is currently serving on the editorial boards of the Journal of Structural Durability and Health Monitoring and Digital Engineering and Digital Twin. She serves on the technical committees of many professional organizations. Dr. Chattopadhyay is a Fellow of the American Institute of Aeronautics & Astronautics (AIAA) and a Fellow of the American Society of Mechanical Engineers (ASME).

WEDNESDAY, SEPTEMBER 13 8:00AM-9:00 AM PHOENIX BALLROOM NORTH, LOBBY LEVEL

Nanshu Lu, Ph.D.

Austin, TX

Frank and Kay Reese Professor Department of Aerospace Engineering & Engineering Mechanics Department of Biomedical Engineering Department of Electrical and Computer Engineering Department of Mechanical Engineering Texas Materials Institute

PRESENTATION TITLE: E-TATTOOS AND E-SKINS BRIDGING HUMANS AND ROBOTS

The University of Texas at Austin

ABSTRACT: Many of us share a vision for the future that humans will be more like robots (i.e., digital, computational, cyber, expandable, etc.) whereas robots will be more like humans (i.e., soft, dexterous, intelligent, energy efficient, etc.). My group therefore focuses on soft electronics that can be integrated on humans or robots to facilitate their understanding and interaction. This talk will introduce my research on the mechanics, design, and manufacture of stretchable electronics. In particular, epidermal electronics, a.k.a. e-tattoos, represent a class of stretchable circuits, sensors, and stimulators that are ultrathin, ultrasoft, noninvasive but skin-conformable. My group has invented a dry and freeform "cut-and-paste" fabrication process for the rapid prototyping of multi-material, large-area, or modular e-tattoos capable of high-fidelity and ambulatory biometric sensing. While e-tattoos are for human wear, e-skins are for robot wear to emulate the functionalities and properties of human skins. Soft touch-sensitive e-skins have long been desired, but contamination of pressure responses by stretching has been a persistent challenge. My group recently developed a stretchable hybrid response pressure sensor (SHRPS) that solves this problem. SHRPS-integrated inflatable probes can be used for either accurate and gentle digital palpation or conformable and firm gripping. With e-tattoos digitizing the human body and e-skins mimicking human skin, we aim to bridge the gap between humans and robots for a symbiotic future.

BIOGRAPHY: Dr. Nanshu Lu is the Frank and Kay Reese Professor at The University of Texas at Austin. She received her B.Eng. with honors from Tsinghua University, Beijing, her Ph.D. from Harvard University, and then Beckman Postdoctoral Fellowship at UIUC. Her research concerns the mechanics, materials, manufacture, and human or robot integration of soft electronics. She is a Clarivate (Web of Science) highly cited researcher and a Fellow of the American Society of Mechanical Engineers (ASME). She is on the Board of Directors of the Society of Engineering Science (SES). She is currently an Associate Editor of Nano Letters and Journal of Applied Mechanics. She has been named one of the 35 innovators under 35 by MIT Technology Review (TR 35) and iCANX/ACS Nano Inaugural Rising Star. She has received the US NSF CAREER Award, US ONR and AFOSR Young Investigator Awards, 3M non-tenured faculty award, and the ASME Thomas J.R. Hughes Young Investigator Award. She was selected as one of the five great innovators on campus and five world-changing women at The University of Texas at Austin. For more information, please visit Dr. Lu's research group webpage and follow her on Twitter: @ nanshulu.

MONDAY, SEPTEMBER 11 9:10AM-10:30AM MAGNOLIA ROOM, LOBBY LEVEL

Symposium 1

Konrad Rykaczewski, Ph.D. School for Engineering of Matter, Transport and Energy Arizona State University Tempe, AZ

PRESENTATION TITLE: ADDING SOLID AND FLUIDS TO LIQUID METALS: HOW TO MAKE MULTIFUNCTIONAL LIQUID METAL PASTES, FOAMS, AND EMULSIONS

ABSTRACT: Gallium and its eutectic alloys have metallic properties (e.g., high electrical and thermal conductivity) while remaining in liquid state near room temperature. Accordingly, these liquid metals (LMs) are used to make soft and stretchable components and devices for electronics, biomedical, sensor, energy storage, and foremost for thermal management applications. However, the use of the LM is cumbersome because of its rapid oxidation, low viscosity, high surface tension, and reactivity with other metals. These issues can be resolved by adding a variety of solid additives into the LM, which also results in pastes with enhanced properties. Most recently, several routes have also been developed to incorporate secondary fluids into LMs, including air to create foams [1,2] and silicone oils to create emulsions [3,4]. Both the foams and emulsions are substantially lighter and easier to apply to surfaces than original LM. In addition, the oil-in-liquid metal emulsions can prevent one of the major drawbacks of gallium and its alloys. Specifically, the emulsion forms about 500 nm exterior film that prevents gallium-induced embrittlement of contacting aluminum surfaces [3,4]. Despite these interesting properties, our understanding of how these LM-based materials form and can be improved is just beginning to emerge.

In this presentation I will describe the highly intertwined microscale formation mechanisms of LM pastes, foams, and emulsions. First, I will discuss systematic experiments on the internalization of a several sizes and volume fractions of silica microparticles into LM, which demonstrate that some air bubble entrapment always occurs along with particles. Similarly, the experiments demonstrate that addition of solid microparticles is required for the onset of LM foaming. In other words, there are no pure LM pastes or LM foams but multiphase LM composites with varying volume fractions of solid and air components. The particles size, volume fraction, and mixing method can be used to either promote or inhibit air entrapment leading to more paste-like or foam-like composites. Second, I will discuss the formation of the oil-in-LM emulsions. When mixed with any other liquid, pure LM breaks up into microdroplets. We discovered that this can be prevented when silicone oil is mixed with LM foam. I will discuss how the silicone oil droplets are internalized in the LM foam and how prior addition of even a small volume fraction of silica particles into LM removes the need for foaming of the liquid before oil addition.

We acknowledge funding from National Science Foundation grant 2034015.

[1] Wang, X., Fan, L., Zhang, J., Sun, X., Chang, H., Yuan, B., Guo, R., Duan, M., and Liu, J., 2019, "Printed Con-formable Liquid Metal E-Skin-Enabled Spatiotemporally Controlled Bioelectromagnetics for Wireless Multisite Tu-mor Therapy," Adv Funct Mater, p. 1907063.

[2] Kong, W., Shah, N. U. H., Neumann, T. v, Vong, M. H., Kotagama, P., Dickey, M. D., Wang, R. Y., and Rykaczewski, K., 2020, "Oxide-Mediated Mechanisms of Gallium Foam Generation and Stabilization during Shear Mixing in Air," Soft Matter, 16, pp. 5801–5805.

[3] Shah, N. U. H., Kong, W., Casey, N., Kanetkar, S., Wang, R. Y.-S., and Rykaczewski, K., 2021, "Gallium Oxide-Stabilized Oil in Liquid Metal Emulsions," Soft Matter, 17, pp. 8269–8275.

[4] Shah, N. U. H., Kanetkar, S., Uppal, A., Dickey, M. D., Wang, R. Y., and Rykaczewski, K., 2022, "Mechanism of Oil-in-Liquid Metal Emulsion Formation," Langmuir, 38(43), pp. 13279–13287.

BIOGRAPHY: Konrad Rykaczewski is an associate professor at School for Engineering of Matter, Transport and Energy at ASU. He received his B.S. (2005), M.S. (2007), and Ph.D. (2009) in mechanical engineering from the Georgia Institute of Technology. Prior to his appointment at ASU, he was a research scientist at MIT and NRC postdoctoral fellow at NIST.

MONDAY, SEPTEMBER 11 10:50AM-12:10PM MAGNOLIA ROOM, LOBBY LEVEL

Symposium 1 Ximin He, Ph.D. Associate Professor of Materials Science and Engineering University of California, Los Angeles Los Angeles, CA

PRESENTATION TITLE: BIO-LIKE SOFT MATERIALS WITH LIFE-LIKE INTELLIGENCE

ABSTRACT: From the cellular level up to the body system level, living organisms present elegant designs to realize the desirable structures, properties, and functions. For example, tendons and muscles are tough but soft, owing to highly complex hierarchical structures rarely found in synthetic materials. Our neuromuscular system enables our motion sensing and response with built-in feedback control, presenting superior intelligence also lacking in manmade systems. Gels, as a class of liquid-laden crosslinked polymer networks, not only have tissue-like water-rich porous networks and can also change their volume and physical properties in response to environmental cues. At the UCLA He Lab, we exploit fundamental material

processing-structure-property-function studies of hydrogels and their derivatives, to create (i) 'bio-like' structures and properties and (ii) 'life-like' intelligence in functional soft materials for applications in robotics, biomedicine, energy, and environment. This talk will present how these could be realized by mastering polymer-water interactions. Specifically, using classic chemical physical principles to modulate macromolecule assembly up to complex polymer networks, the fundamental limits in mechanical, diffusion and electrical properties could be broken to design extreme properties. The enabled soft materials featuring high mechanical toughness, ion/electron conduction, fast stimuli response, and "synthetic intelligence" make possible the next-generation energy-self-sufficient robots, personalized medical implants, as well as futuristic smart wearable electronics and battery-powered flight.

BIOGRAPHY: Ximin He is an associate professor of Materials Science and Engineering at University of California, Los Angeles (UCLA) and Faculty of California Nanosystems Institute (CNSI). Dr. He was a postdoctoral research fellow in the School of Engineering and Applied Science and the Wyss Institute of Bioinspired Engineering at Harvard University. Dr. He received her Ph.D. in Chemistry at Melville Laboratory for Polymer Synthesis from the University of Cambridge. Dr. He's research focuses on bioinspired soft materials, structural polymers and their physical, mechanical, electrical and photothermal properties with broad applications in biomedicine, energy, environment, and robotics. Dr. He is the recipient of the NSF CAREER award, AFOSR Young Investigator award, CIFAR Global Scholar, SES Young Investigator Medal, International Society of Bionic Engineering (ISBE) Outstanding Youth Award, Advanced Materials Rising Star Award, 3M Non-tenured Faculty Award, Hellman Fellows Award, and UCLA Faculty Career Development Award. Her research on bioinspired tough hydrogels, phototropic, phototaxic, homeostatic and anti-icing has garnereda number of regional and international awards and was featured in >100 international news outlets.

discussed. The physical origin of these phenomena is attributed to the rearrangement (changes in mutual positions) of magnetic particles in a mechanically soft polymer matrix in the presence of an external magnetic field. This phenomenon is usually designated as the restructuring of magnetic filler particles. I will discuss possible theoretical approaches to describe significant changes of physical properties of MAEs in external magnetic fields. I will also present multilayered heterostructures comprising a magnetoactive elastomer (MAE) slab and a commercially available piezoelectric polymer multilayer. These multiferroic structures are promising as sensitive low-frequency sensors of magnetic field. It can be expected that the restructuring of the filler should also be "visible" on MAE surface. In this context, recent results on magnetically controllable surface properties of MAEs will be presented. The control of the wettability of non-structured and microstructured MAEs by magnetic field will be demonstrated. Novel approaches to control drop splashing on non-structured and microstructured MAE surfaces will be discussed.

BIOGRAPHY: Mikhail Shamonin studied physics at Lomonosov University in Moscow, Russia and engineering science at Oxford University in the UK. He received his Ph.D. degree in physics from the University of Osnabrück in Germany with a thesis on magneto-optical waveguides. After a short post-doctoral position at the University of Osnabrück, he worked for more than five years as a physicist for a high-tech company (H. Rosen Engineering GmbH) in Lower Saxony in Germany, which business is mainly in research, development, production, and operation of inspection devices for pipelines and other complex technical systems. Since 2002 he has been Professor for Sensor Technology in the Faculty of Electrical Engineering and Information Technology of the Ostbayerische Technische Hochschule Regensburg in Bavaria, Germany. In recent years, his interest has shifted from sensor technology and metamaterials towards smart materials, particularly magnetoactive elastomers and energy harvesting.

TUESDAY, SEPTEMBER 12 10:50AM-12:10PM

AUSTIN ROOM, LOBBY LEVEL

Symposium 2

Yunlan (Emma) Zhang, Ph.D. Assistant Professor, Department of Civil Architectural and Environmental Engineering The University of Texas at Austin Austin, TX

PRESENTATION TITLE: ARCHITECTED MATERIAL ANALOGS OF SHAPE MEMORY ALLOYS

ABSTRACT: Shape memory alloys (SMAs) are smart materials that find applications in areas as diverse as medical devices, endodontic files, and structural dampers for infrastructure. Nevertheless, the widespread use of these materials is limited by their high cost, which is driven by the need for high-purity raw materials and extensive thermomechanical processing.

WEDNESDAY, SEPTEMBER 13 9:10AM-10:30AM AUSTIN ROOM, LOBBY LEVEL

Symposium 2

Dr. Mikhail Shamonin Ostbayerische Technische Hochschule Regensburg

Regensburg, Germany

PRESENTATION TITLE: MAGNETOACTIVE ELASTOMERS: EXTRAORDINARY PROPERTIES AND PHYSICS OF IRON IN RUBBER

ABSTRACT: The cutting-edge research in the field of magnetoactive elastomers (MAEs), which comprise soft-magnetic particles embedded into a soft polymeric matrix, will be presented. After introducing the concept, an overview of several extraordinary bulk properties and physical phenomena in these smart materials will be given. The "colossal" magnetorheological effect, the "giant" magnetodielectric effect, the "giant" magnetostriction, and the magnetic properties of MAEs will be

Architected materials are another class of emerging materials that usually consist of numerous unit cells. By tailoring the geometry and topology of the unit cells, these materials can exhibit novel and/or customized properties and responses to physical stimuli. Here, we create a type of architected material that can reproduce the novel properties of SMAs, which are referred to as Architected Material Analogs of SMAs (ASMAs). ASMAs comprise periodic multistable unit cells and can exhibit both the salient behaviors, super elasticity and shape memory effect of SMAs. ASMAs can be made from a wide variety of polymers, made by many different low-cost production processes as well as 3D printing, and are designed to respond to various stimuli such as heat, magnetic fields, and solvent absorption. ASMAs offer a lower-cost alternative that can expand the design space for SMA-like material behavior to include larger-scale (e.g., seismic resistance device) or lower-cost applications (e.g., medical implants).

BIOGRAPHY: Yunlan Zhang is an Assistant Professor of Civil, Architectural and Environmental Engineering at The University of Texas at Austin. Before she joined UT, she was a Postdoctoral Researcher in the Department of Engineering Science at the University of Oxford. She received her Ph.D. and M.S. degrees in civil engineering from Purdue University in 2019, and her B.S. in civil engineering from The Ohio State University in 2012. Her research interests include architected materials, deployable structures, and bioinspired design. She wants to combine her knowledge of structures and materials to create advanced structures with applications that range in scale from microscopic medical devices to macroscopic infrastructure retrofits and extraterrestrial habitats. She enjoys working with students just as much as conducting research.

TUESDAY, SEPTEMBER 12 1:40PM-2:20PM

DEWITT ROOM

Symposium 3 Jovana Jovanova, Ph.D. Assistant Professor Faculty of Mechanical, Maritime and Materials Engineering Delft University of Technology

Delft, The Netherlands

PRESENTATION TITLE: DESIGN OF MECHANICALLY INTELLIGENT STRUCTURES

ABSTRACT: The world we live in is dynamic, continuously changing due to different cyclic or disruptive occurrences. Adaptation of engineering systems to changes, as a feature, has become more valued, even expected, when new designs are developed. Whether it is adapting to operational conditions, people and/or their environment, structures, and machines rely on a set of technologies to be able to function in a desired fashion. The complexity of the adaptive function requires model-based

design of the interaction between the structure/machines and its operational environment, which requires new modelling approaches to capture this interaction. The advantage of adaptation can be achieved by reducing complexity if the functionality is encoded in the early design of the structures opposed to the traditional way when it is added later in the design process. Encoding functionality in structures during their early design phase is achieved by the combined effort of the geometry and the material property by capturing the flexibility of a structure in large deformation domain and the smart material behaviour. The developed models can also be used for uncovering the scaling rules and the size limits imposed by the material, the geometry, and the manufacturing technology. In this talk the idea of mechanically intelligent structures will be presented and discussed, followed by examples of integrating different smart materials (SMAs, hydrogels, piezoelectric materials) in a variety of applications for grabbing, soft robotics, multimodal locomotion, and energy absorption.

BIOGRAPHY: Jovana Jovanova is assistant professor at the Transport Engineering and Logistics Section, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology in the Netherlands working on the design of large-scale adaptive (meta)structures, mechanisms, and machines able to change their properties and/or functionality over time to improve performance, reliability, and efficiency. Adaptation in this context is the ability of structures, mechanisms, or machines to recognize the changes occurring in their environment and adjust internally to respond in a desired way. Her research includes analytical, numerical, and data-based modelling and characterization of mechanically intelligent structures that utilize smart materials and/or large deformations for adaptation. She integrates concepts of compliant mechanisms, smart materials, metamaterials, bio-inspired design, and soft robotics into adaptive machines for the applications in maritime, offshore, and transport technology.

Jovana is involved in TU Delft initiatives within the Robotics and the Bioengineering Institutes, as well as the Dutch Soft Robotics national initiative. She has been an active member of SMASIS since 2016 serving in different Bioinspired TC roles. She has also supported the organization of the Compliant Mechanisms Symposium within ASME IDETC and RoboSoft 2023 conference. She is associate editor at Journal of the Brazilian Society of Mechanical Sciences and Engineering, and Robotics Reports.

MONDAY, SEPTEMBER 11 1:40PM-2:20PM

DOVERS ROOM, LOBBY LEVEL

TUESDAY, SEPTEMBER 12

11:30AM-12:10PM

DOVERS ROOM, LOBBY LEVEL

Symposium 4 Dr. Francis Phillips DEVCOM Army Research Laboratory College Station, TX, USA

Symposium 4 Dr. Roeland De Breuker Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials, Delft University of Technology Delft, Netherlands

PRESENTATION TITLE: AEROELASTIC ANALYSIS OF CONTROLS INFORMED ADAPTIVE SMALL UNMANNED AERIAL SYSTEM

ABSTRACT: The use of small unmanned aerial systems (sUAS) has expanded dramatically over the last decade. These systems can be used for many applications ranging from communications to bridge inspections, agriculture, payload transport, firefighting, meteorology, and beyond. The low cost and low risk nature of sUAS has enabled the testing of various types of adaptive structures which may enable significant performance enhancements including maneuverability, range, and endurance. These adaptive structures may lead to changes in various physical aspects of the vehicle including variable wing camber, twist, sweep, and span. A specific example of utilizing an adaptive structure for sUAS can be found through the Powerline Unmanned Surfer concept which uses novel integrated design strategies in structure, aerodynamics, and controls to extend the flight time. While it is necessary to predict the impact of these adaptive structures on the aerodynamic and control properties of these aerial vehicles, it is also vital to understand the inverse relationships of how aerodynamic and controls will impact the elastic deformation of these active structures. In this talk, the uncoupled static aeroelastic analysis method is presented along with various augmentations for its use in integrated, adaptive structures via the inclusion of an adaptation parameter to correspond with the level of adaptivity required by the controller. Key results including the analysis of wings with either variable wing-span or thickness will be presented. By integrating results from the uncoupled static aeroelastic analysis method into the flight controller, it is possible to better predict the performance of adaptive sUAS.

BIOGRAPHY: Dr. Francis Phillips currently works as a research aerospace engineer for the U.S. Army DEVCOM Army Research Laboratory, where he leads a program focused on development of reconfigurable aerial vehicles including exploring the application and control of active materials to enable reconfiguration as well as aeroelastic analysis coupled to design for reconfigurable vehicles. Prior to joining the Army Research Laboratory, he earned his Ph.D. in Aerospace Engineering from Texas A&M University studying the fatigue of shape memory alloys. Dr. Phillips' areas of interest include smart materials, reconfigurable structures, and aeroelasticity.

PRESENTATION TITLE: SMARTX: INTELLIGENT WINGS ENABLING MORE SUSTAINABLE AVIATION

ABSTRACT: Making aviation more sustainable means we need breakthroughs in many aeronautical disciplines simultaneously. One of these disciplines is innovative wing design. Such a design can reduce drag and alleviate loads and hence reduce mass. Reduced drag and reduced mass lead to lower energy consumption during flight, which reduces greenhouse gas emissions and enables the use of sustainable but lower energy-density energy carriers.

We will present the intelligent wing of the future concept that was developed at the Delft University of Technology within the SmartX project. This wing can sense its own structural and flow state and take autonomous decisions by using nonlinear AI control algorithms to actively change its static and dynamic shape by using distributed morphing control surfaces to reduce drag and alleviate loads. The SmartX project philosophy and the past, ongoing, and future research activities regarding design and bench, wind tunnel and flight testing will be introduced. Important results that have already been obtained will be presented and discussed, as well as the roadmap for future activities.

BIOGRAPHY: Roeland De Breuker is an associate professor at the Delft University of Technology. He is also Director of Research at the Department of Aerospace Structures and Materials. He specialises in the field of smart and aeroelastic structures. He focuses on developing analysis tools, optimisation, and design of structures and related bench and wind tunnel experiments for code validation and proofs of concept. His research activities range from technology readiness levels 1-4. While employed at the Delft University of Technology, he had former experiences with three-month visits to the DLR in Göttingen, Germany and Clarkson University in Potsdam, NY. He was also a visiting professor at Airbus Group Innovations in Munich, Germany, for half a year.

Roeland De Breuker is involved in multiple European and Dutch government-funded projects, as well as industry-funded projects, in the research fields of smart and aeroelastic structures. He is (co-)advising 20 Ph.D. students, he graduated 12 Ph.D. students as (co-) promotor and is advising/has advised over 70 M.Sc. students. He currently holds 58 refereed journal papers and three patents.

MONDAY, SEPTEMBER 11 9:10AM-10:30AM

DEZAVALA ROOM, LOBBY LEVEL

Symposium 5 Roozbeh Jafari, Ph.D. Tim and Amy Leach Professor Texas A&M University College Station, TX

PRESENTATION TITLE: DIGITAL MEDICINE FOR CARDIOVASCULAR HEALTH

ABSTRACT: The bold vision of pervasive physiological monitoring, through proliferation of off-the-shelf wearables that began a decade ago, has created immense opportunities for precision medicine outside clinics and in ambulatory settings. Although significant progress has been made, several unmet needs remain; limited availability of advanced wearable sensing paradigms, noise and missingness in wearable data and labels in ambulatory settings, the unknown circumstances surrounding data capture in wearable paradigms, heterogeneity of the users both in terms of physiological and behavioral states, and often limited view into the user's physiological state prevent extraction of actionable information.

This seminar presents several topics that coherently articulate vision and the opportunities of digital medicine for cardiovascular health. The seminar covers three pillars of digital medicine, i) sensing, ii) signal processing, and iii) context aware and personalized AI as it pertains to cardiovascular health. We will introduce several novel sensing paradigms using bio-impedance that leverage various types of electrodes and electronic tattoos enabling blood pressure measurement with clinical grade accuracy. We will discuss the notion of particle filters that provide a generalizable and robust paradigm for reducing the impact of noise. Finally, we will discuss the concept of a digital twin for cardiovascular health, that will enhance the ability to extract actionable information in the context of several real-world applications.

Digital medicine and wearables will play a significant role in the future of medicine outside clinics. The future directions present opportunities both in short-term translational research efforts with direct influence on clinical practice as well as long-term foundational development of theories and computational frameworks combining human physiology, physics, computer science, engineering, and medicine, all aimed at impacting the health and well-being of our communities.

BIOGRAPHY: Roozbeh Jafari is the Tim and Amy Leach Professor at Texas A&M university with appointments in the School of Engineering Medicine in Houston TX and College of Engineering in College Station, TX. His appointments span over Electrical and Computer Engineering, Biomedical Engineering, Computer Science and Engineering departments. He received his Ph.D. in Computer Science from UCLA and completed a postdoctoral fellowship at UC-Berkeley. His research interest lies in the area of wearable computer design and signal processing. He has raised more than \$86M for research with \$23M directed towards his lab. His research has been funded by the NSF, NIH, DoD (TATRC), DTRA, DIU, AFRL, AFOSR, DARPA, SRC , and industry (Texas Instruments, Tektronix, Samsung, & Telecom Italia). He has published over 200 papers in refereed journals and conferences. He has served as the general chair and technical program committee chair for several flagship conferences in the areas of wearable computers. Dr. Jafari is the recipient of the NSF CAREER award (2012), IEEE Real-Time & Embedded Technology & Applications Symposium best paper award (2011), Andrew P. Sage best transactions paper award (2014), ACM Transactions on Embedded Computing Systems best paper award (2019), William O. and Montine P. Head Memorial research award for outstanding engineering contribution award from the College of Engineering at Texas A&M (2019), dean of engineering excellence award at Texas of A&M University (2021), and TEES research impact award at Texas A&M University (2021). He has been named Texas A&M Presidential Fellow (2019). He serves on the editorial board for the Nature Digital Medicine, IEEE Transactions on Biomedical Circuits and Systems, IEEE Sensors Journal, IEEE Internet of Things Journal, IEEE Journal of Biomedical and Health Informatics, IEEE Open Journal of Engineering in Medicine and Biology, and ACM Transactions on Computing for Healthcare. He is currently the chair of the IEEE Wearable Biomedical Sensors and Systems Technical Committee (elected) as well as the IEEE Applied Signal Processing Technical Committee (elected). He serves on scientific panels for funding agencies frequently, served as a standing member of the NIH Biomedical Computing and Health Informatics (BCHI) study section (2017–2021), and was the inaugural chair of the NIH Clinical Informatics and Digital Health (CIDH) study section (2020–2022). He is a Fellow of the American Institute for Medical and Biological Engineering (AIMBE).

WEDNESDAY, SEPTEMBER 12 10:50AM-12:10PM

DEZAVALA ROOM, LOBBY LEVEL

Symposium 5 Tanya Hutter, Ph.D. The University of Texas at Austin Austin, TX

PRESENTATION TITLE: SMART MATERIALS AND DEVICES FOR SENSING AND DEGRADATION OF TOXIC GASES

ABSTRACT: Indoor and outdoor air quality is extremely important for health. Detection and measurement of volatile organic compounds (VOCs) is of great importance for many applications including air quality, industrial monitoring, and medical diagnostics.

Commercially available low-cost sensor technologies are either only capable of measuring a single gas, or only provide a total VOC concentration without ability to differentiate between them. We present a new approach for improving selectivity based on temporally resolved thermal desorption of VOCs from a nanoporous material, which can be combined with any existing VOC detector. An example of a detection system using a commercial total VOC photoionization detector and a nanoporous silica preconcentrator demonstrates several different VOCs and shows potential for discrimination between them.

In the second part of the talk, I will discuss materials for photocatalytic degradation of volatile organics. Most photocatalytic methods use ultraviolet light, however catalyst materials that perform under visible light could be used as an effective approach for improving indoor and outdoor air quality and reducing the health risks associated with exposure to VOCs. Our study investigates the use of visible light and plasmonic gold nano island-enhanced anatase TiO2 as a photocatalyst, and the efficiency of the photocatalysis is evaluated as a function of various fabrication parameters.

BIOGRAPHY: Dr. Tanya Hutter is an Assistant Professor in the Walker Department of Mechanical Engineering at The University of Texas at Austin. She has a B.Sc. in Chemical Engineering (Ben-Gurion University), M.Sc. in Materials Science and Engineering (Tel-Aviv University), and Ph.D. in Physical Chemistry (University of Cambridge). Since completing her Ph.D., she worked as a Research Fellow in Physical Chemistry at the University of Cambridge and received several prestigious fellowships to develop her independent research. In 2016, she was awarded L'Oréal-UNESCO for Women in Science Fellowship UK & Ireland for her scientific achievements.

Her research interests lie in the fields of emerging molecular sensing technologies, nanomaterials, microfabrication, and nanophotonics with applications in environmental and industrial sensing, homeland security, and medical diagnostics. Dr. Hutter published over 40 peer-reviewed papers and is an inventor on six patents. Dr. Hutter also has a strong interest in technology commercialization and entrepreneurship. Alongside her academic career she co-foundered two startups in the fields of nanophotonic sensing and MedTech.

MONDAY, SEPTEMBER 11

1:40PM-3:00PM

DEZAVALA ROOM, LOBBY LEVEL

Symposium 5 Peng "Patrick" Sun, Ph.D. Assistant Professor, Department of Civil, Environmental, and Construction Engineering University of Central Florida Orlando, FL

PRESENTATION TITLE: UAV-BASED REMOTE SENSING FOR MUNICIPAL SOLID WASTE LANDFILL INSPECTION AND MONITORING

ABSTRACT: Municipal solid waste (MSW) landfills need regular management and maintenance to ensure proper operations and meet the environment protection requirements. One requirement is to monitor landfill gases (LFGs) which emit from landfill cover into the environment contributing to global warming. While another requirement is to monitor the potential settlement on MSW landfill covers for maintenance purposes. Surveying tasks are needed to be performed regularly (e.g., quarterly) that are time and labor consuming. Therefore, there is a need for an efficient method to monitor landfill surface conditions. Unmanned aerial vehicles (UAVs) were usually adopted in LFGs emissions and perform landfill surveys as individual tasks, and few studies have been reported to achieve multiple UAV surveying tasks synergistically. In addition, the automatic detection of water ponding issues yet remains to be studied, which may cause water infiltrations. Hence, the study proposes a UAV-based sensing approach and data collection/analysis method to monitor landfill and detect water ponding issues using multimodal sensor fusion. The proposed approach has been applied on a MSW landfill before and after Hurricane Ian, which passed near the study location in Florida. The comparative study between the proposed ponding index map and the manual survey shows satisfactory performance.

BIOGRAPHY: Dr. Patrick Sun is an Assistant Professor in Structural Engineering and Smart Cities in the CECE department and Director of Resilient Infrastructure Sensing and Evaluation (RISE) Laboratory at the University of Central Florida since 2020. Prior to his appointment at UCF, he obtained his Ph.D. from Rice University and postdoc training from the University of Michigan. He is a passionate researcher for smart sensors and sensing systems, in which he incorporates his scientific and engineering understanding of built environments and people. Now he expands his research into UAV-based remote sensing and its applications in environmental engineering and water resource engineering.

TUESDAY, SEPTEMBER 12 3:30PM-4:10PM

DEZAVALA ROOM, LOBBY LEVEL

TUESDAY, SEPTEMBER 12

9:10AM-10:30AM

ROBERTSON ROOM, LOBBY LEVEL

Symposium 5 Haifeng Zhang, Ph.D.

Professor, Department of Mechanical Engineering University of North Texas Denton, TX

Symposium 6 Jason Patrick, Ph.D. Assistant Professor Department of Civil, Construction, and Environmental Engineering North Carolina State University Raliegh, NC

PRESENTATION TITLE: SURFACE ACOUSTIC WAVE QUARTZ RESONATORS FOR NONDESTRUCTIVE STRUCTURAL MONITORING OF NUCLEAR SPENT FUEL CANISTERS BY MEASURING INTERNAL PRESSURE AT ELEVATED TEMPERATURE

ABSTRACT: A nondestructive method of monitoring the internal pressure of spent fuel canisters is desired for structural monitoring at hightemperature and radioactive environments. Surface Acoustic Wave (SAW) sensors are ideal for use in such hostile situations. In this work, a method for nondestructively monitoring the pressure inside a cylindrical canister using SAW resonators was developed. A prototype of the canister was fabricated for laboratory-level experiments, and a SAW resonator was mounted to the prototype's outside surface. The internal pressure creates hoop strain on the cylinder's outer surface, which strains the attached SAW substrate and affects its resonance frequency. Finite element simulations were used to estimate the hoop strain developed on the outer surface of the prototype. The SAW sensor was calibrated by comparing the frequency shift in the resonance frequency to various internal pressures. Initially, a strain gauge was used to calibrate the sensor on a cantilever. Then, the procedure was validated experimentally on a pressurized canister prototype at room temperature. A sensitivity of -30 Hz/kPa was obtained for the SAW sensor attached to the cylinder. Finally, the test was repeated at higher temperatures (up to 60°C) to investigate the sensor's temperature dependency, and a temperature compensation approach was used for reliable pressure reading at higher temperatures.

BIOGRAPHY: Haifeng Zhang is a Professor of the Department of Mechanical Engineering at the University of North Texas (Denton, TX). His research interests include advanced sensors, energy harvesters, structural health monitoring and ultrasonic nondestructive evaluation. He received his B.S. in Engineering Mechanics from Hunan University, China in 1997, his M.S. degree in Solid Mechanics from Northwestern Polytechnical University, Xian, China, in 2001, and his Ph.D. degree in Engineering Mechanics from University of Nebraska, Lincoln in 2007. He was a postdoctoral researcher in the Department of Material Science and Engineering at Ohio State University before joining the University of North Texas in 2008. Dr. Zhang is a committee member of the ASME energy harvesting technical committee.

PRESENTATION TITLE: SUSTAINED SELF-HEALING OF FIBER-REINFORCED POLYMER COMPOSITES VIA IN SITU THERMAL REMENDING

ABSTRACT: Fiber-reinforced polymer (FRP) composites are attractive structural materials due to their high specific strength/stiffness and excellent corrosion resistance. However, the lack of through-thickness reinforcement in laminated composites creates inherent susceptibility to fiber-matrix debonding (i.e., interlaminar delamination). This multi-scale damage mode has proven difficult to detect and nearly impossible to repair via conventional methods, and thus remains a significant factor limiting the reliability of laminated composites in lightweight structures. An emerging class of synthetic self-healing polymers and composites possess property-retaining functions with the promise of longer lifetimes. But prolonged in-service repair of structural fiber-reinforced composites remains unfulfilled due to material heterogeneity and thermodynamic barriers in commonly cross-linked polymer-matrix constituents. Overcoming these inherent challenges for mechanical self-recovery is vital to extend in-service operation and attain widespread adoption of such bioinspired structural materials.

In this talk, I will describe the recent development of a new self-healing FRP composite platform [1,2] based on thermally induced dynamic bond re-association of 3D-printed polymer interlayers. In contrast to prior thermal remending approaches, self-repair of delamination occurs in situ via resistive heating and below the glass-transition temperature of the thermoset matrix, thereby maintaining elastic modulus during repair. Rapid (minute-scale) and sustained (100+) self-healing cycles have been achieved with fracture recovery reaching 100% of the interlayer toughened composite. Moreover, this latest self-healing advancement in both glass- and carbon-fiber composites exhibits unprecedented potential for prolonged in-service repair along with material multi-functionality (e.g., deicing ability), thereby enabling application versatility.

References

[1] Snyder, A.D., Phillips, Z.J., Turicek, J.S., Diesendruck, C.E., Nakshatrala, K.B., & Patrick, J.F., Prolonged in situ self-healing in structural composites via thermo-reversible entanglement, Nature Communications, 13:6511 (2022).

[2] Patrick, J.F., & Snyder, A.D., U.S. Patent No. 11,618,088 – Self-healing interlaminar delamination in fiber-reinforced composites via thermal remending. Issued: 28 Mar. 2023

BIOGRAPHY: Jason Patrick is an Assistant Professor in the Department of Civil, Construction, and Environmental Engineering with a courtesy appointment in Mechanical and Aerospace Engineering at NC State University. He obtained his Ph.D. in Structural Engineering from the University of Illinois Urbana-Champaign and was a post-doctoral fellow at the Beckman Institute for Advanced Science and Technology before becoming faculty. Prof. Patrick has 20+ years of experience in R&D of advanced fiber-reinforced polymer composites with ongoing federally funded research projects by the DoD and NSF. Research in Dr. Patrick's group is directed toward the understanding and development of bioinspired material systems that exhibit multi-functionality for enhanced performance, reliability, and longevity. Jason has made significant contributions to the field of multifunctional materials, being a pioneer in self-healing composites, including co-inventing the vaporization of sacrificial components (VaSC) process to create complex internal microvasculature and recently patenting the first self-healing composite laminates with in situ repair capacity via thermal remending. Prof. Patrick has a passion for education and mentoring students while also being driven by research translation where he is the President and Chief Technology Officer (CTO) of the start-up company Structeryx, Inc.

lower barriers to the design, creation, and operation of mechanical machines—from material and mechanism design, through mathematical analysis, to computational frameworks and tools.

We start from everyday materials, such as paper and string, forming them using broadly available tools and infrastructure. By understanding and applying—sometimes in surprising and nontraditional ways—the material properties of these 2D and 1D substrates, we realize mechanisms with nontrivial responsive behaviors. And by composing these mechanisms, we develop a process to design and build robots without a state-of-the-art engineering or manufacturing facility. With these efforts, we hope to widen the circle of makers, enabling everyone with an idea and an interest to create and enjoy the benefits of custom robotics to work, to learn, and to play.

BIOGRAPHY: Now, this is a story all about how my life took me to where I am now, and I'd like to take a minute—just sit right there—I'll tell you how I became a prof at UCLA. From East Pennsylvania, born and raised, MIT is where I spent the next of my days, getting my Masters and Bachelor's, too—ECE is the field I did then pursue. Then a couple of years until I finally would from California, Berkeley, get my doctor hood; I got in one little postdoc at MIT CSAIL, and then I moved to LA just south of Bel Air.

Prof. Ankur Mehta is an assistant professor of Electrical and Computer Engineering at UCLA and directs the Laboratory for Embedded Machines and Ubiquitous Robots (LEMUR). Pushing towards his visions of a future filled with robots, his research interests involve printable robotics, rapid design and fabrication, control systems, and multi-agent networks. He has received the DARPA Young Faculty Award, NSF CAREER award, and a Samueli fellowship; he has also received best paper awards in the IEEE Robotics & Automation Magazine and the International Conference on Intelligent Robots and Systems (IROS).

TUESDAY, SEPTEMBER 12 3:30PM-4:50PM

ROBERTSON ROOM, LOBBY LEVEL

Symposium 6 Ankur Mehta, Ph.D. University of California, Los Angeles Los Angeles, CA

PRESENTATION TITLE: MATERIALS TO MAKERS

ABSTRACT: Robots are pretty great—they can make some hard tasks easy, some dangerous tasks safe, or some unthinkable tasks possible. And they're just plain fun to boot. But how many robots have you made, or even interacted with recently? And where do you think that puts you compared to the rest of the world's people?

In contrast to computation, automating physical interactions continues to be limited in scope and breadth. I'd like to change that. But in particular, I'd like to do so in a way that's accessible to everyone, everywhere, letting more people into the engineering conversation. In our lab, we work to

MONDAY, SEPTEMBER 11 10:50PM-12:10PM

DEZAVALA ROOM, LOBBY LEVEL

Symposium 7 Jayant Sirohi, Ph.D. The University of Texas at Austin Austin, TX

PRESENTATION TITLE: HARVESTING ENERGY FROM AEROELASTIC INSTABILITIES

ABSTRACT: Aeroelastic Instabilities lead to large amplitude oscillatory motion or deformation in a structure, eventually resulting in failure. These instabilities can occur in atmospheric flight vehicles, vehicles that operate in water, and civil engineering structures such as buildings, lamp posts, and bridges. Therefore, the conditions at which these instabilities occur are generally to be avoided. However, large amplitude oscillations also present an opportunity for energy harvesting. Aeroelastic instabilities

arise when the net effective damping of the coupled fluid structure system becomes negative; that is, the incident fluid continually adds energy to the structural motion. At the same time, energy harvesting serves to extract energy from the structure, effectively adding damping to it. Combining these two concepts, harvesting energy from a structure in an incident fluid stream that is prone to aeroelastic instability has the added benefit of stabilizing the structure by increasing the net damping of the system. This lecture will present the basic physical phenomena responsible for several well-known aeroelastic instabilities, such as galloping and flutter. The fundamental concepts of harvesting energy from a structure using active materials such as piezoceramics will also be explained. These two seemingly disparate fields will then be brought together, illustrating methods to harness the aeroelastic instability and extract energy. Prototype devices along with a few possible applications will be presented. The role of structural nonlinearities in enhancing the energy extracted will be discussed.

BIOGRAPHY: Jayant Sirohi is a Professor in the Department of Aerospace Engineering and Engineering Mechanics at The University of Texas at Austin. He got his Ph.D. in Aerospace Engineering in 2002 and was an Assistant Research Scientist at the University of Maryland, College Park from 2002 to 2007. During this time, he worked on numerous projects related to Smart Structures and Rotary-wing Micro-Aerial Vehicles. During 2007–2008, Dr. Sirohi worked at Sikorsky Aircraft Corporation, where he was a Staff Engineer in the Advanced Concepts group. At Sikorsky, he was the Technical Lead on analytical and numerical tools for conceptual design. Dr. Sirohi joined UT Austin in 2008 and has been working on Rotary-wing experimental aeromenchanics, Smart Structures, plasma flow control, and aeroelasticity. His research group specializes in experimental techniques for structural dynamics and aerodynamics, such as Digital Image Correlation and Particle Image Velocimetry, as well as the aeromechanics of rotary-wing aircraft. The contributions of his research group have been acknowledged by several best paper awards, including the ASME/Boeing award (2011) and in conferences by the VFS (2017, 2018), AIAA (2019), and SEM (2019). He is a member of ASME, SEM, and VFS; an Associate Fellow of AIAA; and a Technical Fellow of the Vertical Flight Society. In 2017, he was the Technical Chair of the AHS 73rd Annual Forum. In 2019, he was awarded the Friedrich Wilhelm Bessel award by the Alexander von Humboldt Foundation.

ASME ADAPTIVE STRUCTURES AND MATERIAL SYSTEMS AWARD

Aditi Chattopadhyay

Regents' Professor Adaptive Structures Award Recipient, Arizona State University Tempe, AZ

BIOGRAPHY: Dr. Aditi Chattopadhyay is a Regents' Professor at Arizona State University (ASU). She is the Ira A. Fulton Chair Professor of Mechanical and Aerospace Engineering in the School for Engineering of Matter, Transport and Energy and the Director of the Adaptive Intelligent Materials & Systems (AIMS) Center at ASU. She received her B. Tech (Hons) in Aerospace Engineering from the Indian Institute of Technology Kharagpur, followed by M.S. and Ph.D. degrees in Aerospace Engineering from the Georgia Institute of Technology. Her current research areas include multifunctional materials and adaptive structures, high temperature materials, multiscale modeling, and systems health management. She has been the PI on numerous grants and has collaborated with defense and government labs on significant technical transitions. She graduated 45 Ph.D. students and 25 M.S. students and supervised 20 Postdoctoral Fellows and four Research Assistant Professors. She has published 246 archival journal papers, 385 refereed conference publications, book chapters, and NASA TMs, and is the holder of five patents. She is the recipient of several academic, research and best paper awards. She received the Georgia Institute of Technology Council of Outstanding Young Engineer Award and the Distinguished Alumnus Award from the Indian Institute of Technology. She is the recipient of the Faculty Achievement Award – Excellence in Research, Arizona State University. She has served as an associate editor and/or editorial board member of many journals and is currently serving on the editorial boards of the Journal of Structural Durability and Health Monitoring and Digital Engineering and Digital Twin. She serves on the technical committees of many professional organizations. Dr. Chattopadhyay is a Fellow of the American Institute of Aeronautics & Astronautics (AIAA) and a Fellow of the American Society of Mechanical Engineers (ASME)

GARY ANDERSON EARLY ACHIEVEMENT AWARD

Shima Shahab Virginia Tech,, Blacksburg, VA

BIOGRAPHY: Dr. Shima Shahab completed her Ph.D. and M.Sc. in mechanical engineering at Georgia Institute of Technology, in 2013 and 2015, respectively. She is currently an Associate Professor and Mary V. Jones Faculty Fellow of mechanical engineering at Virginia Tech and the director of the Multiphysics Intelligent and Dynamical Systems (MInDS) Laboratory. The theoretical and experimental research programs at MInDS focus on structural dynamics and wave propagation in ultrasoundresponsive intelligent material systems. The various interdisciplinary applications include wireless ultrasound power transfer, acoustic holographic lenses, ultrasound atomization, and ultrasound-responsive polymer-based systems. Among other awards, Dr. Shahab is the recipient of the College of Engineering Undergraduate Research Advisor Award in 2017 for her exceptional leadership, dedication, and success in working with undergraduate research students. She received recognition for one of her journal articles with the 2019 ASME Energy Harvesting Best Paper Award. In 2020, she was selected to receive the prestigious Virginia Tech ICTAS Junior Faculty Award. She received the Virginia Tech Engineering Faculty Organization (EFO) award in 2021. In addition to receiving the NSF CAREER award in 2022 to create new techniques for administering ultrasound treatments, she most recently received the 2023 College of Engineering Faculty Fellow Award in honor of her outstanding research accomplishments.

ASME DEDICATED SERVICE AWARD

Marcelo Dapino The Ohio State University, Columbus, OH

BIOGRAPHY: Dr. Marcelo is the Honda R&D Americas Designated Chair in Engineering at the Ohio State University, where he is a Professor in the Department of Mechanical and Aerospace Engineering. Prof. Dapino serves as Director of the Smart Vehicle Concepts Center, a National Science Foundation Industry-University Cooperative Research Center established in 2007. Professor Dapino joined the Ohio State University as a faculty member in 2001 where he has served as a mechanical engineering educator and primary advisor for 97 graduate dissertations and theses, undergraduate theses, and post-doctoral associates. Together with his advisees and collaborators, he has published extensively in the field of smart materials and structures. As an early adopter of solid-state metal additive manufacturing, his group has also made significant contributions to the literature on multi-material joining

and welding, vehicle lightweighting, and structural functionalization. His publications include a total of 140 archival journal articles, 9 book chapters, 125 conference papers, and 20 US and international patents. Professor Dapino has an extensive record of service to ASME and SPIE, and is a Fellow of both societies. He has successfully nominated 20 ASME Fellows on behalf of the ASME SMASIS Division.

EPHRAIM GARCIA BEST PAPER AWARD

Haitian Hao Apple, Inc., Cupertino, CA

BIOGRAPHY: Dr. Haitian Hao received his M.S. and Ph.D. degrees from the Department of Mechanical Engineering at Purdue University. Dr. Hao attended college and received his B.S. in Mechanical Engineering at Shanghai Jiao Tong University in China. His research interests include thermoacoustic phenomena in solid and fluid media, acoustic metamaterials, and structural vibrations. Dr. Hao is the recipient of the Leo Beranek Medal for Excellence in Noise Control Studies, ASME SMASIS Best Paper Award, etc. Dr. Hao currently works as an N&V test engineer at Apple Inc.

Carlo Scalo Purdue University, West Lafayette, IN

BIOGRAPHY: Dr. Carlo Scalo is an Associate Professor in the School of Mechanical, and Aeronautical and Astronautical Engineering (by courtesy) at Purdue University. His research interests focus on computational aeroacoustics, vortex dynamics, Iow- and high-speed turbulent boundary layers, and hypersonics. In particular, Dr. Scalo has developed computational techniques for prediction of acoustic noise propagation and control in hypersonic boundary layers, Iow-speed and high-speed transitional and fully developed turbulence and thermoacoustic instability in combustion systems. Scalo has received three distinct Young Investigator Program (YIP) Awards from the Department of Defense in: hypersonic boundary layer transition (Air Force), hypersonic boundary layer turbulence (Navy) and vortex dynamics (Army). He is also the founder of HySonic Technologies – a Purdue start-up that received ONR funding to develop passive control of hypersonic boundary layers and high-speed propulsion systems.

Fabio Semperlotti Purdue University, West Lafayette, IN

BIOGRAPHY: Dr. Fabio Semperlotti is a Professor and the Perry Academic Excellence Scholar in the School of Mechanical Engineering at Purdue University and holds a courtesy appointment in the School of Aeronautics and Astronautics Engineering. He received a M.S. in Aerospace Engineering (2000), and a M.S. in Astronautic Engineering (2002) both from the University of Rome "La Sapienza" (Italy), and a Ph.D. in Aerospace engineering (2009) from the Pennsylvania State University (USA). Prior to joining Penn State, Dr. Semperlotti served as a structural engineer for a few European aerospace industries, including the French Space Agency (CNES), working on the structural design of space launch systems (such as Ariane 5 and Vega) and satellite platforms.

Dr. Semperlotti is a member of the Ray W. Herrick laboratory and directs the Structural Health Monitoring and Dynamics laboratory (SHMD) where he conducts, together with his research group, research on several aspects of structures and materials including structural dynamics and wave propagation, elastic metamaterials, structural health monitoring, and computational mechanics. Dr. Semperlotti has been the recipient of national awards including the National Science Foundation CAREER award (2015), the Air Force Office of Scientific Research Young Investigator Program (YIP) (2015), the DARPA Young Faculty Award (YFA) 2019, and the ASME C.D. Mote Jr. Early Career Award 2019.

TITLE: ON THE USE OF NEGATIVE THERMAL EXPANSION ENGINEERED STRUCTURES IN FLEXURAL-MODE SOLID-STATE THERMOACOUSTICS

Journal of Sound and Vibration 538 (2022), 117223

ABSTRACT: Recent numerical studies have shown evidence of selfsustained oscillations in solids due to externally-applied spatial thermal gradients. In analogy with its acoustic counterpart in gases, this phenomenon was dubbed solid-state thermoacoustics (SSTA). Such heat-driven oscillation can give rise to either longitudinal or flexural motion, depending on the specific design of the system. Although an experimental proof of self-sustained motion in flexural-mode SSTA (FSSTA) devices has yet to be produced, previous experimental studies pointed to the reduction of the effective damping as a clear indicator of the thermomechanical energy conversion process at the core of the F-SSTA mechanism. The F-SSTA theory suggested that negative thermal expansion (NTE), which is not a common property in natural materials, offers a remarkable opportunity to enhance the F-SSTA instability. The present study explores a design approach that leverages the unique features afforded by the solid state design in order to improve the overall performance of F-SSTA's devices and reduce the technological gap to achieve, in a near future, a successful experimental validation. The proposed design approach leverages a hybrid bilayer beam concept where one of the two layers is designed to exhibit NTE properties. More specifically, the NTE layer is composed of a bi-material octet truss that contracts in the axial direction upon heating. This axial contraction is

particularly beneficial to induce a strong thermal bending moment that ultimately enhances the F-SSTA instability. In addition, this work also furthers the conceptual understanding of the F-SSTA process by presenting an analytical perturbation energy budget developed on the basis of a simplified discrete model. These theoretical considerations provide new important insights in the energy conversion mechanism at the basis of the F-SSTA process, hence helping reducing the gap of knowledge towards a successful experimental realization of the F-SSTA effect.

SMASIS DIVISION BEST PAPER AWARD IN STRUCTURAL DYNAMICS AND CONTROL

Keyu Chen The Chinese University of Hong Kong

BIOGRAPHY: Dr. Keyu Chen is currently a Research Associate in the Department of Automation and Mechanical Engineering, The Chinese University of Hong Kong, Hong Kong, China. He received the B.S. degree in mechanical engineering from the Beihang University, Beijing, China, in 2015 and the Ph.D. degree in automation and mechanical engineering from The Chinese University of Hong Kong, Hong Kong, China, in 2023. His current research interests include vibration energy harvesting, vibration suppression, and multi-objective optimization.

Shitong Fang Shenzhen University, China

BIOGRAPHY: Dr. Shitong Fang received the B.Eng. degree from Sun Yat-sen University, Guangzhou, China in 2017 and the Ph.D. degree in mechanical engineering from The Chinese University of Hong Kong, Hong Kong, China in 2021. She currently works as an Associate Professor with the College of Mechatronics and Control Engineering, Shenzhen University, China. Her research interests include nonlinear dynamics, vibration energy harvesting, and vibration suppression. Dr. Fang was a recipient of the Outstanding Thesis Award from the Faculty of Engineering, The Chinese University of Hong Kong.

Qiang Gao Southeast University, China

BIOGRAPHY: Dr. Qiang Gao is an Associate Professor in the School of Mechanical Engineering at Southeast University. He received his B.S. and Ph.D. degrees from the Department of Mechanical Engineering at Nanjing University of Science and Technology. Before joining Southeast University, he did the research work at the University of Michigan and The Chinese University of Hong Kong. His research interests focus on the smart material and structures, topology optimization and machine learning based design.

Donglin Zou Shanghai Jiao Tong University, China

BIOGRAPHY: Dr. Donglin Zou is currently an Assistant Professor at the School of Mechanical Engineering, Shanghai Jiao Tong University, China. He received his B.S. degree from Wuhan University of Technology, China, M.S. degree from Xi'an Jiao Tong University, China, and Ph.D. degree from Shanghai Jiao Tong University, China. His research interests include structural dynamics, vibration and noise reduction, fluid-structure interaction, computational fluid dynamics, smart materials, and vibration energy harvesting.

Junyi Cao Xi'an Jiaotong University, China

BIOGRAPHY: Dr. Junyi Cao is a Professor in the School of Mechanical Engineering at Xi'an Jiaotong University. He received the Ph.D. degree of Mechanical Engineering from Xi'an Jiaotong University, Xi'an, China, in 2006. From September 2013 to September 2014, he was a visiting scholar with the Department of Aerospace Engineering, University of Michigan, Ann Arbor. His main research interests include smart materials and structures, vibration control and energy harvesting. He is a recipient of 2021 Best Paper Award of ASME Journal of Vibration and Acoustics.

Wei-Hsin Liao The Chinese University of Hong Kong

BIOGRAPHY: Dr. Wei-Hsin Liao received the Ph.D. degree in mechanical engineering from The Pennsylvania State University, University Park, PA, USA, in 1997. He is currently the Department Chairman and Choh-Ming Li Professor of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China. His research interests include smart materials and structures, energy harvesting, vibration control, mechatronics, exoskeleton, and prosthesis. Dr. Liao currently serves as an Associate Editor for Journal of Intelligent Material Systems and Structures, and on the Executive Editorial Board of Smart Materials and Structures. He is a Fellow of the American Society of Mechanical Engineers, the Institute of Physics, and the Hong Kong Institution of Engineers. Dr. Liao is the recipient of 2020 ASME Adaptive Structures and Material Systems Award and 2018 SPIE SSM Lifetime Achievement Award.

TITLE: ENHANCING POWER OUTPUT OF PIEZOELECTRIC ENERGY HARVESTING BY GRADIENT AUXETIC STRUCTURES Applied Physics Letters 120 (2022), 103901

ABSTRACT: In this Letter, a method is proposed to increase the power output of piezoelectric energy harvesting via gradient auxetic structures. This method is validated through a gradient auxetic piezoelectric energy harvester, which combines a cantilever beam and a gradient auxetic structure. Compared with the normal uniform auxetic structure, the gradient auxetic structure can contribute to a more uniform strain distribution of the piezoelectric cantilever beam; thus, the proposed gradient auxetic energy harvester can produce higher power than the uniform auxetic energy harvester without increasing the stress concentration at the same time. Finite element simulation is performed to analyze the characteristics of the gradient auxetic energy harvester. From the experimental results, under the base excitation of 1 m/s2, the power density of the gradient auxetic energy harvester is increased by 356% and 55%, respectively, compared with the conventional plain energy harvester without auxetic structure and the uniform auxetic energy harvester.

SMASIS DIVISION BEST PAPER AWARD IN MECHANICS AND MATERIAL SYSTEMS

Katherine S. Riley Purdue University, West Lafayette, IN

BIOGRAPHY: Katherine Riley received her BS in structural engineering from the University of California, San Diego and her MS and PhD in mechanical engineering from Purdue University. Her research interests include multistable structures, programmable materials, and structures with sensing and memory capabilities.

Subhadeep Koner University of Tennessee, Knoxville, TN

BIOGRAPHY: Dr. Subhadeep Koner received a bachelor's degree in mechanical engineering from Jalpaiguri Government Engineering College in India. Later, he graduated from University of Tennessee with a PhD in mechanical engineering. His research was focused on brain inspired materials and electronic devices for adaptive signal processing, memory and learning. Currently, he works at Lam Research Corporation as a Process Engineer in their R&D division.

Juan C. Osorio Purdue University, West Lafayette, IN

BIOGRAPHY: Juan Osorio received his BS and MS degrees in Mechanical Engineering from Universidad de los Andes, Bogota, Colombia, in 2017 and 2019, respectively. He is a Ph.D. student in the School of Mechanical Engineering at Purdue, working at the Programmable Structures Lab. His research interests include finite element analysis, soft robotics, and physical computation with hierarchically multistable structures.

BIOGRAPHY: Dr. Yongchao Yu received his B.S. and M.S. degrees in electrical engineering from the University of Tennessee, Knoxville, USA, in 2013 and 2015, respectively. He earned his Ph.D. in mechanical engineering from the University of Tennessee, Knoxville, USA, in 2019. Currently, he is a research fellow at the Schaeffler Hub for Advanced Research in Singapore and is also affiliated with the School of Mechanical and Aerospace Engineering at Nanyang Technological University, Singapore. His research interests encompass condition monitoring, machine learning, laser processing, and nanomaterials.

Harith Morgan Purdue University, West Lafayette, IN

BIOGRAPHY: Harith Morgan received his M.S. in Mechanical Engineering from Purdue University and his B.S. in Mechanical Engineering from the Massachusetts Institute of Technology. His research interests include control of soft robotics with multistable structures and machine design. Harith currently works as a design engineer at ASML.

Janav P. Udani Purdue University, West Lafayette, IN

BIOGRAPHY: Dr. Janav P. Udani has a PhD in Mechanical Engineering from Purdue University. Dr. Udani's doctoral research focused on the mechanics of nonlinear multistable structural systems and covered the areas of nonlinear mechanics, dynamics, controls, programmable structures, smart materials, and mechanical computing. Following his doctorate degree, Dr. Udani has been working at 3M on the research and development of hardware and membrane technologies for filtration and purification solutions for the biopharmaceutical purification space. Stephen A. Sarles University of Tennessee, Knoxville, TN

BIOGRAPHY: Dr. Andy Sarles is an Associate Professor and the James Conklin Faculty Fellow in the Dept. of Mech., Aero. and Biomed. Engr. at the University of Tennessee. His research interests include transport and signaling through biomimetic interfaces and tissue-inspired materials, revealing nanomaterial-membrane interactions, and artificial synapses and neurons for neuromorphic computing. Sarles' work is supported by NSF, AFOSR, & ONR. He is a Fellow of ASME, and recently served as the General Chair of the 2021 ASME Conference on Smart Materials Adaptive Structures and Intelligent Systems (SMASIS)

Andres F. Arrieta Purdue University, West Lafayette, IN

BIOGRAPHY: Dr. Andres F. Arrieta is an Associate Professor of Mechanical Engineering and Aeronautics and Astronautics Engineering (by courtesy) at Purdue University, where he leads the Programmable Structures Lab. Previously, he worked as a Group Leader at ETH Zurich's CMAS Lab and as a Research Associate at the Dynamics and Oscillations Group at TU Darmstadt. He received his Ph.D. in Mechanical Engineering from the University of Bristol and his BEng from the Los Andes University, Bogota, Colombia. Dr. Arrieta's research focuses on investigating instabilities and nonlinearity in structural mechanics and the fundamental interaction between geometry, hierarchy, and nonlinearity to design structural systems with intrinsic properties enabling adaptation, autonomy, and environmental responsiveness. Current efforts concentrate on the modeling and designing of programmable structures, soft robotics, bioinspired design, embodied intelligence in structures, nonlinear metamaterials, and morphing structures. The Programmable Structures Lab's work has been highlighted by several media outlets, including National Geographic and Nature's News and Views.

He has received several personal awards, including the 2021 inaugural Emerging Leaders Award in Smart Materials and Structures (IOP Publications); NSF CAREER Award (2020); the ASME Gary Anderson Award (2018) for "outstanding contributions to the field of Adaptive Structures;" and the ETH Postdoctoral Fellowship (2012).

TITLE: NEUROMORPHIC METAMATERIALS FOR MECHANOSENSING AND PERCEPTUAL ASSOCIATIVE LEARNING Advanced Intelligent Systems 4 (2022), 2200158

ABSTRACT: Physical systems exhibiting neuromechanical functions promise to enable structures with directly encoded autonomy and intelligence. A neuromorphic metamaterials class embodying bioinspired

mechanosensing, memory, and learning functionalities obtained by leveraging mechanical instabilities integrated with memristive materials is reported. The prototype system comprises a multistable metamaterial whose bistable dome-shaped units collectively filter, amplify, and transduce external mechanical inputs over large areas into simple electrical signals using embedded piezoresistive sensors. Dome deformations in nonvolatile memristors triggered by the transduced signals, providing a means to store loading events in measurable material states are recorded. Sequentially applied mechanical inputs result in accumulated memristance changes that allow us to physically encode a Hopfield network into the neuromorphic metamaterials. This physical network learns the history of spatially distributed input patterns. Crucially, the neuromorphic metamaterials can retrieve the learned patterns from the memristors' final accumulated state. Therefore, the system exhibits the ability to learn without supervised training and retain spatially distributed inputs with minimal external overhead. The system's embodied mechanosensing, memory, and learning capabilities establish an avenue for synthetic neuromorphic metamaterials that learn via tactile interactions. This capability suggests new types of large-area smart surfaces for robotics, autonomous systems, wearables, and morphing structures subjected to spatiotemporal mechanical loading.

ACTIVE AND MULTIFUNCTIONAL MATERIALS TC OUTSTANDING CONTRIBUTION AWARD

Charles El Helou Intel, Inc., Allentown, PA

BIOGRAPHY: Charles is currently a Research Engineer at Intel. Prior to joining Intel, Charles completed his Ph.D. in Mechanical Engineering with the Laboratory of Sound and Vibration Research at the Pennsylvania State University. His dissertation focused on soft electromechanical material systems with sensing and computing capabilities. He established unconventional computer and material architecture design frameworks to program integrated circuits for digital logic processes in autonomous matter. During this period, Charles was also a graduate fellow with the Air Force Research Laboratory where he worked on developing and printing flexible electronic devices. He was initially introduced to academic research while receiving his B.S. in Mechanical Engineering from the Ohio State University.

Benjamin Grossmann Air Force Research Laboratory, Wright-Patterson AFB, OH

Christopher E. Tabor Air Force Research Laboratory, Wright-Patterson AFB, OH

Philip R. Buskohl Air Force Research Laboratory, Wright-Patterson AFB, OH

Ryan L. Harne Exponent, Inc.

TITLE: MECHANICAL INTEGRATED CIRCUIT MATERIALS Nature 608 (2022), 699-703

ABSTRACT: Recent developments in autonomous engineered matter have introduced the ability for intelligent materials to process environmental stimuli and functionally adapt. To formulate a foundation for such an engineered living material paradigm, researchers have introduced sensing and actuating functionalities in soft matter. Yet, information processing is the key functional element of autonomous engineered matter that has been recently explored through unconventional techniques with limited computing scalability. Here we uncover a relation between Boolean mathematics and kinematically reconfigurable electrical circuits to realize all combinational logic operations in soft, conductive mechanical materials. We establish an analytical framework that minimizes the canonical functions of combinational logic by the Quine-McCluskey method, and governs the mechanical design of reconfigurable integrated circuit switching networks in soft matter. The resulting mechanical integrated circuit materials perform higher-level arithmetic, number comparison, and decode binary data to visual representations. We exemplify two methods to automate the design on the basis of canonical Boolean functions and individual gate-switching assemblies. We also increase the computational density of the materials by a monolithic layer-by-layer design approach. As the framework established here leverages mathematics and kinematics for system design, the proposed approach of mechanical integrated circuit materials can be realized on any length scale and in a wide variety of physics.

ENERGY HARVESTING TC BEST PAPER AWARD

Guobiao Hu

The Hong Kong University of Science and Technology

BIOGRAPHY: Dr. Guobiao Hu is currently an assistant professor with the Internet of Things Thrust at the Hong Kong University of Science and Technology (Guangzhou). He received his Ph.D. degree in Mechanical Engineering from the University of Auckland. Before joining HKUST(GZ), he was a Research Fellow at Nanyang Technological University. His research interests include energy harvesting, acoustic-elastic metamaterials, and smart material structures & systems. Dr. Hu has published over 80 peer-reviewed technical papers in prestigious journals and international conferences, including 5 ESI highly cited papers. He received the Best Paper Finalist Award at the SPIE Conference on Smart Structures/NDE 2018. He has filed 3 patents, including 1 Singapore and 2 Chinese patents. He is named in the world's top 2% of Scientists List (2022) identified by Stanford University. He serves as reviewer for more than 60 SCI journals and guest editor for 5 SCI-indexed journals.

Chunbo Lan

Nanjing University of Aeronautics and Astronautics, China

BIOGRAPHY: Dr. Chunbo Lan is currently an assistant professor with the college of Aerospace Engineering at Nanjing University of Aeronautics and Astronautics. He received his Master degree and Ph.D. degree in Engineering Mechanics from Northwest Polytechnical University, China. Before joining NUAA, he was a visiting Ph.D. at the University of Auckland, New Zealand. His research interests focus on vibration energy harvesting and mechanical metamaterial for vibration suppression. Dr. Lan has authored about 40 peer-reviewed papers and received the Science and Technical Award of Shaanxi Province (2021). He serves as Guest Editor for 3 SCI-indexed Journals and reviewer for more than 40 Journals.

Lihua Tang

The University of Auckland, New Zealand, Auckland, New Zealand

BIOGRAPHY: Lihua Tang received his BEng in engineering mechanics and MEng in solid mechanics from Shanghai Jiao Tong University, China, in 2005 and 2008, respectively, and PhD in structures and mechanics from Nanyang Technological University, Singapore, in 2012. He is currently an associate professor with the Department of Mechanical and Mechatronics Engineering, The University of Auckland, New Zealand. He has published over 230 peer-reviewed journal and conference papers. His main research interests include smart materials and adaptive structures, energy harvesting, vibration control, acoustic/elastic metamaterials and thermoacoustics. He currently serves as the associate editor of Journal of Intelligent Material Systems and Structures.

Bo Zhou Dalian University of Technology, China

BIOGRAPHY: Dr Bo Zhou is currently a Professor of Dalian University of Technology (DUT). Dr. Zhou has been engaged in research and development of vibration and noise reduction new energy, applications of ship and marine engineering, and dynamic response characteristics of offshore structures for 20 years. He published more than 90 academic papers and filed 12 Chinese patents.

Yaowen Yang Nanyang Technological University, Singapore

BIOGRAPHY: Prof. Yaowen Yang presently holds the position of a Professor within the School of Civil and Environmental Engineering, while also serving as the Deputy Associate Provost (Continuing Education) in the President's Office, Nanyang Technological University (NTU), Singapore. He stands as a prominent researcher in the areas of small energy harvesting and structural health monitoring. His research interests include aeroelastic and vibration energy harvesting, metamaterials, structural health and geotechnical monitoring and uncertainty analysis in structural dynamics. Accomplished and highly cited in his field, Prof Yang has clinched more than S\$12 million in research funding, and published over 280 papers in reputable journals and conferences. Prof. Yang's educational background includes a B.Eng and M.Eng from Shanghai Jiao Tong University, followed by a Ph.D. from Nanyang Technological University. He serves as Associate Editor and Editorial Board member for multiple international journals and delivered keynote and invited lectures at many international conferences. Beyond academia, Prof. Yang wears an entrepreneurial hat as well. He established a company aimed at implementing his patented technologies, thereby offering comprehensive solutions for geotechnical, structural, and construction process monitoring, culminating in informed decision-making. For his innovative research strides and entrepreneurial pursuits, Prof. Yang is designated as an iNTUitive Fellow, showcasing his distinguished contributions to the university.

TITLE: DYNAMICS AND POWER LIMIT ANALYSIS OF A GALLOPING PIEZOELECTRIC ENERGY HARVESTER UNDER FORCED EXCITATION Mechanical Systems and Signal Processing 168 (2022), 108724

ABSTRACT: This paper presents a rigorous analytical solution to the dynamics of a single-degree-of-freedom (SDOF) piezoelectric energy harvester (PEH) under the combined wind and base excitations using the harmonic balance method. The boundaries of the quenching region are predicted using the multi-scale method. An equivalent circuit model (ECM) is established to verify the analytical solution, and the simulation results based on the ECM are in good agreement with the analytical ones. Subsequently, the power limit of the SDOF PEH under the combined excitations is analysed for the first time using the impedance theory based on a simplified model. The maximum power amplitudes at different excitation frequencies are also sought by numerically sweeping the load resistance. It is found that the impedance theory that has been successfully adopted in the literature is inapplicable in analysing the power limit of the SDOF PEH under the combined excitations. The impedance plots obtained based on resistance sweeping clearly indicate that, in contrast to the conclusions given in the literature, impedance matching is not the condition to attain the power limit of the SDOF PEH under the combined excitations. A mathematical proof is provided for a reasonable explanation. Finally, it is demonstrated that numerical simulations based on the original model can verify the power limit calculated based on the simplified model.

ADAPTIVE SYSTEMS DYNAMICS AND CONTROLS TC BEST SYMPOSIUM PAPER AWARD

Samikshak Gupta Michigan Technological University< Houghton, Ml

BIOGRAPHY: Samikhshak Gupta, a Graduate Student in Mechanical Engineering at Michigan Technological University. He holds a B.Tech degree in Mechanical Engineering from the National Institute of Technology, Jalandhar (2020). With a keen interest in modal analysis, adaptive structures, structural dynamics, signal processing, and computational mechanics, he wants to "blend his learning into an engaging and enjoyable experience."

Hrishikesh Gosavi Michigan Technological University< Houghton, Ml

BIOGRAPHY: Hrishikesh Gosavi is a Ph.D. candidate at Michigan Technological University. He is from Pune, India and completed his undergraduate studies from Pune University in 2018. He came to Michigan Tech in Fall 2019 to pursue an MS in Mechanical Engineering which he obtained in 2021. His areas of interest include modal analysis, data-driven modeling, metamaterials, traveling waves and structural dynamics.

Vijaya V N Sriram Malladi Michigan Technological University, Houghton, MI

BIOGRAPHY: Dr. Malladi is an Assistant Professor in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University. He obtained his B.Tech degree in Mining Machinery Engineering from the Indian Institute of Technology, Dhanbad, India, in 2011. He then pursued his M.S. and Ph.D. in Mechanical Engineering from Virginia Polytechnic Institute and State University, completing them in 2013 and 2016, respectively. Dr. Malladi's research interests encompass structural dynamics, adaptive structures, data-driven modeling, and modal testing.

TITLE: PARAMETRIC-FEEL ALGORITHM: DEVELOPING A PARAMETRIC VECTORFITTING MODEL FOR EVENT LOCALIZATION IN CALIBRATED STRUCTURE

ABSTRACT: For smart structures, especially in the context of human activity, the force exerted and the location it happened is of significant relevance. This paper revisits and improves the performance in localizing and characterizing an input force with pre-calibrated structures through vibration measurement. The Force Estimation and Event Localization (FEEL) Algorithm have been discussed as a means of calculating the force of an impact and pinpointing its location. Unlike other time-of-flight approaches, FEEL does not require time synchronization, instead using transfer functions between possible impact locations and sensor locations to estimate force and localize impact. However, this approach is limited to locations where transfer functions are available. To overcome this limitation, a rowing hammer test was used to determine Frequency Response Functions (FRFs) at various points on a beam with a uniform rectangular cross-section. The Vector-Fitting algorithm was then used to improve the FRF approximation by moving poles to more advantageous locations, enhancing convergence, and lowering noise. Using the curve fitting approach, residues and FRFs were interpolated for additional locations. The extended FEEL algorithm was then used to localize impacts and estimate forces at these additional locations. This method can be used in applications such as tracking customer movement in retail establishments, detecting falls, tracking rehabilitation progress, and estimating building occupancy.

ACTIVE MATERIAL TECHNOLOGY AND INTEGRATED SYSTEMS TC OUTSTANDING CONTRIBUTION AWARD

Daniel C. Miller

Paragon Space Development Corporation, Houston, TX

BIOGRAPHY: Mr. Miller is a Thermal Engineer at Paragon Space Development Corporation. His research and development work focuses on thermal radiator design and research for spacecraft, satellite, and human habitat applications. He also works in thermal management system development for complex and extreme environments such as high-flux electronics, satellite thermal control, and extreme heating, ventilation, air conditioning, and refrigeration (HVACR). Mr. Miller earned his B.S. in Mechanical Engineering from Oregon State University and his M.S. in Mechanical Engineering from Colorado School of Mines, specializing in thermal fluid sciences and concentrating solar power.

Connor J. Joyce Paragon Space Development Corporation, Houston, TX

BIOGRAPHY: Connor Joyce is a thermal-fluids engineer at Paragon Space Development Corporation in Houston, Texas. He received a BS in Mechanical Engineering with University Honors from the University of Houston. His research focuses on complex multiphysics problems including the thermal behavior of advanced materials, multiphase flow manipulation in microgravity, and the purification of water using ionomer membrane and frost deposition technologies.

Darren Hartl Texas A&M University, College Station, TX

BIOGRAPHY: Darren Hartl is an Associate Professor at Texas A&M in the Department of Aerospace Engineering. His work bridges the topics of advanced multifunctional material systems and their integration into aerospace platforms and he held previous joint appointments at the Air Force Research Laboratory (AFRL) in the Materials and Manufacturing Directorate and Aerospace Systems Directorate. Dr. Hartl has over 20 years of experience working with multifunctional and morphing structures and has co-authored 200+ technical publications on the topics of active materials modeling, testing, and integration.

Priscilla Nizio Texas A&M University College Station, TX

BIOGRAPHY: Priscilla Nizio is a graduate researcher at Texas A&M University. She received a BS in Chemical Engineering from the University of Houston and is currently pursuing a PhD in Aerospace engineering at Texas A&M University. She is a Pathways graduate student trainee in the Crew and Thermal Systems division at NASA Johnson Space Center. Her research focuses on shape memory alloys for thermal control in extreme environments.

Douglas E. Nicholson The Boeing Company, Berkeley, MO

BIOGRAPHY: Doug Nicholson currently resides as a technical lead engineer at Boeing Research and Technology (BR&T) on the Integrated Vehicle Systems (IVS) team. His current work focuses on the development and transition of smart materials and adaptive structures for space and aeronautical applications. These activities include standards development, material development and processing, design optimization, system integration, and relevant environment to sub and full-scale flight demonstrations. Doug earned his Ph.D. in mechanical engineering and M.S. in aerospace engineering from the University of Central Florida, and B.S. in mathematics and physics from Florida Atlantic University.

Sean Nevin The Boeing Company, Berkeley, MO

BIOGRAPHY: Sean Nevin currently resides as a mechanical system design and analysis engineer at Boeing Research and Technology (BR&T) on the Integrated Vehicle Systems (IVS) team. His current work focuses on the development and transition of smart materials and adaptive structures for space and aeronautical applications. These activities include standards development, material development and processing, design optimization, system integration, and relevant environment to sub and full-scale flight demonstrations. His research interests include designs with smart materials along with structural and thermal computational analysis (FEA). Sean earned his M.S. in aerospace engineering from the University of Texas A&M, and B.S. in mechanical engineering from Loyola Marymount University.

Othmane Benafan NASA Glenn Research Center, Washington, DC

BIOGRAPHY: Othmane Benafan is a materials research engineer in the High Temperature and Smart Alloys Branch at NASA Glenn Research Center. He received his Ph.D. in Mechanical Engineering from the University of Central Florida. His research is focused on developing fit-for-purpose shape memory alloys for aeronautics and space applications. He is currently leading multiple teams to design lightweight actuators and morphing structures for NASA. He is currently the immediate past president of the ASM International Organization on Shape Memory and Superelastic Technologies (SMST), and a past-chairman of the joint industry-government-academia Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART).

Glen S. Bigelow NASA Glenn Research Center, Washington, DC

BIOGRAPHY: Glen Bigelow is a materials research engineer at the NASA Glenn Research Center in Cleveland, OH. He received his BS in Mechanical Engineering and his BS and MS in Metallurgical and Materials Engineering from Colorado School of Mines. His research focuses on shape memory alloy material design, processing, and applications in aeronautics and space.

Darrell J. Gaydosh NASA Glenn Research Center, Washington, DC

BIOGRAPHY: Darrell Gaydosh was formerly a senior researcher at HX5, LLC.

TITLE: SHAPE MEMORY ALLOYS FOR REGULATING TCS IN SPACE (SMARTS): SYSTEM DESIGN AND THERMAL VACUUM DEMONSTRATION

Proceedings of the 51st International Conference on Environmental Systems ICES-2022-291, 10-14 July 2022, St. Paul, Minnesota

ABSTRACT: Variable-geometry radiators provide variable heat rejection capability, or turndown, to meet variable heat loads and environments, as might be experienced in a Lunar habitat or interplanetary vehicle carrying astronauts. Shape Memory Alloy (SMA) actuation offers lightweight, compact, and rugged methods for passive control of morphing radiators that vary geometry, providing turndown, in response to thermal stimuli. SMAs for Regulating Thermal control systems (TCS) in Space, or SMARTS, is an SMA enabled radiator system with thermal switch for adverse heating protection. SMA wires are conductively coupled to coolant passages, providing thermally responsive actuation to open and close the composite radiator at design temperatures to passively vary heat rejection, ensuring stable coolant outlet temperatures. SMA actuators, conductively coupled to the radiator, respond to adverse heating on the radiator panels by breaking thermal contact between the panel and the coolant passages at design temperatures. SMARTS has been built at a prototype system level and demonstrated in a relevant thermal vacuum (TVAC) environment. Heat rejection comparable to flat panel radiators was demonstrated with the additional benefits of greater turndown than the NASA roadmap target of 6:1 and passive protection to adverse heating conditions. This work summarizes TVAC test results and demonstrates design and analysis methods employed to tune SMA transition temperatures and predict response to thermal and mechanical loads.

STRUCTURAL HEALTH MONITORING TC BEST PAPER AWARD

Jingxiao Liu Stanford Universtiy, Stanford, CA

BIOGRAPHY: Jingxiao Liu is a post-doctoral fellow in the Geophysics Department at Stanford University. He received his Ph.D. in the Department of Civil & Environmental Engineering with a Ph.D. minor in Electrical Engineering at Stanford University. His research focuses on structural health monitoring, smart infrastructure systems, and smart city applications integrating structural dynamics, signal processing, physicsguided machine learning, mobile sensing, and fiber-optic sensing techniques. He received his M.S. in Civil Engineering from Carnegie Mellon University, and his B.S. in Civil Engineering from Central South University, China. He received the Leavell Fellowship on Sustainable Built Environment and various best paper and presentation awards from ASCE, ASME, and ACM conferences.

Susu Xu Stony Brook University, Stony Brook, NY

BIOGRAPHY: Susu Xu is an Assistant Professor in the Department of Civil Engineering at Stony Brook University. She received her Ph.D. in Civil Engineering, a Master's in Machine Learning from Carnegie Mellon University, and her bachelor's degree from Tsinghua University. She has been a postdoctoral research fellow at Stanford University and a research scientist at the AI research team in Qualcomm Technologies. Her research focuses on crowdsensing, physics-informed machine learning, and causal Bayesian inference for enabling resilient, effective, and equitable infrastructure systems. She received the Best Paper Award at the IEEE International Conference of Machine Learning and Applications (ICMLA) in 2018, and was the champion of NeurIPS 2018 Adversarial Vision Challenge. She is also the recipient of the 2019 MIT CEE Rising Star and Dowd Fellowship.

Mario Bergés Carnegie Mellon University, Pittsburgh, PA

BIOGRAPHY: Mario Bergés is a professor in the Department of Civil and Environmental Engineering at Carnegie Mellon University (CMU). He is interested in making our built environment more operationally efficient and robust through the use of information and communication technologies, so that it can better deal with future resource constraints and a changing environment. Currently his work largely focuses on developing approximate inference techniques to extract useful information from sensor data coming from civil infrastructure systems, with a particular focus on buildings and energy efficiency. Dr. Bergés is the faculty co-director of the Smart Infrastructure Institute at CMU, as well as the director of the Intelligent Infrastructure Research Lab (INFERLab). Among recent awards, he received the Professor of the Year Award by the ASCE Pittsburgh Chapter in 2018, Outstanding Early Career Researcher award from FIATECH in 2010, and the Dean's Early Career Fellowship from CMU in 2015. Dr. Bergés received his B.Sc. in 2004 from the Instituto Tecnológico de Santo Domingo, in the Dominican Republic; and his M.Sc. and Ph.D. in Civil and Environmental Engineering in 2007 and 2010, respectively, both from Carnegie Mellon University.

Hae Young Noh Stanford University, Stanford, CA

BIOGRAPHY: Hae Young Noh is an Associate Professor in the Department of Civil and Environmental Engineering at Stanford University. Her research focuses on indirect sensing and physics-guided data analytics to enable low-cost non-intrusive monitoring of cyber-physical-human systems. She is particularly interested in developing structures to be self-, user-, and surrounding-aware to improve users' quality of life and provide safe and sustainable built environments. The results of her work have been deployed in a number of real-world applications from trains, to the Amish community, to eldercare centers, to pig farms. Before joining Stanford, she was a faculty member at Carnegie Mellon University. She received her Ph.D. and M.S. degrees in Civil and Environmental Engineering and her second M.S. degree in Electrical Engineering at Stanford University. She earned her B.S. degree in Mechanical and Aerospace Engineering at Cornell University. She received several awards, including the Google Faculty Research Awards (2013, 2016), the Dean's Early Career Fellowship (2018), the NSF CAREER Award (2017), and various Best Paper Awards from ASCE, ASME, ACM, IEEE, and SEM conferences.

TITLE: HIERMUD: HIERARCHICAL MULTI-TASK UNSUPERVISED DOMAIN ADAPTATION BETWEEN BRIDGES FOR DRIVE-BY DAMAGE DIAGNOSIS

Structural Health Monitoring 22 (2022), 1941-1968

ABSTRACT: Monitoring bridges through vibration responses of drive-by vehicles enables efficient and low-cost bridge maintenance by allowing each vehicle to inspect multiple bridges and eliminating the needs for installing and maintaining sensors on every bridge. However, many existing drive-by monitoring approaches are based on supervised learning models that require massive labeled data from every bridge. It is expensive and time-consuming, if not impossible, to obtain these labeled data. Furthermore, directly applying a supervised learning model trained on one bridge to new bridges would result in low accuracy due to the shift between different bridges' data distributions. Moreover, when we have multiple tasks (e.g., damage detection, localization, and guantification), the distribution shifts become more challenging than having only one task because different tasks have distinct distribution shifts and varying task difficulties. To this end, we introduce HierMUD, the first Hierarchical Multi-task Unsupervised Domain adaptation framework that transfers the damage diagnosis model learned from one bridge to a new bridge without requiring any labels from the new bridge. Specifically, our framework learns a hierarchical neural network model in an adversarial way to extract features that are informative to multiple tasks and invariant across multiple bridges. To match distributions over multiple tasks, we design a new loss function based on a newly derived generalization risk bound to adaptively assign higher weights to tasks with more shifted distributions. To learn multiple tasks with varying task difficulties, we split them into easy-to-learn and hard-to-learn tasks based on their distributions. Then, we formulate a feature hierarchy to utilize more learning resources to improve the hard-to-learn tasks' performance. We evaluate our framework with experimental data from 2 bridges and 3 vehicles. We achieve up to 2X better performance than baseline methods, including average accuracy of 95% for damage detection, 93% for localization, and 0.38 lbs mean absolute error for quantification.

STRUCTURAL HEALTH MONITORING TC RUNNER-UP BEST PAPER AWARD

Long Wang

California Polytechnic State University, San Luis Obispon CA

BIOGRAPHY: Dr. Long Wang is an Assistant Professor in Structural Engineering in the Department of Civil and Environmental Engineering at the California Polytechnic State University, San Luis Obispo. Prior to joining Cal Poly, he received his M.S. in Civil Engineering and M.S. in Mechanical & Aerospace Engineering from the University of California Davis, as well as his Ph.D. in Structural Engineering from the University of California San Diego, all under the supervision of Prof. Ken Loh.

Wei-Hung Chiang

National University of Science and Technology, Taiwan

BIOGRAPHY: Dr. Wei-Hung Chiang is a Professor in the Department of Chemical Engineering at the National University of Science and Technology in Taiwan. He has broad scientific and engineering interests that encompass functional material design, synthesis and processing, device fabrication and integration. His work has been recognized by scientific publications in high impact journals such as Nature Materials, ACS NANO, and Advance Materials, by mainstream media such as Forbes Magazine and ScienceDaily, and by international conferences (e.g., MRS, AICHE, ECS, and AVS).

Kenneth J. Loh UC San Diego, La Jolla, CA

BIOGRAPHY: Dr. Ken Loh is a Professor and was the former Vice Chair (2018-2021) of the Department of Structural Engineering at UC San Diego. He is the Director of the Active, Responsive, Multifunctional, and Orderedmaterials Research (ARMOR) Lab and is the Director of the Jacobs School of Engineering, Center for Extreme Events Research (CEER). He is also an affiliate faculty member of the Materials Science & Engineering Program. His research interests are in multifunctional and stimuli-responsive materials, tomographic imaging techniques, wearable sensors, active metamaterials, and soft material actuators applied towards solving problems related to human performance, structural sustainment, and human-structure interactions.

TITLE: TOPOLOGICAL DESIGN OF STRAIN SENSING NANOCOMPOSITES Scientific Reports 12 (2022), 9179

ABSTRACT: High-performance piezoresistive nanocomposites have attracted extensive attention because of their significant potential as next-generation sensing devices for a broad range of applications, such as monitoring structural integrity and human performance. While various piezoresistive nanocomposites have been successfully developed using different material compositions and manufacturing techniques, current development procedures typically involve empirical trial and error that can be laborious, inefficient, and, most importantly, unpredictable. Therefore, this paper proposed and validated a topological design-based methodology to strategically manipulate the piezoresistive effect of nanocomposites to achieve a wide range of strain sensitivities without changing the material system. In particular, patterned nanocomposite thin films with stress-concentrating and stress-releasing topologies were designed. The strain sensing properties of the different topology nanocomposites were characterized and compared via electromechanical experiments. Those results were compared to both linear and nonlinear piezoresistive material model numerical simulations. Both the experimental and simulation results indicated that the stress-concentrating topologies could enhance strain sensitivity, whereas the stress-releasing topologies could significantly suppress bulk film piezoresistivity.

THANK YOU TO OUR SPONSORS!

PIONEER AWARDS BANQUET & GOLD SPONSOR

GM Research & Development

GM's goal is to deliver world-class customer experiences at every touchpoint and do so on a foundation of trust and transparency. Our vision is a world with zero crashes, zero emissions and zero congestion. Our diverse team of global employees brings their collective passion for engineering, technology and design to deliver on this ambitious future. And the bold commitments we've made are moving us closer to realizing this vision. Visit us at: https://www.gm.com

SILVER SPONSOR

BRONZE SPONSOR AND EXHIBITOR

FORT WAYNE METALS

Turning knowledge into solutions:

Fort Wayne Metals

Fort Wayne Metals is a manufacturer of precision wire-based products used in critical applications around the world. Founded in 1970, we're driven by a spirit of innovation, quality, and continual improvement that has pioneered the development of new alloys and revolutionary materials to accommodate a range of applications.

As the world's leading melt-to-finish source for Nitinol to the medical device industry, Fort Wayne Metals processes Nitinol in multiple forms and finishes, including shape set parts and actuators. Powered by a spirit of innovation and a mission to make lives better, we enable solutions for complex design requirements.

Our customers are the focus of everything we do. That's why we are FDA registered and ISO 9001, AS 9100C, and ISO 13485 certified. We constantly expand upon a wide breadth of materials, capabilities, and technical expertise, offering a range of alloys – including Nitinol, titanium, and stainless steel – for a wide spectrum of materials, including round wire, shaped wire, rod, strands, cables, and more. We'll continue to push boundaries because we love advancing our knowledge, enabling us to find better solutions for our customers. Visit us at: www.fwmetals.com

MEDIA SPONSOR

MECHANICAL ENGINEERING

Mechanical Engineering

Polytec is the world's leading manufacturer of high precision, laser-based dynamic characterization systems. Some of the applications we support include MEMS dynamic and material properties characterization, FE-experimental correlation, modal analysis, imaging wave propagation, studying energy harvesting transducers and medical device characterization. In a nutshell, Polytec has a solution for applications demanding high performance, wide dynamic range, fine spatial resolution, 3-D data, or an extensive bandwidth. Visit us at: www.polytec.com

Cadillac CELESTIQ

GM Research & Development is proud to sponsor ASME's SMASIS conference again this year. We hope you have a very successful conference and enjoy networking with colleagues. https://www.gm.com/research

36

We would like to express our appreciation to our Sponsors, General Motors, TOYOTA, Inc., and Fort Wayne Metals, for their generosity and continued support. Their contributions help make this conference sustainable.

THANK YOU!

MONDAY, SEPTEMBER 11 - 9:10AM-10:30AM			
9:10AM	9:30AM	9:50AM	10:10AM

			Magnolia Room
01-01: Liquid Metals			
Chair: Mohammad Malakooti - University of Wa	rshington		
Co-Chair: Youngshang Han - University of Wash	hington		
Adding Solid and Eluide to Liquid Matalay	Lightweight Soft Conductive Compositor	Printing Eurotional Electomore for	
Adding Solid and Fluids to Liquid Metals: How to Make Multifunctional Liquid Metal	Lightweight Soft Conductive Composites Embedded With Liquid Metal Fiber	Printing Functional Elastomers for Stretchable Thermoelectric Devices	
Pastes, Foams, and Emulsions	Networks	Stretchable memoelectile Devices	
Fastes, Foans, and Emulsions	Networks	Technical Presentation Only:	
Invited Speaker Presentation:	Technical Presentation Only:	SMASIS2023-111059	
SMASIS2023-112282	SMASIS2023-110804	SIMA3132023-111039	
SINASIS2023-112262	SMASIS2023-110604	Youngshang Han - University of Washington,	
Konrad Rykaczewski - Arizona State	Jiexian Ma - SUNY Binghamton, Zihan	Halil Tetik - University of Washington,	
University, Najam Ul Hassan Shan - Arizona	Liu - SUNY Binghamton, Pu Zhang - SUNY	Mohammad Malakooti - University of	
State University, Shreyas Kanetkar - Arizona	Binghamton	Washington	
State University, Robert Y. Wang - Arizona	Binghamon	washington	
State University			

10NDAY, SEPTEMBER 11 - 9:10AM-10:30AM			
9:10AM	9:30AM	9:50AM	10:10AM
			Robertson Roon
06-01: Artificial Muscle Actuators			
Chair: Matthew Bryant - North Carolina State U. Co-Chair: Caterina Lamuta - University of Iowa	niversity		
Spatial Optimization for Fluidic Artificial Muscle (FAM) Bundle	Passive Priming of Fluidic Artificial Muscles in Variable Recruitment	High Performance Hierarchical Supercoiled and Hypercoiled Muscles With Embedded Heating Wire	Fabrication and Characterization of Mesoporous Carbon-Nickel Silver Powder- Poly (Vinyl Alcohol) Coated Mandrel-Coiled
Technical Presentation Only: SMASIS2023-111022	Technical Presentation Only: SMASIS2023-112290 Olivia Mabe - North Carolina State University,	Technical Presentation Only: SMASIS2023-111078	TCPFL Artificial Muscles for Enhanced Performance
Emily Duan - North Carolina State University, Matthew Bryant - North Carolina State University	Matthew Bryant - North Carolina State University	Samuel Tsai - University of Illinois at Urbana- Champaign, Qiong Wang - University of	Technical Paper Publication: SMASIS2023-113809
		Illinois at Urbana-Champaign, Jeongmin Kim - University of Illinois at Urbana-Champaign, Liuyang Cheng - University of Illinois at Urbana-Champaign, Wonsik Eom - University of Illinois at Urbana-Champaign, Charlie Simcox - University of Illinois at Urbana- Champaign, Marco Guzman - University of Illinois at Urbana-Champaign, Montse Solis - University of Illinois at Urbana-Champaign,	Pawandeep Singh Matharu - The University of Texas at Dallas, Yuyang Song - Toyota Research Institute of North America, Umesh Gandhi - Toyota Research Institute of North America, Yonas Tadesse - The University of Texas at Dallas
		William King - University of Illinois at Urbana- Champaign, Sameh Tawfick - University of Illinois at Urbana-Champaign	

MONDAY, SEPTEMBER 11 - 9:10AM-10:30AM				
9:10AM 9:30AM 9:50AM 10:10AM				

			Austin Room
02-01: Shape Memory Alloy Actuators			
Chair: Othmane Benafan - National Aeronautics Co-Chair: Marcus Young - University of North Te			
Shape Memory NiTiHf Machined Helical	Shape Memory NiTiHf Machined Helical	High Temperature Micro-Scale Actuators	
Springs: Balancing Displacement and Force	Springs: Balancing Displacement and Force	From Melt-Spun Shape Memory Alloy:	
Output for Actuation	Output for Actuation	Microstructure and Functional Performance	
Technical Presentation Only:	Technical Presentation Only:	Technical Presentation Only:	
SMASIS2023-110390	SMASIS2023-110390	SMASIS2023-111548	
Peter Caltagirone - NASA Glenn Research	Peter Caltagirone - NASA Glenn Research	Jak Li - Smarter Alloys, Michael Kuntz -	
Center, Othmane Benafan - NASA Glenn	Center, Othmane Benafan - NASA Glenn	Smarter Alloys, Ibraheem Khan - Smarter	
Research Center	Research Center	Alloys	

MONDAY, SEPTEMBER 11 - 9:10AM-10:30AM			
9:10AM	9:30AM	9:50AM	10:10AM

			Dewitt Ro
03-01: Emerging Techniques in Control and P	rogramming		
Chair: James Gibert - Purdue University			
Co-Chair: Paul Motzki - Saarland University			
Integrating Multivariate Signal Processing	Inertial Programming Through	Heterogeneous Nonlinear Stiffness	
and Machine Learning for Optimal Control of Prosthetic Hands	Heterogeneity	Programming	
	Technical Presentation Only:	Technical Presentation Only:	
Technical Paper Publication: SMASIS2023-110634	SMASIS2023-111410	SMASIS2023-111412	
	Xinhao Quan - Purdue University,	Qianyu Zhao - Purdue University, Hongcheng	
Mortaza Pirouz - The University of Texas at	Hongcheng Tao - Purdue University, James	Tao - Purdue University, James Gibert -	
Dallas, Yonas Tadesse - The University of Texas at Dallas	Gibert - Purdue University	Purdue University	

			Dovers Room
04-01: Mechanics of Smart Structure Applica	tions		
Chair: Francis Phillips - U.S. Army DEVCOM Ari	ny Research Laboratory		
Co-Chair: Martin Radestock - German Aerospo	ace Center		
Artificial Intelligence for Active Vibration	Indoor Impact Event Localization via	Morphing Turbofan Engine Inlet at Take-Off	
Control Optimization on Smart Structures	Velocity and Energy Ratio Mapping Function	Cross-Wind Conditions	
	in Dispersive Media		
Technical Paper Publication:		Technical Paper Publication:	
SMASIS2023-110216	Technical Paper Publication:	SMASIS2023-110999	
	SMASIS2023-110685	Giada Abate - German Aerospace Center,	
Maryne Febvre - Université de Lyon,		Srinivas Vasista - German Aerospace	
Jonathan Rodriguez - Université de Lyon,	Andrew Gothard - Tennessee Technological	Center, Sven Christian Künnecke -	
Simon Chesne - Université de Lyon, Manuel	University, Steven Anton - Tennessee	German Aerospace Center, Johannes	
Collet - Université de Lyon	Technological University	Riemenschneider - German Aerospace	
		Center	

MONDAY, SEPTEMBER 11 - 9:10AM-10:30AM			
9:10AM 9:30AM 9:50AM 10:10AM			

			Dezavala Roon
05-01: Biosensing			
Chair: Peng (Patrick) Sun - University of Central	l Florida		
Co-Chair: Shahrzad Towfighian - Binghamton U	Iniversity		
Co-Chair: Zhenhua Tian - <i>Virginia Tech</i>			
Development of a Laser Vibrometer-	Monitoring Volumetric Defects in 3D	Digital Medicine for Cardiovascular Health	
Based Shear Wave Sensing System for	Bioprinting Using Video-Based Vibrometry		
Characterizing Mechanical Properties of		Invited Speaker Presentation:	
Viscoelastic Materials	Technical Paper Publication:	SMASIS2023-117534	
	SMASIS2023-117601		
Technical Paper Publication:		Roozbeh Jafari - Texas A&M University	
SMASIS2023-110811	Rayanne Taylor - Georgia Southern		
	University, Jinki Kim - Georgia Southern		
Bowen Cai - Mississippi State University,	University		
Liang Shen - Virginia Tech, Zhe Pei - Virginia			
Tech, Teng Li - Virginia Tech, Jiali Li - Virginia			
Tech, Luyu Bo - Virginia Tech, Yingshan Du -			
Virginia Tech, Zhenhua Tian - Virginia Tech			

MONDAY, SEPTEMBER 11 - 10:15AM-12:10PM			
10:50AM	11:10AM	11:30AM	11:50AM

			Magnolia Roo
01-02: Functional Soft Materials			
Chair: Mohammad Malakooti - University of V Co-Chair: Russell Mailen - Auburn University			
Bio-Like Soft Materials With Life-Like Intelligence	Thermally Reversible Origami Using Bilayer Liquid Crystal Elastomer Films	Electrically Conductive EGain-Elastomer Composites for Printing Stretchable Circuits	
Invited Speaker Presentation: SMASIS2023-118554	Technical Presentation Only: SMASIS2023-111164	Technical Presentation Only: SMASIS2023-113183	
Ximin He - University of California, Los Angeles	Greg Mccallum - Auburn University, Yi-Hung Lin - Auburn University, Bryan Beckingham - Auburn University, Russell Mailen - Auburn University	Youngshang Han - University of Washington, Ren-Mian Chin - University of Washington, Mohammad Malakooti - University of Washington	

10:50AM	11:10AM	11:30AM	11:50AM
			Robertson Roo
06-02: Marine and Underwater Robotics			
Chair: Jovana Jovanova - Technische Universi Co-Chair: Michael Philen - Virginia Tech	tät Delft		
Design of a Soft Underwater Gripper With	Prediction of Hydrodynamic Loads on a	Nebula: A Flexible, Solid-State Swimming	Jelly-Z 2.0: 3D Printed Soft Jellyfish Robot
SMA Actuation	Flexible Bio-Inspired Underwater Propulsor	Robot Enabled by HASEL Actuators	Actuated With Self-Coiled CNT-C-Ni-PVA
	Using Physical Reservoir Computing		Coated TCPFL
Technical Paper Publication:		Technical Paper Publication:	
SMASIS2023-111702	Technical Paper Publication:	SMASIS2023-110945	Technical Paper Publication:
	SMASIS2023-111137		SMASIS2023-111077
Sezer Var - Technische Universität Delft,		Isabel Hess - University of Florida, Patrick	
Jovana Jovanova - Technische Universität	Shan He - University of Florida, Isabel Hess	Musgrave - University of Florida	Pawandeep Singh Matharu - The Universit
Delft	- University of Florida, Patrick Musgrave -		of Texas at Dallas, S.M. Al Islam Ovy - The
	University of Florida		University of Texas at Dallas, Abhishek
			Pratap Singh - The University of Texas at
			Dallas, Yuyang Song - Toyota Research
			Institute of North America, Umesh Gandhi
			Toyota Research Institute of North America
			Toyota Research Institute of North America Yonas Tadesse - The University of Texas c

MONDAY, SEPTEMBER 11 - 10:15AM-12:10PM			
10:50AM	11:10AM	11:30AM	11:50AM
			Austin Roon
02-02: Shape Memory Alloy Actuator Material	and Characterization Standards		
Chair: Darren Hartl - Texas A&M University			
Co-Chair: Santo Padula - NASA Glenn Research	Center		
Standard Test Methods for Shape Memory	Standard Material Specifications for Shape	A Unified Approach for Characterizing	Shape Memory Materials Analysis and
Alloys for Actuation	Memory Alloys for Actuation	Mechanical and Actuation Fatigue in SMAs	Research Tool (SM2ART) Database: Comparing Legacy Data to New
Technical Presentation Only:	Technical Presentation Only:	Technical Presentation Only:	Experimental and Computational Data
SMASIS2023-111147	SMASIS2023-111420	SMASIS2023-110739	
			Technical Presentation Only:
Douglas Nicholson - Boeing, Othmane	Dean Pick - Kinitics Automation Limited,	Hrishikesh Padalia - Texas A&M University,	SMASIS2023-110624
Benafan - NASA Glenn Research Center,	Douglas Nicholson - Boeing, Othmane	Dimitris Lagoudas - Texas A&M University	
Glen Bigelow - NASA Glenn Research Center,	Benafan - NASA Glenn Research Center,		Othmane Benafan - NASA Glenn Research
Dean Pick - Kinitics Automation Limited,	Glen Bigelow - NASA Glenn Research Center,		Center, Peter Caltagirone - Oak Ridge
Alexander Demblon - Texas A&M University,	Alexander Demblon - Texas A&M University,		Associated Universities, Tyler Kujawa -
James Mabe - Texas A&M University,	James Mabe - Texas A&M University,		Banner Quality Management Inc., Edward
Ibrahim Karaman - Texas A&M University,	Ibrahim Karaman - Texas A&M University,		Jones - Peerless Technologies Corp., Ron
Drew Forbes - Fort Wayne Metals, Frank	Brian Van Doren - ATI Specialty Alloys and		Gould - Banner Quality Management Inc.
Sczerzenie - SAES Smart Materials, Luca	Components, Drew Forbes - Fort Wayne		
Fumagalli - SAES Getters, Cassio Wallner -	Metals, Luca Fumagalli - SAES Getters S.p.A,		

Frank Sczerzenie - SAES Smart Materials,

Cassio Wallner - Embraer

Embraer

MONDAY, SEPTEMBER 11 - 10:15AM-12:10PM					
10:50AM	11:10AM	11:30AM	11:50AM		
			Dewitt Roor		
03-02: Methods for Dynamics and Structural	Analysis				
Chair: James Gibert - Purdue University					
Co-Chair: Paul Motzki - Saarland University					
Modal Analysis of 2D Periodic Structures	Resonant Suspended Beam Mechanism for	Tuning Modal Response by Moment			
Using Dynamic Condensation With Primal	Weight Measurement	Coupled Subordinate Comb-Shaped			
Assembly		Oscillator Array			
	Technical Paper Publication:				
Technical Paper Publication:	SMASIS2023-111060	Technical Presentation Only:			
SMASIS2023-110973	Shuai Ju - University of North Texas,	SMASIS2023-110914			
	Masoud Naghdi - University of North Texas,				
Debel Weldebeber Heree Kerer Adversed	Muhammad Aalam University of North	Sourabh Sanala Toxas ARM University			

Robel Weldebrhan Hagos - Korea AdvancedInstitute of Science and Technology,Seongmin Chang - Chungnam NationalUniversity, Jae-Hung Han - Korea AdvancedInstitute of Science and Technology

 Shuai Ju - University of North Texas,
 Si

 Masoud Naghdi - University of North Texas,
 Masoud Naghdi - University of North Texas,

 Idvanced
 Muhammad Aslam - University of North
 Si

 Texas, Sreejith Sreedharan - University of
 W

 Idvanced
 North Texas, Mitali Hardik Desai - University
 Pa

 Idvanced
 of North Texas, Haifeng Zhang - University of
 M

ty of North Texas,trsity of NorthSourabh Sangle - Texas A&M University,n - University ofWilliam Rogers - Texas A&M University,Desai - UniversityPablo Tarazaga - Texas A&M University,mang - University ofMohammad Albakri - Texas A&M University- Qatar

MONDAY, SEPTEMBER 11 - 10:15AM-12:10PM				
10:50AM	11:10AM	11:30AM	11:50AM	

			Dovers Roon
02-02: Shape Memory Alloy Actuator Materia	al and Characterization Standards		
Chair: Maria Sakovsky - Stanford University			
Co-Chair: Francis Phillips - U.S. Army DEVCOM	1 Army Research Laboratory		
Enhancing the Design Space of Bistable	Aero-Structural Response of a Slitted	Multistable Soft Robotics for Force	
Laminates by Tailoring the Attachment	Bistable Laminate	Modulation and Programmed Dynamics	
Boundary Conditions			
	Technical Paper Publication:	Technical Presentation Only:	
Technical Paper Publication:	SMASIS2023-110581	SMASIS2023-119396	
SMASIS2023-111093			
	Karthik Boddapati - Purdue University, D.	Juan C. Osorio - Purdue University, Harith	
Aghna Mukherjee - ETH Zurich, Tom Vogel -	Matthew Boston - Purdue University, Jose R.	Morgan - Purdue University, Chelsea Tinsley	
ETH Zurich, Paolo Ermanni - ETH Zurich	Rivas-Padilla - Purdue University, Andres F.	- Purdue University, Kendal Tinsley - Purdue	
	Arrieta - Purdue University	University, Andres Arrieta - Purdue University	

MONDAY, SEPTEMBER 11 - 10:15AM-12:10PM				
10:50AM	11:10AM	11:30AM	11:50AM	
			Dezavala Roon	
07-01: Flow-Induced Vibration Energy Harves	ting			
Chair: Serife Tol, University of Michigan				
Co-Chair: Guobiao Hu, The Hong Kong Univers	ity of Science and Technology			
Nonlinear Dynamics of Two-Degree-of-	The Performance Investigation of	Harvesting Energy From Aeroelastic		
Freedom Vortex-Induced Vibration Energy	Triboelectric Nanogenerator Based on Flow	Instabilities		
Harvester	Induced Vibration by Applying Bluff Bodies With Different Cross Sections	Invited Speaker Presentation:		
Technical Paper Publication:	With Different cross sections	SMASIS2023-118600		
SMASIS2023-111066	Technical Paper Publication:			
	SMASIS2023-111090	Jayant Sirohi - The University of Texas at		
Guobiao Hu - The Hong Kong University		Austin		
of Science and Technology, Lihua Tang -	Zhongjie Li - Shanghai University, Yukun			
The University of Auckland, Junlei Wang	Yuan - Shanghai University, Hao Wu -			
- Zhengzhou University, Xin Li - Xidian	Shanghai University, Di Zhang - Shanghai			
University, Junrui Liang - ShanghaiTech	University, Min Wang - Shanghai University,			
University	Jiheng Ding - Shanghai University			

MONDAY, SEPTEMBER 11 - 1:40PM-3:00PM				
1:40PM	2:00PM	2:20PM	2:40PM	
	·	·		

			Magnolia Roon
01-03: Integrated Sensing			
Chair: Russell Mailen - Auburn University			
Co-Chair: Tyler Tallman - Purdue University			
Embedded Sensing and Localization of	Characterization of Electrospun, Conducting	Effect of Area Density on Sensitivity and	Colloidal Microchannel Formation via
Pressure in Silicone Skin Using Sensors	Polymer Electrodes Enabling Mobility for All	Strain Survival of Reduced Graphene Oxide	Directed Self-Assembly on Substrate of
Printed From CNF/TPU Filament		Under Large Strains	Tunable Stiffness
	Technical Presentation Only:		
Technical Paper Publication:	SMASIS2023-111162	Technical Paper Publication:	Technical Paper Publication:
SMASIS2023-111109		SMASIS2023-111169	SMASIS2023-108891
	Midhan Siwakoti - Auburn University, Leily		
Joseph Meier - Purdue University, Steven	Majidi - Auburn University, Avinash Baskaran	Armin Yazdi - University of Wisconsin-	Ryan Dumont - Kennesaw State University,
Turnbull - Purdue University, Julio Hernandez	- Auburn University, Chad G. Rose - Auburn	Milwaukee, Li-Chih Tsai - University of	Spandana Thammisetty - Kennesaw State
- Purdue University, Cole Maynard - Purdue	University, Russell Mailen - Auburn University	Wisconsin-Milwaukee, Nathan Salowitz -	University, Bo Li - Kennesaw State University
University, David Rodrigez - Purdue		University of Wisconsin-Milwaukee	
University, Brittany Newell - Purdue			
University, Tyler Tallman - Purdue University			

MONDAY, SEPTEMBER 11 - 1:40PM-3:00PM				
1:40PM	2:00PM	2:20PM	2:40PM	
			Robertson Room	
06-03 Bioinspired Vibrations and Waves				
Chair: Pablo Tarazaga - Texas A&M University				
Co-Chair: Steven Anton - Tennessee Tech Univ	ersity			
Directed Particle Motion Driven by	Novel Pumping Mechanism for Heat Sinks	An Investigation on the Effectiveness of		
Superimposed Two-Dimensional Traveling	With Fluid Medium Using Steady State	Cross-Sectional Tapering for Broadband		
Waves	Traveling Waves	Non-Reflective Traveling Waves Generation		
		in Beams With Passive Discontinuities		
Technical Paper Publication:	Technical Paper Publication:			
SMASIS2023-110915	SMASIS2023-113286	Technical Paper Publication:		
		SMASIS2023-110641		
William Rogers - Texas A&M University,	Krishnakumar Rajendran - Michigan			
Mohammad Albakri - Texas A&M University	Technological University, Hrishikesh Gosavi	Amirhossein Omidi Soroor - Texas A&M		
Qatar, Pablo Tarazaga - Texas A&M	- Michigan Technological University, Sriram	University, Pablo Tarazaga - Texas A&M		
University	Malladi - Michigan Technological University	University		

MONDAY, SEPTEMBER 11 - 1:40PM-3:00PM				
1:40PM	2:00PM	2:20PM	2:40PM	
	1	1	1	

			Austin Room
02-03: Design and Application of Shape Mem	ory Alloy Rotary Actuators		
Chair: Dean Pick - Kinitics Automation Limited			
Co-Chair: Marcus Young - University of North Te	exas		
Simulation of Buckling Shape Memory Alloy	Development, Fabrication and Testing of a	Shape Memory Alloy Reconfigurable	Shape Memory Alloy Actuated Vortex
Tubes Under Torsional Loading	Self-Biasing Shape Memory Alloy Torque Tube	Technology-Vortex Generators: Targeted Alloy Design	Generators: Development and Flight Test
Technical Presentation Only:			Technical Presentation Only:
SMASIS2023-111153	Technical Presentation Only: SMASIS2023-111551	Technical Presentation Only: SMASIS2023-111028	SMASIS2023-111216
Kevin Lieb - Texas A&M University, Jared Lilly			Frederick Calkins - Boeing, Douglas
- Texas A&M University, Darren Hartl - Texas	Siu Kei Tang - Smarter Alloys, Ibraheem Khan	Othmane Benafan - NASA Glenn Research	Nicholson - Boeing, Othmane Benafan -
A&M University	- Smarter Alloys, Michael Kuntz - Smarter	Center, Glen S. Bigelow - NASA Glenn	NASA Glenn Research Center, Chris Yeeles
	Alloys	Research Center, Anita Garg - University	- Boeing, Zachary Jones - Boeing, Alexander
		of Toledo, Douglas E. Nicholson - Boeing	Lafranchi - Boeing
		Research & Technology, Tad Calkins - Boeing	
		Research & Technology	

MONDAY, SEPTEMBER 11 - 1:40PM-3:00PM				
1:40PM	2:00PM	2:20PM	2:40PM	
	·	·		

			Dewitt Roon
03-03: Compliant Structures and Mechanism	S		
Chair: Greta Vazzoler - University of Genoa			
Co-Chair: Jovana Jovanova - Technische Unive	ersität Delft		
Conceptual Design of a Compliant, Low-	A Comparison of Mechanics Simplifications	Parametric Studies of Flexible Sandwich	Adaptive Bandgap Formation in a Periodic
Cost Prosthetic Hand	in Pose Estimation for Thermally-Actuated	Panels as a Compliant Fairing for Folding	Tensegrity Structure
	Soft Robot Limbs	Wingtip Joints	
Technical Paper Publication:			Technical Presentation Only:
SMASIS2023-110461	Technical Paper Publication:	Technical Paper Publication:	SMASIS2023-111065
	SMASIS2023-110774	SMASIS2023-110481	
Mario Baggetta - University of Genova,	Juan Pacheco Garcia - Boston University,		Rawad Yazbeck - Texas A&M University,
Margherita Vazzoler - University of Genova,	Ran Jing - Boston University, Meredith	Nuhaadh Mohamed Mahid - University of	Muhao Chen - Texas A&M University, Sami
Gianluca Palli - University of Bologna,	Anderson - Boston University, Miguel	Bristol, Mark Schenk - University of Bristol,	Borgi - Texas A&M University at Qatar,
Claudio Melchiorri - University of Bologna,	lanus-Valdivia - Boston University, Andrew	Branislav Titurus - University of Bristol,	James Boyd - Texas A&M University, Dimitris
Giovanni Berselli - University of Genova	Sabelhaus - Boston University	Benjamin King Sutton Woods - University of Bristol	Lagoudas - Texas A&M University

MONDAY, SEPTEMBER 11 - 1:40PM-3:00PM				
1:40PM	2:00PM	2:20PM	2:40PM	

			Dovers Room
04-03: End Effector Development			
Chair: Brent Utter - <i>Lafayette College</i> Co-Chair: Farhan Gandhi - <i>Rensselaer Polytech</i>	nic Institute		
Active Gripper Development for Perching of Small Unmanned Aerial Systems	A Novel Design of Shape-Memory Alloy Actuated Grippers	3D Printed Flexible Gripper With Capacitance Sensing	
Invited Speaker Presentation: SMASIS2023-110931	Technical Paper Publication: SMASIS2023-110416	Technical Paper Publication: SMASIS2023-110732	
Francis Phillips - U.S. Army DEVCOM Army Research Laboratory	Benjamin John - Fraunhofer Institute for Machine Tools and Forming Technology, Thomas Schubert - KOSTAL Kontakt Systeme GmbH, Matthias Casper - KOSTAL Kontakt Systeme GmbH, Tino Karl - KOSTAL Kontakt Systeme GmbH, Kenny Pagel - Fraunhofer Institute for Machine Tools and Forming Technology, Welf-Guntram Drossel - Fraunhofer Institute for Machine Tools and Forming Technology	Hernan David Moreno - Purdue University, Julio Hernandez - Purdue University, Cole Maynard - Purdue University, Tyler Tallman - Purdue University, Brittany Newell - Purdue University, Jose Garcia - Purdue University	

1:40PM	2:00PM	2:20PM	2:40PM
	'	, 	
			Dovers Roon
04-03: End Effector Development			
Chair: Brent Utter - Lafayette College			
Co-Chair: Farhan Gandhi - Rensselaer Polytech	nic Institute		
Active Gripper Development for Perching of	A Novel Design of Shape-Memory Alloy	3D Printed Flexible Gripper With	
Small Unmanned Aerial Systems	Actuated Grippers	Capacitance Sensing	
Invited Speaker Presentation:	Technical Paper Publication:	Technical Paper Publication:	
SMASIS2023-110931	SMASIS2023-110416	SMASIS2023-110732	
Francis Phillips - U.S. Army DEVCOM Army	Benjamin John - Fraunhofer Institute for	Hernan David Moreno - Purdue University,	
Research Laboratory	Machine Tools and Forming Technology,	Julio Hernandez - Purdue University, Cole	
	Thomas Schubert - KOSTAL Kontakt Systeme	Maynard - Purdue University, Tyler Tallman -	
	GmbH, Matthias Casper - KOSTAL Kontakt	Purdue University, Brittany Newell - Purdue	
	Systeme GmbH, Tino Karl - KOSTAL Kontakt	University, Jose Garcia - Purdue University	
	Systeme GmbH, Kenny Pagel - Fraunhofer		
	Institute for Machine Tools and Forming		
	Technology, Welf-Guntram Drossel -		
	Fraunhofer Institute for Machine Tools and		

Forming Technology

MONDAY, SEPTEMBER 11 - 1:40PM-3:00PM				
1:40PM	2:00PM	2:20PM	2:40PM	

			Dezavala Room
05-02: Monitoring Civil Infrastructure			
Chair: Sumit Gupta - Oak Ridge National Labor Co-Chair: Shahrzad Towfighian - Binghamton U Co-Chair: Xuan Zhu - The University of Utah	5		
UAV-Based Remote Sensing for Municipal Solid Waste Landfill Cover Integrity Inspection and Monitoring	Classifying Soil Saturation Levels Using a Network of UAV-Deployed Smart Penetrometers		
Invited Speaker Presentation: SMASIS2023-111824	Technical Paper Publication: SMASIS2023-111009		
Peng Patrick Sun - University of Central Florida, Syed Zohaib Hassan - University of Central Florida	Puja Chowdhury - University of South Carolina, Joud N. Satme - University of South Carolina, Ryan Yount - University of South Carolina, Austin r.j. Downey - University of South Carolina, Sadik Khan - Jackson State University, Jasim Imran - University of South Carolina, Laura Micheli - University of South Carolina		

3:40PM	4:00PM	4:20PM	4:40PM
		·	
			Dovers Ro
4-04: Structural Design and Optimization			
Chair: Martin Radestock - German Aerospace	e Center - DLR		
	e Center - DLR		
Co-Chair: Roeland De Breuker - TU Delft	Center - DLR Development and Validation of a Multiscale	Mechanics of Infilled Morphing Skins:	Low-Energy Stiffness Modulation in Lattic
Co-Chair: Roeland De Breuker - TU Delft Structurally Functional RC Filters Using		Mechanics of Infilled Morphing Skins: Design Rules and Application to Twist-	Low-Energy Stiffness Modulation in Lattic Structures
Co-Chair: Roeland De Breuker - TU Delft Structurally Functional RC Filters Using Coupled Three-Dimensional Topology	Development and Validation of a Multiscale		
Chair: Martin Radestock - German Aerospace Co-Chair: Roeland De Breuker - TU Delft Structurally Functional RC Filters Using Coupled Three-Dimensional Topology Optimization Technical Presentation Only:	Development and Validation of a Multiscale Topology Optimization Framework Using	Design Rules and Application to Twist-	Low-Energy Stiffness Modulation in Lattice Structures Technical Presentation Only: SMASIS2023-110955

SMASIS2023-111014

Jessica Zamarripa - Texas A&M University, Brent Bielefeldt - National Research Council , Darren Hartl - Texas A&M University SMASIS2023-111067

Brent Bielefeldt - National Research Council,
Richard Beblo - U.S. Air Force Research
Laboratory, Eddie Meixner - University of
Dayton, Robert Lowe - University of DaytonPatrick Walgren - National Research Council,
Jared Neely - Air Force Research Laboratory,
Daniel Woods - Air Force Research
Laboratory

SMASIS2023-110742

Maria Sakovsky - Stanford University, Daniel Oluwalana - Stanford University

9:10AM	9:30AM	9:50AM	10:10AM
			Magnolia Roc
1-04: Fiber Composites			

An Analytical Model for the Transverse	The Effects of Electroplating on the	Investigation of Yarn Pullout as a	Development of Structural Batteries Based
Piezoresistive Response of Fiber-Reinforced	Mechanical Properties of Additively	Mechanism of Ballistic Performance	on Carbon Fiber Composites
Nano-Modified Polymers via an Electrical	Manufactured Structures	Enhancement in Silica Nanoparticle-	
Concentric Cylinders Assemblage Approach		Impregnated Kevlar Fabric	Technical Presentation Only:
	Technical Paper Publication:		SMASIS2023-117613
Technical Paper Publication:	SMASIS2023-110933	Technical Paper Publication:	
SMASIS2023-111044		SMASIS2023-111430	Paul Gilmore - Toyota Research Institute
	Kevin Simonson - Purdue University,		of North America, Umesh Gandhi - Toyota
Sultan Ghazzawi - Purdue University, Tyler	Kateryna Vyshniakova - Purdue University,	Nicholas Nowak - Oklahoma State University,	Research Institute of North America
Tallman - Purdue University	Robert Nawrocki - Purdue University, Adel El-	Muhammad Ali Bablu - Oklahoma State	
	Shahat - Purdue University, Brittany Newell	University, James Manimala - Oklahoma	
	- Purdue University	State University	

			Austin Roor
02-04: Design and Application of Shape Memo	ory Alloy Structures and Devices		
Chair: Tad Calkins - Boeing			
Co-Chair: Mike Kuntz - Smarter Alloys			
Finite Element Analyses and Experimental	Performance of Self-Folding Shape Memory	Effectiveness of Shape Memory Alloy Golf	
Studies of Knitted Shape Memory Alloy	Polymer Origami	Clubs in Enhancing Golfer Performance	
Actuation Behavior Under High Loads			
	Technical Presentation Only:	Technical Paper Publication:	
Technical Presentation Only: SMASIS2023-111522	SMASIS2023-111165	SMASIS2023-111248	
	Robin Weaver - Auburn University, Ryan Long	R. Mason Ward - Texas A&M University,	
Darren Hartl - Texas A&M University, Hannah	- Auburn University, Davide Guzzetti - Auburn	Daniel Kirby - Texas A&M University, John	
Stroud - Texas A&M University	University, Russell Mailen - Auburn University	Hardy - Texas A&M University, Darren Hartl -	
		Texas A&M University	

TUESDAY, SEPTEMBER 12 - 9:10AM-10:30AM					
9:10AM	9:30AM	9:50AM	10:10AM		
			Dewitt Room		
03-04: Foldable Structures					
Chair: Jeff Hill - Brigham Young University					
Co-Chair: Givoanni Berselli - University of Geno	a				
Selective 1 DOF Deformation and Rigidity of	Modeling of a Nonlinear-Elastic Compliant	Actuated Folding of Origami Structures			
Tendon Constrained Inflatables	Mechanism With Tension-Compression	Through Thin-Layered Tile-Based Air			
	Asymmetry	Surface Inflation Bladders			
Technical Presentation Only:					
SMASIS2023-117643	Technical Presentation Only:	Technical Presentation Only:			

 Ellen Kim - University of Michigan, Jonathan
 SMASIS2023-109911

 Luntz - University of Michigan, Diann Brei Brianne Hargrove - 7

 University of Michigan
 University, Mary Free

 State University
 State University

n Only: Technical Presentati SMASIS2023-117579

Brianne Hargrove - The Pennsylvania StateLi Tiantian - University of Michigan, JonathanUniversity, Mary Frecker - The PennsylvaniaLuntz - University of Michigan, Diann Brei -
University of MichiganState UniversityUniversity of Michigan

TUESDAY, SEPTEMBER 12 - 9:10AM-10:30AM					
9:10AM	9:30AM	9:50AM	10:10AM		
			Dovers Room		
04-05: Aerospace Applications					
Chair: Kenny Pagel - Fraunhofer Institute for Mac	hine Tools and Forming Technology				
Co-Chair: James Gibert - Purdue University					

Co-Chair: Johannes Riemenschneider - German Aerospace Center

Aeroelastic Investigation of Spanwise Morphing Wings From Multistable Honeycombs	A Theoretical and Experimental Analysis of the Aerodynamic Response of a Piezocomposite Ornithopter Wing	Wind Tunnel and Flight Demonstrations in AIRGREEN2
		Technical Paper Publication:
Technical Presentation Only:	Technical Paper Publication:	SMASIS2023-117647
SMASIS2023-119404	SMASIS2023-111168	
		Salvatore Ameduri - Italian Aerospace
D. Matthew Boston - Purdue University,	Mohammad Katibeh - Rutgers University,	Research Centre, Ignazio Dimino - Italian
Andres Arrieta - Purdue University	Onur Bilgen - Rutgers University	Aerospace Research Centre, Lorenzo
		Pellone - Italian Aerospace Research
		Centre, Antonio Concilio - Italian Aerospace
		Research Centre, Umberto Mercurio -
		Italian Aerospace Research Centre, Rosario
		Pecora - Università degli Studi di Napoli
		"Federico II", Vittorio Cavalieri - Politecnico
		di Milano, Francesco Toffol - Politecnico
		di Milano, Sergio Ricci - Politecnico di
		Milano, Alessandro De Gaspari - Politecnico
		di Milano, Eugenio Colella - TECNAM,
		Michelangelo Giuliani - TECNAM, Flavio
		Giannetti - Università degli Studi di Salerno,
		Giovanni Carossa - Leonardo Company,
		Maurizio Giannetti - Leonardo Company

9:10AM	9:30AM	9:50AM	10:10AM
			Robertson Ro
-04: Bioinspired Smart Composites			
aair: Matthew Bryant - North Carolina State Unive	rsity		
o-Chair: Vanessa Restrepo Perez - Texas A&M Un	-		

Sustained Self-Healing of Fiber-Reinforced	Design and Development of Self-Adaptive	Characterization of Shape Memory Alloys	
Polymer Composites via In Situ Thermal	Composite Materials With Temperature	for Smart Composites Under Different	
Remending	Induced Shape-Shifting Properties	Environmental Conditions Using an In-Situ	
		Thermal Chamber	
Invited Speaker Presentation:	Technical Presentation Only:		
SMASIS2023-117652	SMASIS2023-110495	Technical Presentation Only:	
		SMASIS2023-111179	
Jason Patrick - North Carolina State	Manuel Jose Carvajal Loaiza - Texas A&M		
University	University, Vanessa Restrepo Perez - Texas	Avik Ahuja - Texas A&M University, Vanessa	
	A&M University	Restrepo - Texas A&M University	

			Dezavala Room
07-02: Energy Harvesting, Sensing, Monitor	ing		
Chair: Wei-Che Tai - Michigan State University	/		
Co-Chair: Serife Tol - University of Michigan			
On Phase Coupling of a Vortex-Induced	Vortex Intensification of a Triboelectric	Vortex Intensification of a Triboelectric	Numerical Study of a Piezoelectric Vibration
Swing Sensor	Nanogenerator Array for Water Energy	Nanogenerator Array for Water Energy	Energy Harvester Without and With an
	Harvesting	Harvesting	Ortho-Planar Spring Using a Modified
Technical Paper Publication:			H-Shape Structure
SMASIS2023-111091	Technical Paper Publication:	Technical Paper Publication:	
	SMASIS2023-110971	SMASIS2023-110971	Technical Paper Publication:
Ying Gong - Shanghai University, Qianyi			SMASIS2023-109903
Peng - Shanghai University, Zhongjie Li -	Zhongjie Li - Shanghai University, Chenyu	Zhongjie Li - Shanghai University, Chenyu	
Shanghai University	Wang - Shanghai University, Ying Gong -	Wang - Shanghai University, Ying Gong -	Ibnu Taufan - University of Limerick, Jeff
	Shanghai University, Yuan Zhou - Shanghai	Shanghai University, Yuan Zhou - Shanghai	Punch - University of Limerick, Valeria Nico -
	University, Biao Wang - Shanghai University	University, Biao Wang - Shanghai University	University of Limerick

TUESDAY, SEPTEMBER 12 - 10:50AM-12:10PM 10:50AM 11:10AM 11:30AM 11:50AM **Magnolia Room** 01-05: Functional Printing Chair: Amir Ameli - University of Massachusetts Lowell Co-Chair: Tyler Tallman - Purdue University In Situ Foam 3-D Printing of Carbon Finite Strain Sensing via Additively Scanning on a Thin Slice: An Examination Effect of Filament Color on the Development Nanotube/Thermoplastic Polyurethane Manufactured CNF/TPU Strain Gauges of a Magnetostrictive Sputtered 3D Printed of Bistability In Switchable Bistable Squares Nanocomposites **Carbon Fiber Composite Technical Paper Publication:**

Technical Presentation Only: SMASIS2023-111208

Milad Azami - University of Massachusetts Lowell, Karun Kalia - University of Massachusetts Lowell, Amir Ameli -University of Massachusetts Lowell Julio Hernandez - Purdue University, Cole Maynard - Purdue University, Corey O'brien - Purdue University, David Rodriguez -Purdue University, Brittany Newell - Purdue

University, Tyler Tallman - Purdue University

SMASIS2023-110626

Technical Paper Publication: SMASIS2023-111036

Christopher Nelon - Clemson University, Brandon Williams - Clemson University, Oliver Myers - Clemson University, Asha Hall - U.S. Army Research Laboratory, Dereje Seifu - Morgan State University Technical Paper Publication: SMASIS2023-111035

Katie A. Martin - U.S. Army Corps of Engineers, Engineer Research and Development Center, Travis L. Thornell - U.S. Army Corps of Engineers, Engineer Research and Development Center, Hayden A. Hanna - U.S. Army Corps of Engineers, Engineer Research and Development Center, Charles A. Weiss, Jr. - U.S. Army Corps of Engineers, Engineer Research and Development Center, Zackery B. Mcclelland - U.S. Army Corps of Engineers, Engineer Research and Development Center

10:50AM	11:10AM	11:30AM	11:50AM
			Austin Roon
02-05: Mechanics and Behavior of Shape Me	mory Alloys		
Chair: Santo Padula - NASA Glenn Research C	enter		
Co-Chair: Douglas E. Nicholson - Boeing			
Architected Material Analogs for Shape	Effects of Oxidation and Plasticity on		
Memory Alloys	Transformation Temperatures in a High		
	Temperature Shape Memory Alloy (HTSMA)		
Invited Speaker Presentation:			
SMASIS2023-110907	Technical Presentation Only: SMASIS2023-111206		
Yunlan Zhang - The University of Texas			
at Austin, Mirian Velay-Lizancos - Purdue	Adrien Cassagne - Texas A&M University,		
University, David Restrepo - The University	Thomas Ralph - Texas A&M University, Jean		
of Texas at San Antonio, Nilesh Mankame	Briac Le Graverend - Texas A&M University		
- General Motors Global Research &			
Development, Pablo Zavattieri - Purdue			
University			

TUESDAY, SEPTEMBER 12 - 10:50AM-12:10PM			
10:50AM	11:10AM	11:30AM	11:50AM
			Dowitt Poom

03-05: Vibration Control and Noise Reduction	1		
Chair: Abdessattar Abdelkefi - New Mexico Sta Co-Chair: James Gibert - Purdue University	te University		
Development of Numerical Models Based on Experimental Tests for the Design of	On the Noise Reduction via a Weakly- Coupled Digitally Programmed Nonlinear	Programmable Bandgaps in Meta-Structures With Dynamic Vibration Resonators	
Active Vibration Controllers	Electroacoustic Absorber		
		Technical Paper Publication:	
Technical Paper Publication:	Technical Presentation Only:	SMASIS2023-112818	
SMASIS2023-111106	SMASIS2023-109669		
		Shantanu Chavan - Michigan Technological	
Tarcisio Marinelli Pereira Silva - Technology	Maxime Morell - Université de Lyon, Manuel	University, Vijaya V.N. Sriram Malladi -	
Innovation Institute, Prabakaran	Collet - Université de Lyon, Emmanuel	Michigan Technological University	
Balasubramanian - Technology Innovation	Gourdon - Université de Lyon, Alireza Ture		
institute, Giovanni Ferrari - McGill University,	Savadkoohi - Université de Lyon, Emanuele		
Celia Hameury - McGill University, Abdulaziz	De Bono - Université de Bourgogne Franche-		
Buabdulla - Technology Innovation Institute,	Comt´e		
Giulio Franchini - Technology Innovation			
Institute, Marco Amabili - McGill University			

10:50AM	11:10AM	11:30AM	11:50AM
			Dovers Roon
04-06: Morphing Aerospace Applications			
Chair: Farhan Gandhi - Rensselaer Polytechnic I	Institute		
Co-Chair: Brent Utter - Lafayette College			
DLR UAS Test Platform for Morphing Wings	High-Throughput Analysis and Morphing	SmartX: Intelligent Wings Enabling More	
	Design Space Decomposition for Mission-	Sustainable Aviation	
Technical Presentation Only:	Adaptive Air Vehicles		
SMASIS2023-110993		Invited Speaker Presentation:	
	Technical Presentation Only:	SMASIS2023-114990	
Martin Radestock - German Aerospace	SMASIS2023-111011		
Center, Jan Tikalsky - German Aerospace		Roeland De Breuker - Delft University of	
Center, Heiko Von Geyr - German Aerospace	Jared Lilly - Texas A&M University, Allen	Technology	
Center, Lennart Kracke - German Aerospace	Davis - Texas A&M University, Walker Buckle		
Center, Sebastian Cain - German Aerospace	- Texas A&M University, Trent White - Texas		
Center, Johann Dauer - German Aerospace	A&M University, Darren Hartl - Texas A&M		
Center	University, Gerardo Cervantes - NextGen		
center			

TUESDAY, SEPTEMBER 12 - 10:50AM-12:10P	м		
10:50AM	11:10AM	11:30AM	11:50AM
			Robertson Room
06-05: Continuum Robotics			
Chair: Mary Frecker - The Pennsylvania State U	niversity		
Co-Chair: Sameh Tawfick - University of Illinois			
Soft Tentacles for Underwater Robotics	A Cosserat Rod Model for a Hyperelastic	Comparative Review of Two Different	Reduced-Dimensional Modeling of
Powered by Twisted and Coiled Artificial	Continuum Robot Actuated by Twisted and	Design Approaches for SMA Based	Magneto-Active Elastomer Unimorph
Muscles (TCAMs)	Coiled Artificial Muscles	Continuum Robots	Actuators

Technical Presentation Only: SMASIS2023-110881

Sean Maxson - The University of Iowa, Parth Kotak - The University of Iowa, Thilina Weerakkody - The University of Iowa, Caterina Lamuta - The University of Iowa

Colled Artificial Muscles

Technical Presentation Only: SMASIS2023-111027

Maxwell Hammond - The University of Iowa, Niloufar Sadat Seyfi - The University of Iowa, Venanzio Cichella - The University of Iowa, Caterina Lamuta - The University of Iowa

Technical Paper Publication: SMASIS2023-111253

Rawan Barakat - ZeMA - Center for Mechatronics and Automation Technology, Yannik Goergen - ZeMA - Center for Mechatronics and Automation Technology, Rouven Britz - Saarland University, Michele Mandolino - Saarland University, Gianluca Rizzello - Saarland University, Paul Motzki -Saarland University

Technical Presentation Only: SMASIS2023-111030

Tan Pan - The Pennsylvania State University, Zoubeida Ounaies - The Pennsylvania State University, Carolyn Seepersad - The University of Texas at Austin, Mary Frecker -The Pennsylvania State University

UESDAY, SEPTEMBER 12 - 10:50AM-12:10PM	1		
10:50AM	11:10AM	11:30AM	11:50AM
			Dezavala Roon
05-03: SHM and NDT			
Chair: Tyler Tallman - Purdue University			
Co-Chair: Shahrzad Towfighian - Binghamton Ur	niversity		
Co-Chair: Rishikesh Srinivasaraghavan Govinda	arajan - Embry-Riddle Aeronautical University		
Smart Structural Materials With Embedded	A Non-Destructive Method for Underwater	Electromechanical Impedance Based Part	
Fiber Optic Sensors for Health Monitoring in Harsh Environments	Material Second-Order Elastic Constants Measurement	Identification via Linear Projection	
		Technical Paper Publication:	
Technical Paper Publication:	Technical Paper Publication:	SMASIS2023-111211	
SMASIS2023-117419	SMASIS2023-111055		
		Sourabh Sangle - Texas A&M University,	
Xinchang Zhang - Idaho National Laboratory	Shuai Ju - University of North Texas,	Pablo Tarazaga - Texas A&M University	
, ilong Hua - Idaho National Laboratory,	Masoud Naghdi - University of North Texas,		
Jorgen Rufner - Idaho National Laboratory	Muhammad Aslam - University of North		
	Texas, Sreejith Sreedharan - University of		
	North Texas, Mitali Hardik Desai - University of North Texas, Haifeng Zhang - University of		

TUESDAY, SEPTEMBER 12 - 1:40PM-3:00PM			
1:40PM	2:00PM	2:20PM	2:40PM

07-03: Nonlinear Energy Harvesting		
Chair: Wei-Che Tai - Michigan State University		
Co-Chair: Guobiao Hu - The Hong Kong Univer	rsity of Science and Technology	
Effect of Hysteresis on a Piezoelectric	An Investigation on the Impact and Linear	Energy Transfer in a Quarter-Car Model With
Inverted Beam Energy Harvester	Double Springs Based Mechanism in the	Inertially Nonlinear Inerter-Based Pendulum
	Vibration Energy Harvesting	Vibration Absorber
Technical Paper Publication:		
SMASIS2023-111072	Technical Presentation Only:	Technical Paper Publication:
	SMASIS2023-112083	SMASIS2023-110951
Masoud Zarepoor - Lake Superior State		
University, Onur Bilgen - Rutgers, The State	Chung Ket Thein - University of Nottingham	Joel Cosner - Michigan State University, Wei-
University of New Jersey	Ningbo China	Che Tai - Michigan State University

Chair: **Ji Su** - National Aeronautics and Space Administration Co-Chair: **Faith Gantz** - University of North Texas

Additive Manufacturing of Fe-Mn-Al-Ni Shape Memory Alloy: Microstructure and Phase Transformation Characteristics

Technical Paper Publication: SMASIS2023-109874

Anwar Algamal - The University of Toledo, Ismail Alhamdi - The University of Toledo, Majed Ali - The University of Toledo, Abdalmageed Almotari - The University of Toledo, Umesh Gandhi - Toyota Research Institute, Ala Qattawi - The University of Toledo Fabrication, Experimentation, and Characterization of a Shape Memory Alloy Driven Composite Morphing Radiator

Technical Presentation Only: SMASIS2023-111003

Priscilla Nizio - Texas A&M University, Darren Hartl - Texas A&M University Validation of Smanalytics: Comparison of Automatic and Human Analyzed Shape Memory Alloy Test Data

Technical Presentation Only: SMASIS2023-110692

Glen Bigelow - NASA Glenn Research Center, Hector Luna - NASA Glenn Research Center, Zachary Toom - HX5, LLC, Othmane Benafan - NASA Glenn Research Center Magnolia Room

Thermomechanical Processing of NiTiCu Shape Memory Alloy From Button to Wire

Technical Paper Publication: SMASIS2023-111572

Faith Gantz - University of North Texas, Nehal Al Jabri - University of North Texas, Dominique Worrell - University of North Texas, Marcus Young - University of North Texas, Art Palisoc - L'Garde, Inc.

1:40PM	2:00PM	2:20PM	2:40PM
		· · · · · · · · · · · · · · · · · · ·	
			Austin Ro
02-06: Applications of Advanced Materials in	n Aerospace Applications		
Chair: Oliver Myers - Clemson University			
Co-Chair: Cody Gonzales - The University of T	exas at San Antonio		
In-Flight Structural Test of a Hoverbike	Flight Performance Evaluation of a Mini	Environmental Tests of a Parabolic Self-	
Using Fiber Optic Sensors	Drone by Revisiting Structural Design via	Deployable Tapespring Boom for CubeSat	
	Additive Manufacturing Technology	Applications	
Technical Paper Publication:			
SMASIS2023-110974	Technical Presentation Only:	Technical Paper Publication:	
	SMASIS2023-110391	SMASIS2023-110423	
Yong-Ha Hwang - Korea Advanced			
nstitute of Science and Technology,	Hande Yavuz - Ostim Technical University,	Deven Mhadgut - Virginia Tech, Patrick	
Kwangwoo Jang - Korea Advanced	Safak Nesli - Ostim Technical University, Cem	Thomas - Virginia Tech, Minzhen Du -	
Institute of Science and Technology,	Mert Borucu - Ostim Technical University,	Virginia Tech, Austin Phoenix - Virginia Tech,	
Hyungjoo Ahn - Korea Advanced Institute	Mehmet Ali Mızrak - Arı Savunma Havacılık	Sheyda Davaria - Virginia Tech, Jonathan	
of Science and Technology, Hyochoong	Elektronik ve Elektromekanik Ltd Şti, Hikmet	Black - Virginia Tech	
Bang - Korea Advanced Institute of	Bal - Ostim Technical University		
Science and Technology, Jae-Hung Han			
- Korea Advanced Institute of Science and			

1:40PM	2:00PM	2:20PM	2:40PM
			Dewitt Roo
03-06: Design and Optimization of Intellig	ent Structures		
Chair: Darren Hartl - Texas A&M University			
Co-Chair: Jeff Hill - Brigham Young Universi	ty		
Design of Mechanically Intelligent	Design and Optimization of the Conformal	Determination of Material Parameters and	
Structures	Surface for an Adaptive Structure	FEM Simulation for the Development of a	
	-		
		Design System for Shape Memory Springs	

SMASIS2023-111355

Jovana Jovanova - Technische Universität Delft Alejandro Martinez - Texas A&M University, Darren Hartl - Texas A&M University, Dimitris Lagoudas - Texas A&M University

SMASIS2023-111187

Technical Paper Publication: SMASIS2023-111107

Alexander Hiekel - Fraunhofer Institute for Machine Tools and Forming Technology, Fabian Hoffmann - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Romina Krieg - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Ralf Theiß - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Kenny Pagel - Fraunhofer Institute for Machine Tools and Forming Technology, Christian **Pelshenke** - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Simon Horn - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Mehrdad Mehrbakhsh - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Welf-Guntram Drossel - Fraunhofer Institute for Machine Tools and Forming Technology, Peter Dültgen -Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V.

TUESDAY, SEPTEMBER 12 - 1:40PM-3:00PM				
1:40PM	2:00PM	2:20PM	2:40PM	
			Dovers Roor	
04-07: Novel Actuators				
Chair: Wonhee Kim - General Motors				
Co-Chair: Paul Motzki - Saarland University				
Soft Actuators From Flexible Auxetic	An Innovative Multi-Layer System for	Demonstrator for Linear Dielectric Elatomer	A Hybrid Piezoelectric-Hydraulic Actuator	
Metamaterials and Shape Memory Alloys	Thermally Activated Switching Actions	Actuator Systems Coupled to Compliant	Model and Prototype With Large Stroke and	
Springs		Joint Linkage Transmission Mechanisms	Force Parameters	
	Technical Paper Publication:			
Technical Paper Publication:	SMASIS2023-111166	Technical Paper Publication:	Technical Paper Publication:	
SMASIS2023-111012		SMASIS2023-111273	SMASIS2023-112125	
	Giulia Lanzara - University of Rome, RomaTre,			
Janghoon Woo - University of Minnesota	Ginevra Hausherr - University of Rome,	Daniel Bruch - Saarland University, Ilja	Yan Borden - University of Michigan, Daniel	
Twin Cities, Julianna Abel - University of	RomaTre	Naumov - ZeMA GmbH, Tobias Willian -	Inman - University of Michigan	
Minnesota Twin Cities		Saarland University, Paul Motzki - Saarland		
		University		

TUESDAY, SEPTEMBER 12 - 1:40PM-3:00PM			
1:40PM	2:00PM	2:20PM	2:40PM
			Robertson Room

06-06:	Bioinsp	ired Stru	uctures
--------	----------------	-----------	---------

Chair: Michael Philen - Virginia Tech

Co-Chair: Shahrzad (Sherry) Towfighian	- Binghamton University
--	-------------------------

Fabrication and Characterization of Flexible	Investigating the Effects of Eccentricity on	Spider-Web-Inspired Metamaterial Design	Hybrid Soft-Rigid Joint With Inherent
Matrix Composite Wafers	the Dynamics of Spider Webs	and Experimental Validation	Sensing and Actuation Capabilities Based on Rolled Dielectric Elastomers
Technical Paper Publication:	Technical Presentation Only:	Technical Presentation Only:	
SMASIS2023-111069	SMASIS2023-111209	SMASIS2023-111231	Technical Paper Publication:
			SMASIS2023-111235
Masaki Hada - Virginia Tech, Michael Philen	Thijs Masmeijer - University of Washington,	Krishna Chinnam - University of RomeTre,	
- Virginia Tech	Ed Habtour - University of Washington	Sawan Guruva - Sapienza University of	Andreas Meyer - ZeMA - Center for
		Rome, Yichang Shen - Sapienza University of	Mechatronics and Automation Technology,
		Rome, Giulia Lanzara - University of RomeTre,	Christian Johannes Schmidt - ZeMA -
		Walter Lacarbonara - Sapienza University of	Center for Mechatronics and Automation
		Rome	Technology, Paul Motzki - ZeMA - Center for
			Mechatronics and Automation Technology

TUESDAY, SEPTEMBER 12 - 3:30PM-4:50PM			
3:30PM	3:50PM	4:10PM	4:30PM
			Magnolia Roo
01-07: Multifunctional Composites			
Chair: Sumit Gupta - Oak Ridge National Labord	atory		
Co-Chair: Nathan Salowitz - University of Wisco			
Self Healing of Fibre-Reinforced	A Recyclable Self-Healing Composite With	Evaluation of Interface Strength and Failure	Numerical Prediction of the Effective
Delaminated Composites	Advanced Sensing Property	Between Nickel-Titanium Shape-Memory- Alloy Wire and Bismuth-Tin Matrix for the	Mechanical Behavior of Interpenetrating Phase Composites Comprising Architected
Technical Paper Publication:	Technical Presentation Only:	Design of Self-Healing Composites	Nitinol Cores
SMASIS2023-11115	SMASIS2023-111197	Taskaisel Danas Dahlisettasi	Tashai al Danan Dahi'a diana
Giulia Lanzara - University of Rome, RomaTre,	Sargun Singh Rohewal - Oak Ridge National	Technical Paper Publication: SMASIS2023-111016	Technical Paper Publication: SMASIS2023-111103
Alessandro Porrari - University of Rome,	Laboratory and The University of Tennessee,	SIMASIS2023-11010	30043132023-11103
RomaTre	Sumit Gupta - Oak Ridge National	Muhammad Istiaque Haider - University of	Shahzaib Ilyas - Khalifa University of Science
	Laboratory, Logan T Kearney - Oak Ridge	Wisconsin-Milwaukee, Benjamin Church -	and Technology, Rashid Abu Al-Rub - Khalif
	National Laboratory, Amit K Naskar - Oak	University of Wisconsin-Milwaukee, Nathan	University of Science and Technology,
	Ridge National Laboratory, Christopher C	Salowitz - University of Wisconsin-Milwaukee	Bashar Khasawneh - Khalifa University of
	Bowland - Oak Ridge National Laboratory		Science and Technology, Wael Zaki - Khalif
			University of Science and Technology
Experimental Study on Gradually

Technical Paper Publication:

Varying Thickness Patch for Elastic Wave

Manipulation Using Piezo Disk Actuators

Austin Room

TUESDAY, SEPTEMBER 12 - 3:30PM-4:50PM				
3:30PM	3:50PM	4:10PM	4:30PM	

02-07: Smart Material Actuators and Their Applications					
Chair: Chris Lynch - University of California, Riverside Co-Chair: Paris Von Lockette - The Pennsylvania State University					
Exploring 6-Ply Twisted and Coiled Polymer	Characterization of Shape Memory Polymer	An Experimental Investigation Into Design			
Actuators With Active Cooling and Position	Yarns With Few Filaments for Force	Parameters of 4D-Printed Actuators on			
Control	Generation	Time-Depend Behavior			
Technical Paper Publication:	Technical Presentation Only:	Technical Paper Publication:			
SMASIS2023-111182	SMASIS2023-109978	SMASIS2023-110975			

SMASIS2023-110972 Abhishek Singh - The University of Texas at Yicong Gao - Zhejiang University, Dongxin Hyun-Su Park - Korea Advanced Institute of Michaela Andrews - University of Minnesota Dallas, Yonas Tadesse - The University of Duan - Zhejiang University, Jianrong Tan -Science and Technology, Dae-Hyun Hwang Twin Cities, Julianna Abel - University of Texas at Dallas Minnesota Twin Cities, Susan Mantell -Zhejiang University, Siyuan Zeng - Tsinghua - Perigee Aerospace Inc., Jae-Hung Han University, Zhe Wei - Shenyang University of - Korea Advanced Institute of Science and University of Minnesota Twin Cities Technology Technology

			Dewitt Roon
03-07: Advanced Manufacturing and Charact	erization		
Chair: Greta Vazzoler - University of Genoa			
Co-Chair: Jovana Jovanova - Technische Unive	rsität Delft		
Interlocking Metasurfaces: A Joining	Fabrication of Parallel Compliant	Acoustic Meta-Structure Transmission Loss	Vibration Absorption in 3D Printers Using
Technology for Adaptive Structures	Mechanisms via Additive Manufacturing	Characterization via an Impedance Tube	Subordinate Oscillator Arrays for Mobile
		and the Transfer Matrix Approach	Manufacturing
Technical Presentation Only:	Technical Paper Publication:		
SMASIS2023-110621	SMASIS2023-111684	Technical Paper Publication:	Technical Presentation Only:
		SMASIS2023-112997	SMASIS2023-112816
Ophelia Bolmin - Sandia National	Divya Shah - Fondazione Istituto Italiano di		
Laboratories, Benjamin Young - Sandia	Tecnologia, Giovanni Berselli - University of	Matt Beals - Michigan Technological	Shantanu Chavan - Michigan Technological
National Laboratories, Philip Noell - Sandia	Genova, Alberto Parmiggiani - Fondazione	University, Shantanu Chavan - Michigan	University, Vijaya V.N. Sriram Malladi -
National Laboratories, Brad Boyce - Sandia	Istituto Italiano di Tecnologia	Technological University, Vijaya V.N. Sriram	Michigan Technological University
National Laboratories		Malladi - Michigan Technological University	

3:30PM	3:50PM	4:10PM	4:30PM
5.501 W	5.501 11	4.101 M	4.501 M
			Dovers Ro
04-08: SMA Applications			
Chair: Jayant Sirohi - The University of Texas (at Austin		
Co-Chair: Wonhee Kim - General Motors			
In Situ Actuation of Shape Memory Alloy	Active Implant System Based on SMA	Development of Adaptive Connectors	Econo-Finger: 3D Printed Soft Orthotic
Using Focused Ultrasound	Actuators for Improved Bone Facture	Based on Shape Memory Alloys	Finger With Embedded Strain Gauge and
	Healing		Actuated by Coiled Shape Memory Alloy
Technical Paper Publication:	Taskaisel Danes Dublications	Technical Paper Publication:	Muscles
SMASIS2023-110681	Technical Paper Publication: SMASIS2023-110858	SMASIS2023-110980	Technical Paper Publication:
Aldo Chipana - Brigham Young University,	SWIA5152025-110656	Andreas Hofer - Fraunhofer Institute for	SMASIS2023-111149
Jeff Hill - Brigham Young University,	Felix Welsch - Saarland University, Susanne-	Machine Tools and Forming Technology,	SMA0102023 11113
Christopher Dillon - Brigham Young	Marie Kirsch - Saarland University, Lukas	Kenny Pagel - Fraunhofer Institute for	Drew Miles - The University of Texas at
University	Ehl - Saarland University, Rouven Britz	Machine Tools and Forming Technology, Kai	Dallas, Yonas Tadesse - The University of
	- Saarland University, Tim Pohlemann	Thüsing - Fraunhofer Institute for Machine	Texas at Dallas
	- Saarland University, Bergita Ganse	Tools and Forming Technology, Sven	
	- Saarland University, Stefan Seelecke -	Langbein - Kunststoffverarbeitung Hoffmann	
	Saarland University, Paul Motzki - Saarland	GmbH, Dietrich Lembke - ECL Engineering	
	University	Consultants, Welf-Guntram Drossel -	
		Fraunhofer Institute for Machine Tools and	
		Forming Technology	

TUESDAY, SEPTEMBER 12 - 3:30PM-4:50PM				
3:30PM	3:50PM	4:10PM	4:30PM	

			Robertson Room
06-07: Materials and Structures for Bio-inspir	ed Robotics		
Chair: Caterina Lamuta - The University of lowe	1		
Co-Chair: Sameh Tawfick - University of Illinois			
Bioinspired Active Vortex Generators to	Water Entry Dynamics of Avian Inspired	Materials to Makers	
Delay Stall on an Airfoil at Low Reynolds	Divers		
Number		Invited Speaker Presentation:	
	Technical Paper Publication:	SMASIS2023-118556	
Technical Presentation Only:	SMASIS2023-109800		
SMASIS2023-110880		Ankur Mehta - University of California, Los	
	Bart Boom - University of Washington, Tadd	Angeles	
Rabiu Mamman - The University of Iowa,	Truscott - King Abdullah University of Science		
Parth Kotak - The University of Iowa, Krebill	and Technology, Frank Fish - West Chester		
Austin - The University of Iowa, James	University, Adam Summers - University		
Buchholz - The University of Iowa, Caterina	of Washington, Ed Habtour - University of		
Lamuta - The University of Iowa	Washington		

3:30PM	3:50PM	4:10PM	4:30PM
			Dezavala Roo
05-04: Wave-Based Sensing			
Chair: Zhenhua Tian - Virginia Tech			
_	niversity		
Co-Chair: Shahrzad Towfighian - <i>Binghamton U</i>	-		
Co-Chair: Shahrzad Towfighian - <i>Binghamton Ui</i> Co-Chair: Bowen Cai - <i>Mississippi State Universi</i>	-		
Co-Chair: Shahrzad Towfighian - Binghamton Ui Co-Chair: Bowen Cai - Mississippi State Universi Furface Acoustic Wave Sensors for	-		
Chair: Zhenhua Tian - Virginia Tech Co-Chair: Shahrzad Towfighian - Binghamton Ui Co-Chair: Bowen Cai - Mississippi State Universi Surface Acoustic Wave Sensors for Nondestructive Structural Monitoring of Nuclear Spent Fuel Canisters at Elevated	-		

Invited Speaker Presentation: SMASIS2023-111038

Haifeng Zhang - University of North Texas, V.S. Sreejith - University of North Texas, Mitali Desai - University of North Texas

WEDNESDAY, SEPTEMBER 13 - 8:00AM-9:00AM

8:00AM

 Phoenix Ballroom North

 Keynote: E-Tattoos and E-Skins Bridging Humans and Robots

 Chair: James Gibert - Purdue University

 Wearable E-Tattoos for Digitizing Human Body

 Invited Speaker Presentation: SMASIS2023-110922

 Nanshu Lu - The University of Texas at Austin

WEDNESDAY, SEPTEMBER 13 - 9:10AM-10:30AM					
9:10AM	9:10AM 9:30AM 9:50AM 10:10AM				

			Phoenix Ballroom North
01-08: Surface Engineering			
Chair: Tanya Hutter -The University of Texas at A Co-Chair: Ginevra Hausherr - University of Rom			
Antibacterial Properties of Snakeskin	Evaluation of Antibacterial Activities for	Microstructured Magneto-Responsive	
Inspired PDMS Surfaces Layered With Poly-	Poly-DL-Lactic Acid Nanosheet on the	Surfaces for Active Droplet Manipulation	
DL-Lactic Acid Nanosheet	Biomimetic Sharkskin		
		Technical Presentation Only:	
Technical Paper Publication:	Technical Paper Publication:	SMASIS2023-110845	
SMASIS2023-111176	SMASIS2023-109323		
·····		Gaia Kravanja - University of Ljubljana,	
Mohd Danial Ibrahim - Universiti Malaysia	Shunsuke Nakano - Tokai University, Alyssa	Raphael Kriegl - Ostbayerische Technische	
Sarawak, Alyssa Asong Ananthan - Universiti	Asong Ananthan - Universiti Malaysia	Hochschule Regensburg, Luka Hribar	
Malaysia Sarawak, Dayang Salyani Abang	Sarawak, Mohd Danial Ibrahim - Universiti	- University of Ljubljana, Irena Drevenšek- Olenik - Jožef Štefan Institute, Mikhail	
Mahmod - Universiti Malaysia Sarawak, Awang Ahmad Sallehin Awang Husaini	Malaysia Sarawak, Dayang Salyani Abang Mahmod - Universiti Malaysia Sarawak,	Shamonin - Ostbayerische Technische	
- Universiti Malaysia Sarawak, Ngieng	Awang Ahmad Sallehin Awang Husain	Hochschule Regensburg, Matija Jezeršek -	
Ngui Sing - Universiti Malaysia Sarawak,	- Universiti Malaysia Sarawak, Ngui Sing	University of Ljubljana	
Shunsuke Nakano - Tokai University, Yuta	Ngieng - Universiti Malaysia Sarawak	Oniversity of Ejubijana	
Sunami - Tokai University, Pierre Barroy -	Yuta Sunami - Tokai University		
Université de Picardie Jules Verne	Tuta oundim Tokar oniversity		

WEDNESDAY, SEPTEMBER 13 - 9:10AM-10:30AM				
9:10AM	9:30AM	9:50AM	10:10AM	
			Austin Roon	
02-08: Mechanics and Behavior of Magneto-	Active Composites and Structures			
Chair: Chris Lynch - University of California, Riv	verside			
Co-Chair: Paris Von Lockette - The Pennsylvar				
Magnetoactive Elastomers: Extraordinary	Spatial and Temporal Homogenization of	Toward a Phase Field Fracture Mechanics		
Properties and Physics of Iron in Rubber	Phase-Field Equations With an Application	Model for Ni ₂ MnGa Magnetic Shape		
	to Iron-Based Shape Memory Alloy	Memory Alloys		
Invited Speaker Presentation:	Modeling			
SMASIS2023-117721		Technical Presentation Only:		
	Technical Paper Publication:	SMASIS2023-116571		
Mikhail Shamonin - Ostbayerische	SMASIS2023-111143			
Technische Hochschule Regensburg		Constantin Ciocanel - Northern Arizona		
	Vincent Von Oertzen - Technische	University, Glen D'Silva - Northern Arizona		

University

Universität Bergakademie Freiberg,

Bergakademie Freiberg

Bjoern Kiefer - Technische Universität

9:10AM	9:30AM	9:50AM	10:10AM
			Dewitt Room
03-08: Structural Dynamics and Monitoring			
Chair: Stefan Seelecke - Saarland University			
Co-Chair: James Gibert - Purdue University			
Parametric-Feel Algorithm: Developing a	Dynamic Mode Decomposition Approach for	Pressure Measurement Using Surface	
Parametric Vector fitting Model for Event	Estimating the Shape of a Cable	Acoustic Wave Sensor on a Curved Shape	
_	Estimating the Shape of a Cable	Acoustic Wave Sensor on a Curved Shape of a Vessel	
_	Estimating the Shape of a Cable Technical Paper Publication:		
Localization in Calibrated Structures			
Parametric Vector fitting Model for Event Localization in Calibrated Structures Technical Paper Publication: SMASIS2023-113760	Technical Paper Publication:	of a Vessel	
Localization in Calibrated Structures Technical Paper Publication:	Technical Paper Publication:	of a Vessel Technical Presentation Only:	

University, Hrishikesh Gosavi - Michigan Technological University, Sriram Malladi -Michigan Technological University

Michigan Technological University, Jung Yun Bae - Michigan Technological University, Myoungkuk Park - Michigan Technological University, Manu Krishnan - Virginia Tech

Sreejith V.S. - University of North Texas, Muhammad Aslam - University of North

Texas

Texas, Mitali Hardik Desai - University of

North Texas, Shuai Ju - University of North Texas, Haifeng Zhang - University of North

80

WEDNESDAY, SEPTEMBER 13 - 9:10AM-10:30AM			
9:10AM	9:30AM	9:50AM	10:10AM
	·	, 	
			Dovers Roor
04-09: SMA Enabled Smart Structures			
Chair: Paul Motzki - Saarland University			
Co-Chair: Darren Hartl - Texas A&M University			
Adaptive Aerodynamic Structure Based	Simulation of Shape Memory Alloy-Actuated	Investigation of the Thermal Heat Exchange	Systematic Thermo-Mechanical Validation
on Antagonistic Shape Memory Alloy Wire	Adaptive Thermal Control Systems in Space	Between NiTi-Wire Bundles and Airflow for	of Numerous Tensile-Loaded NiTi Wire
Actuators	Environments	Different Wire Arrangements	Bundles Used for Elastocaloric Heating and Cooling
Technical Paper Publication:	Technical Presentation Only:	Technical Paper Publication:	
SMASIS2023-111227	SMASIS2023-111116	SMASIS2023-111395	Technical Paper Publication:
		Felix Welsch - ZeMA - Center for	SMASIS2023-110889
Philipp Göddel - Saarland University, Rouven	Collette Gillaspie - Texas A&M University,	Mechatronics and Automation Technology,	
Britz - Saarland University, Paul Motzki -	Darren Hartl - Texas A&M University	Susanne-Marie Kirsch - ZeMA - Center for	Susanne-Marie Kirsch - iMSL ZeMA, Felix
Saarland University		Mechatronics and Automation Technology,	Welsch - ZeMA, Lukas Ehl - iMSL ZeMA,
		Franziska Louia - Intelligent Material Systems	Franziska Louia - iMSL ZeMA, Stefan
		Lab, Stefan Seelecke - Intelligent Material	Seelecke - Saarland University, Paul Motzki
		Systems Lab, Paul Motzki - ZeMA - Center for	ZeMA, Saarland University
		Mechatronics and Automation Technology	

9:10AM	9:30AM	9:50AM	10:10AM
9:10AM	9:30AM	9:50AM	IO:TOAM
			Robertson Roo
06-08: Bioinspired Networks and Neurons			
Chair: Joseph Najem - The Pennsylvania State	University		
Co-Chair: Stephen A. Sarles - The University of	Tennessee		
Synaptic Plasticity in Electroosmosis-Driven	Brain-Inspired Biomolecular Networks for	Memory in Droplets: Retaining Voltage	Optimization of Biomolecular Neuristor
Geopolymer Memristors	Adaptive Sensing and Reservoir Computing	Signals in Biologically-Inspired Droplet	Action Potentials to Mimic Biological
		Networks	Response
Technical Presentation Only:	Technical Presentation Only:		
SMASIS2023-110619	SMASIS2023-110904	Technical Presentation Only:	Technical Paper Publication:
		SMASIS2023-111131	SMASIS2023-111189
Mahmudul Alam Shakib - University of	Joshua Maraj - The University of Tennessee,		
lowa, Zhaolin Gao - The University of lowa,	Stephen A. Sarles - The University of	Braydon Segars - University of Georgia, Eric	Jason P. Lord - The Pennsylvania State
Caterina Lamuta - The University of Iowa	Tennesee	Freeman - University of Georgia	University, Ahmed Mohamed - The
			Pennsylvania State University, Md Sakib
			Hasan - University of Mississippi, Joseph S
			Najem - The Pennsylvania State University

State University

WEDNESDAY, SEPTEMBER 13 - 9:10AM-10:3			
9:10AM	9:30AM	9:50AM	10:10AM
			Dezavala Roon
07-04: Electromagnetic Energy Harvesting			
Chair: Chung Ket Thein - University of Nottingh Co-Chair: Lihua Tang - University of Auckland	am Ningbo China		
Design Optimisation of a Planar	A Multi-Directional Low-Frequency	On the Resonance/Bandwidth-Coupling	On the Resonance/Bandwidth-Coupling
Electromagnetic Energy Harvester Suitable	Electromagnetic Energy Harvester	Relationship of Electromagnetic Vibration	Relationship of Electromagnetic Vibration
for Low Frequency Vibrations		Energy Harvester With a Non-Varying	Energy Harvester With a Non-Varying
	Technical Paper Publication:	Magnetic Flux Density	Magnetic Flux Density
Technical Paper Publication:	SMASIS2023-113439		
SMASIS2023-110988		Technical Paper Publication:	Technical Paper Publication:
	Nok Yin Christie Law - The University of	SMASIS2023-111515	SMASIS2023-111515
Nouman Ghafoor - University of Limerick,	Auckland, Lihua Tang - The University of		
Jeff Punch - University of Limerick, Valeria	Auckland	Tunde Isaiah Toluwaloju - University of	Tunde Isaiah Toluwaloju - University of
Nico - University of Limerick		Nottingham Ningbo China, Chung Ket Thein	Nottingham Ningbo China, Chung Ket Their
		- University of Nottingham Ningbo China,	- University of Nottingham Ningbo China,
		Dunant Halim - University of Nottingham	Dunant Halim - University of Nottingham
		Ningbo China	Ningbo China

WEDNESDAY, SEPTEMBER 13 - 10:50AM-12:10PM				
10:50AM 11:10AM 11:30AM 11:50AM				

			Phoenix Ballroom Nort
01-09: Magnetic Materials			
Chair: Mikhail Shamonin - Ostbayerische Techi Co-Chair: Joy Morin - Boise State University	nische Hochschule Regensburg		
Magnetostrictive Properties of Magnetoactive Elastomeric Cylinders	Nanosynthesis of Terfenol-D Enabled by High Energy Ball Milling	Characterization of Wetting Properties of Magnetoactive Elastomer Surfaces	Morphing Carbon Fiber Reinforced Composite Coated With Magnetic Alginate Spheres
Technical Presentation Only:	Technical Paper Publication:	Technical Paper Publication:	
SMASIS2023-110855	SMASIS2023-111048	SMASIS2023-110998	Technical Paper Publication: SMASIS2023-111175
Gašper Glavan - Ostbayerische Technische	Joy Morin - Boise State University, Zhangxian	Raphael Kriegl - Ostbayerische Technische	
Hochschule Regensburg, Inna Belyaeva	Deng - Boise State University	Hochschule Regensburg, Gaia Kravanja	Luis Alexandrino - University of Rome,
- Ostbayerische Technische Hochschule		- University of Ljubljana, Luka Hribar -	RomaTre, Alessandro Porrari - University
Regensburg, Mikhail Shamonin -		University of Ljubljana, Matija Jezeršek	of Rome, RomaTre, Stefania Fontanella -
Ostbayerische Technische Hochschule		- University of Ljubljana, Irena Drevenšek-	University of Rome, RomaTre, Giulia Lanzara
Regensburg		Olenik - University of Ljubljana and J. Stefan	- University of Rome, RomaTre
		Institute, Mikhail Shamonin - Ostbayerische	
		Technische Hochschule Regensburg	

WEDNESDAY, SEPTEMBER 13 - 10:50AM-12:10PM			
10:50AM 11:10AM 11:30AM 11:50AM			
			Austin Room

02-09: Mechanics of Composites, Films, and Graded Materials

Chair: **Oliver Myers** - Clemson University Co-Chair: **Cody Gonzales** - The University of Texas at San Antonio

Prediction of Load in a Bistable CFRP Laminate Undergoing Fatigue Loading Using Machine Learning	Non-Hookean Scale-Dependent Mechanical Properties in Rippled Films	Non-Hookean Scale-Dependent Mechanical Properties in Rippled Films
	Technical Presentation Only:	Technical Presentation Only:
Technical Presentation Only:	SMASIS2023-112865	SMASIS2023-112865
SMASIS2023-110752		
	Jian Zhou - Argonne National Laboratory,	Jian Zhou - Argonne National Laboratory,
Shoab Ahmed Chowdhury - Clemson	Nicolaie Moldovan - Argonne National	Nicolaie Moldovan - Argonne National
University, Christopher Nelon - Clemson	Laboratory, Liliana Stan - Argonne National	Laboratory, Liliana Stan - Argonne National
University, Suyi Li - Virginia Polytechnic	Laboratory, Jianguo Wen - Argonne National	Laboratory, Jianguo Wen - Argonne National
Institute and State University, Oliver Myers -	Laboratory, Dafei Jin - Argonne National	Laboratory, Dafei Jin - Argonne National
Clemson University	Laboratory, Daniel López - The Pennsylvania	Laboratory, Daniel López - The Pennsylvania
	State University, David Czaplewski - Argonne	State University, David Czaplewski - Argonne
	National Laboratory	National Laboratory

10:50AM	11:10AM	11:30AM	11:50AM
			Dewitt Roo
03-09: Machine Language for Dynamic Syster	ns		
Chair: Amin Joodaky - Michigan State University	/		
Co-Chair: Sriram Malladi - Michigan Tech Univer	rsity		
Design of Multifunctional Mechano-	Data-Driven Estimation of Bandgap	Buckling Strength Prediction of Thin Plates	Estimation of Stress State in an Axially
Luminescence-Optoelectronic Composite	Frequencies in Metastructures for Elastic	With Cutouts Using Machine Learning	Loaded Beam Using Modal Data
Using Machine Learning and Multiphysics	Wave Absorption		
Material Characterization	Taskaisel Danas Dublications	Technical Presentation Only:	Technical Paper Publication:
Technical Presentation Only:	Technical Paper Publication: SMASIS2023-112598	SMASIS2023-114737	SMASIS2023-113529
SMASIS2023-109635	SMA3132023-112396	Amin Joodaky - Michigan State University,	Hrishikesh Gosavi - Michigan Technological
3WA3132023-103033	Hrishikesh Gosavi - Michigan Technological	Khadijeh Shirzad - Michigan State University,	University, Vijaya V.N. Sriram Malladi -
Donghyeon Ryu - New Mexico Tech, Alfred	University, Vijaya V.N. Sriram Malladi -		Michigan Technological University
Mongare - New Mexico Tech, George Hoover	Michigan Technological University		
- New Mexico Tech, Andy Huang - Sandia			
, , , , , , , , , , , , , , , , , , , ,			

WEDNESDAY, SEPTEMBER 13 - 10:50AM-12:10PM 10:50AM 11:10AM 11:30AM 11:50AM **Dovers Room** 04-10: SMA Mechanisms Chair: Darren Hartl - Texas A&M University Co-Chair: Kenny Pagel - Fraunhofer Institute for Machine Tools and Forming Technology An Embedded System for Data-Based SMA Micro-Wire Bundle With High Cyclic Technology Demonstrator Platform for Fast-Fully Integrated Rotary Motor Based on Self-Sensing in Shape Memory Alloy Wire **Actuation Frequency** Switching Decoupled Antagonistic SMA Antagonistic Shape Memory Alloy Wire Actuators Actuators Bundles **Technical Paper Publication: Technical Paper Publication:** SMASIS2023-110997 **Technical Paper Publication: Technical Paper Publication:** SMASIS2023-111249 SMASIS2023-110385 SMASIS2023-111255 Susanne-Marie Kirsch - Saarland University, Krunal Jagdishbhai Koshiya - Center for Felix Welsch - ZeMA, Stefan Seelecke Tom Gorges - ZeMA - Center for Carmelo Pirritano - Saarland University, Tom Mechatronics and Automation Technology, Saarland University, Paul Motzki - Saarland Mechatronics and Automation Technolog\, Gorges - ZeMA - Center for Mechatronics Philipp Molitor - ZeMA - Center for ZeMA GmbH, Gianluca Rizzello - Saarland and Automation Technology, Rouven Britz University University, Paul Motzki - Center for Mechatronics and Automation Technology, - Saarland University, Dominik Scholtes Mechatronics and Automation Technology, Rouven Britz - ZeMA - Center for - ZeMA - Center for Mechatronics and ZeMA GmbH Mechatronics and Automation Technology, Automation Technology, Lukas Zimmer Yannik Goergen - ZeMA - Center for - ZeMA - Center for Mechatronics and Mechatronics and Automation Technology, Automation Technology, Jens Preetz -Paul Motzki - ZeMA - Center for Mechatronics mateligent GmbH, Yannik Goergen - ZeMA and Automation Technology - Center for Mechatronics and Automation Technology, Paul Motzki - Saarland University

WEDNESDAY, SEPTEMBER 13 - 10:50AM-12:10PM				
10:50AM	11:10AM	11:30AM	11:50AM	
			Robertson Roor	
06-09: Bioinspired Systems				
Chair: Vanessa Restrepo Perez - Texas A&M Ur	iversity			
Co-Chair: Stephen A. Sarles - The University of	Tennessee			
Understanding the Role of Diblock-	Bio-Ionic Transistors for the Study of			
Copolymer Molecular Structure on	Cellular Bioelectric Attributes			
Osmotically-Actuated, Compartmentalized				
Tissues	Technical Presentation Only:			
	SMASIS2023-118882			
Technical Presentation Only:				
SMASIS2023-110640	Reza Montazami - Iowa State University,			
	Nicole Hashemi - Iowa State University			
McKayla Torbett - The University of				
Tennessee, Isabella Macher - University of				
Tennessee, Andy Sarles - The University of				

Tennessee

WEDNESDAY, SEPTEMBER 13 - 10:50AM-12:10PM				
10:50AM 11:10AM 11:30AM 11:50AM				

05-05: Smart Sensors	
Chair: Daewon Kim - Embry-Riddle Aeronautica	al University
Co-Chair: Shahrzad Towfighian - Binghamton (Jniversity
Co-Chair: Steven Anton - Tennessee Tech Univ	versity
Count Materials and Davidson for Counting	Addition Manufacturing of Directory and
Smart Materials and Devices for Sensing and Degradation of Toxic Gases	Additive Manufacturing of Photocurable PVDF-Based Capacitive Sensor
and Degradation of Toxic Gases	PVDF-Dased Capacitive Sensor
Invited Speaker Presentation:	Technical Paper Publication:
SMASIS2023-117727	SMASIS2023-111151
Tanya Hutter - The University of Texas at	Rishikesh Srinivasaraghavan Govindarajan
Austin	- Embry-Riddle Aeronautical University, Zefu
	Ren - Embry-Riddle Aeronautical University,
	Foram Madiyar - Embry-Riddle Aeronautical
	University, Daewon Kim - Embry-Riddle
	Aeronautical University

1:40PM	2:00PM	2:20PM	2:40PM
			Austin Roo
2-10: Design, Modeling, and Behavior of F	unctional and Shape Memory Materials and Con	iposites	
Chair: Mikhail Shamonin - Ostbayerische Te	chnische Hochschule Regensburg		
	0 0		
Co-Chair: Paris von Lockette - The Pennsylv	0 0	The Influence of Substitutional Elements	
Chair: Mikhail Shamonin - Ostbayerische Ter Co-Chair: Paris von Lockette - The Pennsylv Design Approach to Particulate-Based Multifunctional Polymer Composite	ania State University	The Influence of Substitutional Elements in Hysteresis Reduction and Thermo-	
Co-Chair: Paris von Lockette - The Pennsylv	ania State University Multifractal Behavior and Material		

Technical Paper Publication: SMASIS2023-111183

Robin Collet - University of California, Riverside, **Christopher S. Lynch** - University of California, Riverside

SMASIS2023-111901

Mario Carvajal - Florida A&M-Florida State University, Basanta Pahari - Florida A&M-Florida State University, William Oates -Florida A&M--Florida State University Technical Presentation Only: SMASIS2023-112318

Andre Montagnoli - University of North Texas, Douglas Nicholson - The Boeing Company, F. Tad Calkins - The Boeing Company, Marcus Young - University of North Texas, Jan Frenzel - Ruhr University

WEDNESDAY, SEPTEMBER 13 - 1:40PM-3:00PM 2:00PM 2:20PM 2:40PM <t

			Dovers Room
04-11: Multifunctional Electrical Structures			
Chair: Jayant Sirohi - The University of Texas at	Austin		
Co-Chair: Johannes Riemenschneider - German	n Aerospace Center		
Co-Chair: James Gibert - Purdue University			
Annealed Pyrolytic Graphitic Carbon	Polymeric Ionic Electrolytes vs. Liquid Ionic	An Integrated Audio-Tactile Interface Based	
Electrodes for Piezoelectric Acoustic	Electrolytes in Thin-Film Supercapacitors	on Dielectric Elastomer Actuators for User	
Nanoweb	Integrated in Highly Complex Aerospace	Interaction	
	Structures		
Technical Paper Publication:		Technical Paper Publication:	
SMASIS2023-111178	Technical Paper Publication:	SMASIS2023-111228	
	SMASIS2023-111184		
Krishna Chytanya Chinnam - University of		Sebastian Gratz-Kelly - ZeMA - Center for	
Rome, RomaTre, Seyed Sepehr Moeini -	Sebastian Geier - German Aerospace Center,	Mechatronics and Automation Technology,	
University of Rome, RomaTre, Simonetta Tuti	Jan Petersen - German Aerospace Center,	Benedikt Holz - Saarland University, Tim	
- University of Rome, RomaTre, Giulia Lanzara	Christian Krasmann - German Aerospace	Krüger - ZeMA, Stefan Seelecke - Saarland	
- University of Rome, RomaTre	Center, Apurba Ray - German Aerospace	University, Gianluca Rizzello - Saarland	
	Center, Bilge Saruhan - German Aerospace	University, Paul Motzki - Saarland University,	
	Center	Giacomo Moretti - University of Trento	

WEDNESDAY, SEPTEMBER 13 - 1:40PM-3:00PM						
1:40PM	2:00PM	2:20PM	2:40PM			
			Dezavala Room			
06-10: Biomedical Applications						

Chair: **Steven Anton** - *Tennessee Tech University* Co-Chair: **Emily Duan** - *North Carolina State University*

Simulation and Parametric Analysis of Transducer Locations in a Realistic, Compartmental Force Sensing Total Knee	Metal-Organic Framework-Based Platform Technology for Bioinspired Smart Textiles	Efforts to Standardize Uniaxial Tensile Testing of Well-Preserved Human Tissue
Replacement	Technical Presentation Only:	Technical Paper Publication:
	SMASIS2023-119103	SMASIS2023-111396
Technical Paper Publication:		
SMASIS2023-111029	Reza Montazami - Iowa State University,	Miguel Angel Fuentes Garcia - Tennessee
	Nursultan Turdakyn - Iowa State University	Technological University, Abigail Wohlfert
Brandon Hines - Tennessee Tech University,		- Alma College, Jennifer Vranish - Alma
Steven Anton - Tennessee Technological		College, Steven Anton - Tennessee
University		Technological University

AUTHOR LAST	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Abate	Giada	110999	Morphing Turbofan Engine Inlet at Take-Off Cross- Wind Conditions	04-01: Mechanics of Smart Structure Applications	9/11/2023 9:10AM-10:30AM	Dovers Room
Ahuja	Avik	111179	Characterization of Shape Memory Alloys for Smart Composites Under Different Environmental Conditions Using an In-Situ Thermal Chamber	06-04: Bioinspired Smart Composites	9/12/2023 9:10AM-10:30AM	Robertson Room
Ameli	Amir	111208	In Situ Foam 3-D Printing of Carbon Nanotube/ Thermoplastic Polyurethane Nanocomposites	01-05: Functional Printing	9/12/2023 10:50AM-12:10PM	Magnolia Room
Andrews	Michaela	109978	Characterization of Shape Memory Polymer Yarns With Few Filaments for Force Generation	02-07: Smart Material Actuators and Their Applications	9/12/2023 3:30PM-4:50PM	Austin Room
Arrieta	Andres	119396	Multistable Soft Robotics for Force Modulation and Programmed Dynamics	04-02: Multistable Structures	9/11/2023 10:50AM-12:10PM	Dovers Room
Arrieta	Andres	119404	Aeroelastic Investigation of Spanwise Morphing Wings From Multistable Honeycombs	04-05: Aerospace Applications	9/12/2023 9:10AM-10:30AM	Dovers Room
Beals	Matt	112997	Acoustic Meta-Structure Transmission Loss Characterization via an Impedance Tube and the Transfer Matrix Approach	03-07: Advanced Manufacturing and Characterization	9/12/2023 3:30PM-4:50PM	Dewitt Room
Benafan	Othmane	110624	Shape Memory Materials Analysis and Research Tool (SM2ART) Database: Comparing Legacy Data to New Experimental and Computational Data	02-02: Shape Memory Alloy Actuator Material and Characterization Standards	9/11/2023 10:50AM-12:10PM	Austin Room
Benafan	Othmane	111028	Shape Memory Alloy Reconfigurable Technology- Vortex Generators: Targeted Alloy Design	02-03: Design and Application of Shape Memory Alloy Rotary Actuators	9/11/2023 1:40PM-3:00PM	Austin Room
Berselli	Giovanni	110461	Conceptual Design of a Compliant Low-Cost Prosthetic Hand	03-03: Compliant Structures and Mechanisms	9/11/2023 1:40PM-3:00PM	Dewitt Room
Berselli	Giovanni	111684	Fabrication of Parallel Compliant Mechanisms via Additive Manufacturing	03-07: Advanced Manufacturing and Characterization	9/12/2023 3:30PM-4:50PM	Dewitt Room
Bielefeldt	Brent	111067	Development and Validation of a Multiscale Topology Optimization Framework Using Material Property Feasibility Constraints	04-04: Structural Design and Optimization	9/11/2023 3:30PM-4:50PM	Dovers Room
Bigelow	Glen	110692	Validation of Smanalytics: Comparison of Automatic and Human Analyzed Shape Memory Alloy Test Data	01-06: Shape Memory Alloy	9/12/2023 1:40PM-3:00PM	Magnolia Room

AUTHOR LAST	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Boddapati	Karthik	110581	Aero-Structural Response of a Slitted Bistable Laminate	04-02: Multistable Structures	9/11/2023 10:50AM-12:10PM	Dovers Room
Bolmin	Ophelia	110621	Interlocking Metasurfaces: A Joining Technology for Adaptive Structures	03-07: Advanced Manufacturing and Characterization	9/12/2023 3:30PM-4:50PM	Dewitt Room
Boom	Bart	109800	Water Entry Dynamics of Avian Inspired Divers	06-07: Materials and Structures for Bio- inspired Robotics	9/12/2023 3:30PM-4:50PM	Robertson Room
Borden	Yan	112125	A Hybrid Piezoelectric-Hydraulic Actuator Model and Prototype With Large Stroke and Force Parameters	04-07: Novel Actuators	9/12/2023 1:40PM-3:00PM	Dovers Room
Bruch	Daniel	111273	Demonstrator for Linear Dielectric Elatomer Actuator Systems Coupled to Compliant Joint Linkage Transmission Mechanisms	04-07: Novel Actuators	9/12/2023 1:40PM-3:00PM	Dovers Room
Cai	Bowen	110811	Development of a Laser Vibrometer-Based Shear Wave Sensing System for Characterizing Mechanical Properties of Viscoelastic Materials	05-01: Biosensing	9/11/2023 9:10AM-10:30AM	Dezavala Room
Calkins	Frederick	111216	Shape Memory Alloy Actuated Vortex Generators: Development and Flight Test	02-03: Design and Application of Shape Memory Alloy Rotary Actuators	9/11/2023 1:40PM-3:00PM	Austin Room
Caltagirone	Peter	110390	Shape Memory NiTiHf Machined Helical Springs: Balancing Displacement and Force Output for Actuation	02-01: Shape Memory Alloy Actuators	9/11/2023 9:10AM-10:30AM	Austin Room
Carvajal	Mario	111183	Multifractal Behavior and Material Complexity in Functional Materials	02-10: Design Modeling and Behavior of Functional and Shape Memory Materials and Composites	9/13/2023 1:40PM-3:00PM	Austin Room
Carvajal Loaiza	Manuel Jose	110495	Design and Development of Self-Adaptive Composite Materials With Temperature Induced Shape-Shifting Properties	06-04: Bioinspired Smart Composites	9/12/2023 9:10AM-10:30AM	Robertson Room
Cassagne	Adrien	111206	Effects of Oxidation and Plasticity on Transformation Temperatures in a High Temperature Shape Memory Alloy (HTSMA)	02-05: Mechanics and Behavior of Shape Memory Alloys	9/12/2023 10:50AM-12:10PM	Austin Room
Chahari	Mahmood	111152	Improving Durability of Triboelectric Energy Harvester for Load Monitoring in Total Knee Replacement	07-02: Energy Harvesting Sensing Monitoring	9/12/2023 9:10AM-10:30AM	Dezavala Room

AUTHOR LAST NAME	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Chavan	Shantanu	112816	Vibration Absorption in 3D Printers Using Subordinate Oscillator Arrays for Mobile Manufacturing	01-10: Smart Structures	9/13/2023 1:40PM-3:00PM	Phoenix Ballroom North
Chavan	Shantanu	112818	Programmable Bandgaps in Meta-Structures With Dynamic Vibration Resonators	01-10: Smart Structures	9/13/2023 1:40PM-3:00PM	Phoenix Ballroom North
Chavan	Yash Manik	113911	Dynamic Mode Decomposition Approach for Estimating the Shape of a Cable	03-08: Structural Dynamics and Monitoring	9/13/2023 9:10AM–10:30AM	Dewitt Room
Chipana	Aldo	110681	In Situ Actuation of Shape Memory Alloy Using Focused Ultrasound	04-08: SMA Applications	9/12/2023 3:30PM-4:50PM	Dovers Room
Chowdhury	Shoab Ahmed	110752	Prediction of Load in a Bistable CFRP Laminate Undergoing Fatigue Loading Using Machine Learning	02-09: Mechanics of Composites Films and Graded Materials	9/13/2023 10:50AM–12:10PM	Austin Room
Chowdhury	Puja	111009	Classifying Soil Saturation Levels Using a Network of UAV-Deployed Smart Penetrometers	05-02: Monitoring Civil Infrastructure	9/11/2023 1:40PM-3:00PM	Dezavala Room
Chytanya Chinnam	Krishna	111178	Annealed Pyrolytic Graphitic Carbon Electrodes for Piezoelectric Acoustic Nanoweb	04-11: Multifunctional Electrical Structures	9/13/2023 1:40PM-3:00PM	Dovers Room
Ciocanel	Constantin	116571	Toward a Phase Field Fracture Mechanics Model for Ni2MnGa Magnetic Shape Memory Alloys	02-08: Mechanics and Behavior of Magneto-Active Composites and Structures	9/13/2023 9:10AM-10:30AM	Austin Room
Collet	Robin	111901	Design Approach to Particulate-Based Multifunctional Polymer Composite Materials	02-10: Design Modeling and Behavior of Functional and Shape Memory Materials and Composites	9/13/2023 1:40PM-3:00PM	Austin Room
Cosner	Joel	110951	Energy Transfer in a Quarter-Car Model With Inertially Nonlinear Inerter-Based Pendulum Vibration Absorber	07-03: Nonlinear Energy Harvesting	9/12/2023 1:40PM-3:00PM	Dezavala Room
De Breuker	Roeland	114990	SmartX: Intelligent Wings Enabling More Sustainable Aviation	04-06: Morphing Aerospace Applications	9/12/2023 10:50AM-12:10PM	Dovers Room
Duan	Emily	111022	Spatial Optimization for Fluidic Artificial Muscle (FAM) Bundle	06-01: Artificial Muscle Actuators	9/11/2023 9:10AM-10:30AM	Robertson Room
Febvre	Maryne	110216	Artificial Intelligence for Active Vibration Control Optimization on Smart Structures	04-01: Mechanics of Smart Structure Applications	9/11/2023 9:10AM-10:30AM	Dovers Room

AUTHOR LAST	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Fuentes Garcia	Miguel Angel	111396	Efforts to Standardize Uniaxial Tensile Testing of Well-Preserved Human Tissue	06-10: Biomedical Applications	9/13/2023 1:40PM-3:00PM	Dezavala Room
Gantz	Faith	111572	Thermomechanical Processing of NiTiCu Shape Memory Alloy From Button to Wire	01-06: Shape Memory Alloy	9/12/2023 1:40PM-3:00PM	Magnolia Room
Geib	Nathan	116469	Nonreciprocal Vibrations of Discretized Finite Elastic Structures With Spatiotemporally Modulated Material Properties	02-09: Mechanics of Composites Films and Graded Materials	9/13/2023 10:50AM-12:10PM	Austin Room
Geier	Sebastian	111184	Polymeric Ionic Electrolytes vs. Liquid Ionic Electrolytes in Thin-Film Supercapacitors Integrated in Highly Complex Aerospace Structures	04-11: Multifunctional Electrical Structures	9/13/2023 1:40PM-3:00PM	Dovers Room
Ghafoor	Nouman	110988	Design Optimisation of a Planar Electromagnetic Energy Harvester Suitable for Low Frequency Vibrations	07-04: Electromagnetic Energy Harvesting	9/13/2023 9:10AM-10:30AM	Dezavala Room
Ghazzawi	Sultan	111044	An Analytical Model for the Transverse Piezoresistive Response of Fiber-Reinforced Nano- Modified Polymers via an Electrical Concentric Cylinders Assemblage Approach	01-04: Fiber Composites	9/12/2023 9:10AM-10:30AM	Magnolia Room
Gillaspie	Collette	111116	Simulation of Shape Memory Alloy-Actuated Adaptive Thermal Control Systems in Space Environments	04-09: SMA Enabled Smart Structures	9/13/2023 9:10AM-10:30AM	Dovers Room
Gilmore	Paul	117613	Development of Structural Batteries Based on Carbon Fiber Composites	01-04: Fiber Composites	9/12/2023 9:10AM-10:30AM	Magnolia Room
Gong	Ying	111091	On Phase Coupling of a Vortex-Induced Swing Sensor	07-02: Energy Harvesting Sensing Monitoring	9/12/2023 9:10AM-10:30AM	Dezavala Room
Gosavi	Hrishikesh	112598	Data-Driven Estimation of Bandgap Frequencies in Metastructures for Elastic Wave Absorption	03-09: Machine Language for Dynamic Systems	9/13/2023 10:50AM-12:10PM	Dewitt Room
Gosavi	Hrishikesh	113529	Estimation of Stress State in an Axially Loaded Beam Using Modal Data	03-09: Machine Language for Dynamic Systems	9/13/2023 10:50AM-12:10PM	Dewitt Room
Gothard	Andrew	110685	Indoor Impact Event Localization via Velocity and Energy Ratio Mapping Function in Dispersive Media	04-01: Mechanics of Smart Structure Applications	9/11/2023 9:10AM-10:30AM	Dovers Room

AUTHOR LAST	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Gupta	Samikhshak	113760	Parametric-Feel Algorithm: Developing a Parametric Vector fitting Model for Event Localization in Calibrated Structures	03-08: Structural Dynamics and Monitoring	9/13/2023 9:10AM-10:30AM	Dewitt Room
Hada	Masaki	111069	Fabrication and Characterization of Flexible Matrix Composite Wafers	06-06: Bioinspired Structures	9/12/2023 1:40PM-3:00PM	Robertson Room
Hagos	Robel Weldebrhan	110973	Modal Analysis of 2D Periodic Structures Using Dynamic Condensation With Primal Assembly	03-02: Methods for Dynamics and Structural Analysis	9/11/2023 10:50AM-12:10PM	Dewitt Room
Hammond	Maxwell	111027	A Cosserat Rod Model for a Hyperelastic Continuum Robot Actuated by Twisted and Coiled Artificial Muscles	06-05: Continuum Robotics	9/12/2023 10:50AM–12:10PM	Robertson Room
Han	Youngshang	111059	Printing Functional Elastomers for Stretchable Thermoelectric Devices	01-01: Liquid Metals	9/11/2023 9:10AM-10:30AM	Magnolia Room
Han	Youngshang	113183	Electrically Conductive EGain-Elastomer Composites for Printing Stretchable Circuits	01-02: Functional Soft Materials	9/11/2023 10:50AM-12:10PM	Magnolia Room
Hargrove	Brianne	109911	Modeling of a Nonlinear-Elastic Compliant Mechanism With Tension-Compression Asymmetry	03-04: Foldable Structures	9/12/2023 9:10AM-10:30AM	Dewitt Room
Hausherr	Ginevra	111166	An Innovative Multi-Layer System for Thermally Activated Switching Actions	04-07: Novel Actuators	9/12/2023 1:40PM-3:00PM	Dovers Room
He	Shan	111137	Prediction of Hydrodynamic Loads on a Flexible Bio-Inspired Underwater Propulsor Using Physical Reservoir Computing	06-02: Marine and Underwater Robotics	9/11/2023 10:50AM-12:10PM	Robertson Room
Не	Ximin	118554	Bio-Like Soft Materials With Life-Like Intelligence	01-02: Functional Soft Materials	9/11/2023 10:50AM-12:10PM	Magnolia Room
Hess	Isabel	110945	Nebula: A Flexible Solid-State Swimming Robot Enabled by HASEL Actuators	06-02: Marine and Underwater Robotics	9/11/2023 10:50AM–12:10PM	Robertson Room
Hines	Brandon	111029	Simulation and Parametric Analysis of Transducer Locations in a Realistic Compartmental Force Sensing Total Knee Replacement	06-10: Biomedical Applications	9/13/2023 1:40PM-3:00PM	Dezavala Room
Hutter	Tanya	117727	Smart Materials and Devices for Sensing and Degradation of Toxic Gases	05-05: Smart Sensors	9/13/2023 10:50AM-12:10PM	Dezavala Room

AUTHOR LAST NAME	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Hwang	Yong-Ha	110974	In-Flight Structural Test of a Hoverbike Using Fiber Optic Sensors	02-06: Applications of Advanced Materials in Aerospace Applications	9/12/2023 1:40PM-3:00PM	Austin Room
lbrahim	Mohd Danial	111176	Antibacterial Properties of Snakeskin Inspired PDMS Surfaces Layered With Poly-DL-Lactic Acid Nanosheet	01-08: Surface Engineering	9/13/2023 9:10AM-10:30AM	Phoenix Ballroom North
Ilyas	Shahzaib	111103	Numerical Prediction of the Effective Mechanical Behavior of Interpenetrating Phase Composites Comprising Architected Nitinol Cores	01-07: Multifunctional Composites	9/12/2023 3:30PM-4:50PM	Magnolia Room
Jafari	Roozbeh	117534	Digital Medicine for Cardiovascular Health	05-01: Biosensing	9/11/2023 9:10AM-10:30AM	Dezavala Room
Jovanova	Jovana	111355	Design of Mechanically Intelligent Structures	03-06: Design and Optimization of Intelligent Structures	9/12/2023 1:40PM-3:00PM	Dewitt Room
Ju	Shuai	111055	A Non-Destructive Method for Underwater Material Second-Order Elastic Constants Measurement	05-03: SHM and NDT	9/12/2023 10:50AM-12:10PM	Dezavala Room
Ju	Shuai	111060	Resonant Suspended Beam Mechanism for Weight Measurement	03-02: Methods for Dynamics and Structural Analysis	9/11/2023 10:50AM-12:10PM	Dewitt Room
Katibeh	Mohammad	111168	A Theoretical and Experimental Analysis of the Aerodynamic Response of a Piezocomposite Ornithopter Wing	04-05: Aerospace Applications	9/12/2023 9:10AM-10:30AM	Dovers Room
Kim	Jinki	117601	Monitoring Volumetric Defects in 3D Bioprinting Using Video-Based Vibrometry	05-01: Biosensing	9/11/2023 9:10AM-10:30AM	Dezavala Room
Kim	Ellen	117643	Selective 1 DOF Deformation and Rigidity of Tendon Constrained Inflatables	03-04: Foldable Structures	9/12/2023 9:10AM-10:30AM	Dewitt Room
Kirsch	Susanne-Marie	110889	Systematic Thermo-Mechanical Validation of Numerous Tensile-Loaded NiTi Wire Bundles Used for Elastocaloric Heating and Cooling	04-09: SMA Enabled Smart Structures	9/13/2023 9:10AM-10:30AM	Dovers Room
Kirsch	Susanne-Marie	110997	SMA Micro-Wire Bundle With High Cyclic Actuation Frequency	04-10: SMA Mechanisms	9/13/2023 10:50AM-12:10PM	Dovers Room
Koshiya	Krunal Jagdishbhai	110385	An Embedded System for Data-Based Self-Sensing in Shape Memory Alloy Wire Actuators	04-10: SMA Mechanisms	9/13/2023 10:50AM-12:10PM	Dovers Room
Kravanja	Gaia	110845	Microstructured Magneto-Responsive Surfaces for Active Droplet Manipulation	01-08: Surface Engineering	9/13/2023 9:10AM-10:30AM	Phoenix Ballroom North

AUTHOR LAST	AUTHOR FIRST NAME	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Kriegl	Raphael	110998	Characterization of Wetting Properties of Magnetoactive Elastomer Surfaces	01-09: Magnetic Materials	9/13/2023 10:50AM-12:10PM	Phoenix Ballroom North
Kuntz	Michael	111548	High Temperature Micro-Scale Actuators From Melt-Spun Shape Memory Alloy: Microstructure and Functional Performance	02-01: Shape Memory Alloy Actuators	9/11/2023 9:10AM-10:30AM	Austin Room
Kuntz	Michael	111551	Development Fabrication and Testing of a Self-Biasing Shape Memory Alloy Torque Tube	02-03: Design and Application of Shape Memory Alloy Rotary Actuators	9/11/2023 1:40PM-3:00PM	Austin Room
Lacarbonara	Walter	111231	Spider-Web-Inspired Metamaterial Design and Experimental Validation	06-06: Bioinspired Structures	9/12/2023 1:40PM-3:00PM	Robertson Room
Li	Во	108891	Colloidal Microchannel Formation via Directed Self- Assembly on Substrate of Tunable Stiffness	01-03: Integrated Sensing	9/11/2023 1:40PM-3:00PM	Magnolia Room
Lieb	Kevin	111153	Simulation of Buckling Shape Memory Alloy Tubes Under Torsional Loading	02-03: Design and Application of Shape Memory Alloy Rotary Actuators	9/11/2023 1:40PM-3:00PM	Austin Room
Lilly	Jared	111011	High-Throughput Analysis and Morphing Design Space Decomposition for Mission-Adaptive Air Vehicles	04-06: Morphing Aerospace Applications	9/12/2023 10:50AM-12:10PM	Dovers Room
Lord	Jason P.	111189	Optimization of Biomolecular Neuristor Action Potentials to Mimic Biological Response	06-08: Bioinspired Networks and Neurons	9/13/2023 9:10AM-10:30AM	Robertson Room
Lu	Nanshu	110922	Wearable E-Tattoos for Digitizing Human Body	Keynote: E-Tattoos and E-Skins Bridging Humans and Robots	9/13/2023 8:00AM-9:00AM	Phoenix Ballroom North
Ma	Jiexian	110804	Lightweight Soft Conductive Composites Embedded With Liquid Metal Fiber Networks	01-01: Liquid Metals	9/11/2023 9:10AM-10:30AM	Magnolia Room
Mabe	Olivia	112290	Passive Priming of Fluidic Artificial Muscles in Variable Recruitment	06-01: Artificial Muscle Actuators	9/11/2023 9:10AM-10:30AM	Robertson Room
Mahid	Nuhaadh Mohamed	110481	Parametric Studies of Flexible Sandwich Panels as a Compliant Fairing for Folding Wingtip Joints	03-03: Compliant Structures and Mechanisms	9/11/2023 1:40PM-3:00PM	Dewitt Room
Mailen	Russell	111162	Characterization of Electrospun Conducting Polymer Electrodes Enabling Mobility for All	01-03: Integrated Sensing	9/11/2023 1:40PM-3:00PM	Magnolia Room
Mailen	Russell	111164	Thermally Reversible Origami Using Bilayer Liquid Crystal Elastomer Films	01-02: Functional Soft Materials	9/11/2023 10:50AM-12:10PM	Magnolia Room

AUTHOR LAST	AUTHOR FIRST NAME	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Mamman	Rabiu	110880	Bioinspired Active Vortex Generators to Delay Stall on an Airfoil at Low Reynolds Number	06-07: Materials and Structures for Bio- inspired Robotics	9/12/2023 3:30PM-4:50PM	Robertson Room
Maraj	Joshua	110904	Brain-Inspired Biomolecular Networks for Adaptive Sensing and Reservoir Computing	06-08: Bioinspired Networks and Neurons	9/13/2023 9:10AM-10:30AM	Robertson Room
Marinelli Pereira Silva	Tarcisio	111106	Development of Numerical Models Based on Experimental Tests for the Design of Active Vibration Controllers	03-05: Vibration Control and Noise Reduction	9/12/2023 10:50AM-12:10PM	Dewitt Room
Martin	Katie A.	111035	Effect of Filament Color on the Development of Bistability In Switchable Bistable Squares	01-05: Functional Printing	9/12/2023 10:50AM-12:10PM	Magnolia Room
Martinez	Alejandro	111187	Design and Optimization of the Conformal Surface for an Adaptive Structure	03-06: Design and Optimization of Intelligent Structures	9/12/2023 1:40PM-3:00PM	Dewitt Room
Masmeijer	Thijs	111209	Investigating the Effects of Eccentricity on the Dynamics of Spider Webs	06-06: Bioinspired Structures	9/12/2023 1:40PM-3:00PM	Robertson Room
Maxson	Sean	110881	Soft Tentacles for Underwater Robotics Powered by Twisted and Coiled Artificial Muscles (TCAMs)	06-05: Continuum Robotics	9/12/2023 10:50AM-12:10PM	Robertson Room
Mehta	Ankur	118556	Materials to Makers	06-07: Materials and Structures for Bio- inspired Robotics	9/12/2023 3:30PM-4:50PM	Robertson Room
Mercurio	Umberto	117647	Wind Tunnel and Flight Demonstrations in AIRGREEN2	04-05: Aerospace Applications	9/12/2023 9:10AM-10:30AM	Dovers Room
Meyer	Andreas	111235	Hybrid Soft-Rigid Joint With Inherent Sensing and Actuation Capabilities Based on Rolled Dielectric Elastomers	06-06: Bioinspired Structures	9/12/2023 1:40PM-3:00PM	Robertson Room
Mhadgut	Deven	110423	Environmental Tests of a Parabolic Self-Deployable Tapespring Boom for CubeSat Applications	02-06: Applications of Advanced Materials in Aerospace Applications	9/12/2023 1:40PM-3:00PM	Austin Room
Miles	Drew	111149	Econo-Finger: 3D Printed Soft Orthotic Finger With Embedded Strain Gauge and Actuated by Coiled Shape Memory Alloy Muscles	04-08: SMA Applications	9/12/2023 3:30PM-4:50PM	Dovers Room
Montagnoli	Andre	112318	The Influence of Substitutional Elements in Hysteresis Reduction and Thermo-Mechanical Stability of Shape Memory Alloys	02-10: Design Modeling and Behavior of Functional and Shape Memory Materials and Composites	9/13/2023 1:40PM-3:00PM	Austin Room

AUTHOR LAST	AUTHOR FIRST NAME	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Montazami	Reza	118882	Bio-Ionic Transistors for the Study of Cellular Bioelectric Attributes	06-09: Bioinspired Systems	9/13/2023 10:50AM-12:10PM	Robertson Room
Montazami	Reza	119103	Metal-Organic Framework-Based Platform Technology for Bioinspired Smart Textiles	06-10: Biomedical Applications	9/13/2023 1:40PM-3:00PM	Dezavala Room
Morell	Maxime	109669	On the Noise Reduction via a Weakly-Coupled Digitally Programmed Nonlinear Electroacoustic Absorber	03-05: Vibration Control and Noise Reduction	9/12/2023 10:50AM-12:10PM	Dewitt Room
Moreno	Hernan David	110732	3D Printed Flexible Gripper With Capacitance Sensing	04-03: End Effector Development	9/11/2023 1:40PM-3:00PM	Dovers Room
Morin	Joy	111048	Nanosynthesis of Terfenol-D Enabled by High Energy Ball Milling	01-09: Magnetic Materials	9/13/2023 10:50AM-12:10PM	Phoenix Ballroom North
Motzki	Paul	111227	Adaptive Aerodynamic Structure Based on Antagonistic Shape Memory Alloy Wire Actuators	04-09: SMA Enabled Smart Structures	9/13/2023 9:10AM-10:30AM	Dovers Room
Motzki	Paul	111253	Comparative Review of Two Different Design Approaches for SMA Based Continuum Robots	06-05: Continuum Robotics	9/12/2023 10:50AM-12:10PM	Robertson Room
Mukherjee	Aghna	111093	Enhancing the Design Space of Bistable Laminates by Tailoring the Attachment Boundary Conditions	04-02: Multistable Structures	9/11/2023 10:50AM-12:10PM	Dovers Room
Naghdi	Masoud	110730	Pressure Measurement Using Surface Acoustic Wave Sensor on a Curved Shape of a Vessel	03-08: Structural Dynamics and Monitoring	9/13/2023 9:10AM–10:30AM	Dewitt Room
Nakano	Shunsuke	109323	Evaluation of Antibacterial Activities for Poly-DL- Lactic Acid Nanosheet on the Biomimetic Sharkskin	01-08: Surface Engineering	9/13/2023 9:10AM-10:30AM	Phoenix Ballroom North
Nelon	Christopher	111036	Scanning on a Thin Slice: An Examination of a Magnetostrictive Sputtered 3D Printed Carbon Fiber Composite	01-05: Functional Printing	9/12/2023 10:50AM-12:10PM	Magnolia Room
Nicholson	Douglas	111147	Standard Test Methods for Shape Memory Alloys for Actuation	02-02: Shape Memory Alloy Actuator Material and Characterization Standards	9/11/2023 10:50AM-12:10PM	Austin Room
Nizio	Priscilla	111003	Fabrication Experimentation and Characterization of a Shape Memory Alloy Driven Composite Morphing Radiator	01-06: Shape Memory Alloy	9/12/2023 1:40PM-3:00PM	Magnolia Room

AUTHOR LAST	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Nowak	Nicholas	111430	Investigation of Yarn Pullout as a Mechanism of Ballistic Performance Enhancement in Silica Nanoparticle-Impregnated Kevlar Fabric	01-04: Fiber Composites	9/12/2023 9:10AM-10:30AM	Magnolia Room
Omidi Soroor	Amirhossein	110641	An Investigation on the Effectiveness of Cross- Sectional Tapering for Broadband Non-Reflective Traveling Waves Generation in Beams With Passive Discontinuities	06-03 Bioinspired Vibrations and Waves	9/11/2023 1:40PM-3:00PM	Robertson Room
Pacheco Garcia	Juan	110774	A Comparison of Mechanics Simplifications in Pose Estimation for Thermally-Actuated Soft Robot Limbs	03-03: Compliant Structures and Mechanisms	9/11/2023 1:40PM-3:00PM	Dewitt Room
Padalia	Hrishikesh	110739	A Unified Approach for Characterizing Mechanical and Actuation Fatigue in SMAs	02-02: Shape Memory Alloy Actuator Material and Characterization Standards	9/11/2023 10:50AM-12:10PM	Austin Room
Pagel	Kenny	110416	A Novel Design of Shape-Memory Alloy Actuated Grippers	04-03: End Effector Development	9/11/2023 1:40PM-3:00PM	Dovers Room
Pagel	Kenny	110991	High Load NiTi Shape Memory Alloy Actuators: A Study of Cyclic Behavior	02-01: Shape Memory Alloy Actuators	9/11/2023 9:10AM-10:30AM	Austin Room
Pagel	Kenny	111107	Determination of Material Parameters and FEM Simulation for the Development of a Design System for Shape Memory Springs	03-06: Design and Optimization of Intelligent Structures	9/12/2023 1:40PM-3:00PM	Dewitt Room
Pan	Tan	111030	Reduced-Dimensional Modeling of Magneto-Active Elastomer Unimorph Actuators	06-05: Continuum Robotics	9/12/2023 10:50AM-12:10PM	Robertson Room
Park	Hyun-Su	110972	Experimental Study on Gradually Varying Thickness Patch for Elastic Wave Manipulation Using Piezo Disk Actuators	02-07: Smart Material Actuators and Their Applications	9/12/2023 3:30PM-4:50PM	Austin Room
Patrick	Jason	117652	Sustained Self-Healing of Fiber-Reinforced Polymer Composites via in Situ Thermal Remending	06-04: Bioinspired Smart Composites	9/12/2023 9:10AM-10:30AM	Robertson Room
Phillips	Francis	110931	Active Gripper Development for Perching of Small Unmanned Aerial Systems	04-03: End Effector Development	9/11/2023 1:40PM-3:00PM	Dovers Room
Pick	Dean	111420	Standard Material Specifications for Shape Memory Alloys for Actuation	02-02: Shape Memory Alloy Actuator Material and Characterization Standards	9/11/2023 10:50AM-12:10PM	Austin Room

AUTHOR LAST NAME	AUTHOR FIRST NAME	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Pirouz	Mortaza	110634	Integrating Multivariate Signal Processing and Machine Learning for Optimal Control of Prosthetic Hands	03-01: Emerging Techniques in Control and Programming	9/11/2023 9:10AM-10:30AM	Dewitt Room
Pirritano	Carmelo	111249			9/13/2023 10:50AM–12:10PM	Dovers Room
Pirritano	Carmelo	111255	Fully Integrated Rotary Motor Based on Antagonistic Shape Memory Alloy Wire Bundles	04-10: SMA Mechanisms	9/13/2023 10:50AM-12:10PM	Dovers Room
Porrari	Alessandro	111115	Self Healing of Fibre-Reinforced Delaminated Composites	01-09: Magnetic Materials	9/12/2023 3:30PM-4:50PM	Magnolia Room
Porrari	Alessandro	111175	Morphing Carbon Fiber Reinforced Composite Coated With Magnetic Alginate Spheres	01-10: Smart Structures	9/13/2023 1:40PM-3:00PM	Phoenix Ballroom North
Qattawi	Ala	109874	Additive Manufacturing of Fe-Mn-Al-Ni Shape Memory Alloy: Microstructure and Phase Transformation Characteristics	01-06: Shape Memory Alloy	9/12/2023 1:40PM-3:00PM	Magnolia Room
Quan	Xinhao	111410	Inertial Programming Through Heterogeneity	03-01: Emerging Techniques in Control and Programming	9/11/2023 9:10AM-10:30AM	Dewitt Room
Radestock	Martin	110993	DLR UAS Test Platform for Morphing Wings	hing Wings 04-06: Morphing Aerospace Applications		Dovers Room
Rajendran	Krishnakumar	113286	Novel Pumping Mechanism for Heat Sinks With Fluid Medium Using Steady State Traveling Waves	06-03 Bioinspired Vibrations and Waves	9/11/2023 1:40PM-3:00PM	Robertson Room
Rogers	William	110914	Tuning Modal Response by Moment Coupled Subordinate Comb-Shaped Oscillator Array	01-10: Smart Structures	9/13/2023 1:40PM-3:00PM	Phoenix Ballroom North
Rogers	William	110915	Directed Particle Motion Driven by Superimposed Two-Dimensional Traveling Waves	06-03 Bioinspired Vibrations and Waves	9/11/2023 1:40PM-3:00PM	Robertson Room
Rohewal	Sargun Singh	111197	A Recyclable Self-Healing Composite With Advanced Sensing Property	01-07: Multifunctional Composites	9/12/2023 3:30PM-4:50PM	Magnolia Room
Rykaczewski	Konrad	112282	Adding Solid and Fluids to Liquid Metals: How to Make Multifunctional Liquid Metal Pastes Foams and Emulsions	01-01: Liquid Metals	9/11/2023 9:10AM-10:30AM	Magnolia Room

AUTHOR LAST NAME	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Ryu	Donghyeon	109635	Design of Multifunctional Mechano-Luminescence- Optoelectronic Composite Using Machine Learning and Multiphysics Material Characterization	03-09: Machine Language for Dynamic Systems	9/13/2023 10:50AM–12:10PM	Dewitt Room
Sakovsky	Maria	110955	Low-Energy Stiffness Modulation in Lattice Structures			Dovers Room
Salowitz	Nathan	111016	Evaluation of Interface Strength and Failure Between Nickel-Titanium Shape-Memory-Alloy Wire and Bismuth-Tin Matrix for the Design of Self- Healing Composites	01-07: Multifunctional Composites	9/12/2023 3:30PM-4:50PM	Magnolia Room
Salowitz	Nathan	111169	Effect of Area Density on Sensitivity and Strain Survival of Reduced Graphene Oxide Under Large Strains	01-03: Integrated Sensing	9/11/2023 1:40PM-3:00PM	Magnolia Room
Sangle	Sourabh	111211	Electromechanical Impedance Based Part Identification via Linear Projection	05-03: SHM and NDT	9/12/2023 10:50AM-12:10PM	Dezavala Room
Seelecke	Stefan	111228	An Integrated Audio-Tactile Interface Based on Dielectric Elastomer Actuators for User Interaction	04-11: Multifunctional Electrical Structures	9/13/2023 1:40PM-3:00PM	Dovers Room
Segars	Braydon	111131	Memory in Droplets: Retaining Voltage Signals in Biologically-Inspired Droplet Networks	06-08: Bioinspired Networks and Neurons	9/13/2023 9:10AM-10:30AM	Robertson Room
Shakib	Mahmudul Alam	110619	Synaptic Plasticity in Electroosmosis-Driven Geopolymer Memristors	06-08: Bioinspired Networks and Neurons	9/13/2023 9:10AM-10:30AM	Robertson Room
Shamonin	Mikhail	110855	Magnetostrictive Properties of Magnetoactive Elastomeric Cylinders	01-09: Magnetic Materials	9/13/2023 10:50AM–12:10PM	Phoenix Ballroom North
Shamonin	Mikhail	117721	Magnetoactive Elastomers: Extraordinary Properties and Physics of Iron in Rubber	02-08: Mechanics and Behavior of Magneto-Active Composites and Structures	9/13/2023 9:10AM-10:30AM	Austin Room
Shirzad	Khadijeh	114737	Buckling Strength Prediction of Thin Plates With Cutouts Using Machine Learning	03-09: Machine Language for Dynamic Systems	9/13/2023 10:50AM-12:10PM	Dewitt Room
Simonson	Kevin	110933	The Effects of Electroplating on the Mechanical Properties of Additively Manufactured Structures	01-04: Fiber Composites	9/12/2023 9:10AM-10:30AM	Magnolia Room
Singh	Abhishek	111182	Exploring 6-Ply Twisted and Coiled Polymer Actuators With Active Cooling and Position Control	02-07: Smart Material Actuators and Their Applications	9/12/2023 3:30PM-4:50PM	Austin Room

AUTHOR LAST	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE SESSION		DATE/TIME	ROOM
Singh Matharu	Pawandeep	111077	Jelly-Z 2.0: 3D Printed Soft Jellyfish Robot Actuated With Self-Coiled CNT-C-Ni-PVA Coated TCPFL	06-02: Marine and Underwater Robotics	9/11/2023 10:50AM-12:10PM	Robertson Room
Singh Matharu	Pawandeep	113809	Fabrication and Characterization of Mesoporous Carbon-Nickel Silver Powder-Poly (Vinyl Alcohol) Coated Mandrel-Coiled TCPFL Artificial Muscles for Enhanced Performance	ly (Vinyl Alcohol)		Robertson Room
Sirohi	Jayant	118600	Harvesting Energy From Aeroelastic Instabilities	07-01: Flow-Induced Vibration Energy Harvesting	9/11/2023 10:50AM-12:10PM	Dezavala Room
Srinivasaraghavan Govindarajan	Rishikesh	111151	Additive Manufacturing of Photocurable PVDF- Based Capacitive Sensor	05-05: Smart Sensors	9/13/2023 10:50AM-12:10PM	Dezavala Room
Stroud	Hannah	111522	Finite Element Analyses and Experimental Studies of Knitted Shape Memory Alloy Actuation Behavior Under High Loads	02-04: Design and Application of Shape Memory Alloy Structures and Devices	9/12/2023 9:10AM-10:30AM	Austin Room
Sun	Peng Patrick	111824	UAV-Based Remote Sensing for Municipal Solid Waste Landfill Cover Integrity Inspection and Monitoring	05-02: Monitoring Civil Infrastructure	9/11/2023 1:40PM-3:00PM	Dezavala Room
Tallman	Tyler	110626	Finite Strain Sensing via Additively Manufactured CNF/TPU Strain Gauges	01-05: Functional Printing	9/12/2023 10:50AM-12:10PM	Magnolia Room
Tallman	Tyler	111109	Embedded Sensing and Localization of Pressure in Silicone Skin Using Sensors Printed From CNF/TPU Filament	01-03: Integrated Sensing	9/11/2023 1:40PM-3:00PM	Magnolia Room
Tang	Lihua	111066	Nonlinear Dynamics of Two-Degree-of-Freedom Vortex-Induced Vibration Energy Harvester	07-01: Flow-Induced Vibration Energy Harvesting	9/11/2023 10:50AM-12:10PM	Dezavala Room
Tang	Lihua	113439	A Multi-Directional Low-Frequency Electromagnetic Energy Harvester	07-04: Electromagnetic Energy Harvesting	9/13/2023 9:10AM–10:30AM	Dezavala Room
Taufan	lbnu	109903	Numerical Study of a Piezoelectric Vibration Energy Harvester Without and With an Ortho-Planar Spring Using a Modified H-Shape Structure	07-02: Energy Harvesting Sensing Monitoring	9/12/2023 9:10AM-10:30AM	Dezavala Room
Thein	Chung Ket	112083	An Investigation on the Impact and Linear Double Springs Based Mechanism in the Vibration Energy Harvesting	07-03: Nonlinear Energy Harvesting	9/12/2023 1:40PM-3:00PM	Dezavala Room
Thüsing	Kai	110980	Development of Adaptive Connectors Based on Shape Memory Alloys	04-08: SMA Applications	9/12/2023 3:30PM-4:50PM	Dovers Room

AUTHOR LAST	AUTHOR FIRST NAME	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Tiantian	Li	117579			9/12/2023 9:10AM-10:30AM	Dewitt Room
Toluwaloju	Tunde Isaiah	111515			9/13/2023 9:10AM-10:30AM	Dezavala Room
Torbett	McKayla	110640	Understanding the Role of Diblock-Copolymer Molecular Structure on Osmotically-Actuated Compartmentalized Tissues	06-09: Bioinspired Systems	9/13/2023 10:50AM–12:10PM	Robertson Room
Tsai	Samuel	111078	High Performance Hierarchical Supercoiled and Hypercoiled Muscles With Embedded Heating Wire	06-01: Artificial Muscle Actuators	9/11/2023 9:10AM-10:30AM	Robertson Room
Var	Sezer	111702	Design of a Soft Underwater Gripper With SMA Actuation	06-02: Marine and Underwater Robotics	9/11/2023 10:50AM-12:10PM	Robertson Room
Von Oertzen	Vincent	111143	Spatial and Temporal Homogenization of Phase- Field Equations With an Application to Iron-Based Shape Memory Alloy Modeling	02-08: Mechanics and Behavior of Magneto-Active Composites and Structures	9/13/2023 9:10AM-10:30AM	Austin Room
Walgren	Patrick	110742	Mechanics of Infilled Morphing Skins: Design Rules and Application to Twist-Morphing Wings	04-04: Structural Design and Optimization	9/11/2023 3:30PM-4:50PM	Dovers Room
Wang	Biao	110971	Vortex Intensification of a Triboelectric Nanogenerator Array for Water Energy Harvesting	07-02: Energy Harvesting Sensing Monitoring	9/12/2023 9:10AM-10:30AM	Dezavala Room
Ward	R. Mason	111248	Effectiveness of Shape Memory Alloy Golf Clubs in Enhancing Golfer Performance	02-04: Design and Application of Shape Memory Alloy Structures and Devices	9/12/2023 9:10AM-10:30AM	Austin Room
Weaver	Robin	111165	Performance of Self-Folding Shape Memory Polymer Origami	02-04: Design and Application of Shape Memory Alloy Structures and Devices	9/12/2023 9:10AM-10:30AM	Austin Room
Welsch	Felix	110858	Active Implant System Based on SMA Actuators for 04-08: SMA Applications 9/12/2023 Improved Bone Facture Healing 3:30PM-4:50		9/12/2023 3:30PM-4:50PM	Dovers Room
Welsch	Felix	111395	Investigation of the Thermal Heat Exchange Between NiTi-Wire Bundles and Airflow for Different Wire Arrangements	04-09: SMA Enabled Smart Structures	9/13/2023 9:10AM–10:30AM	Dovers Room

AUTHOR LAST	AUTHOR FIRST	SUBMISSION CODE	SUBMISSION TITLE	SESSION	DATE/TIME	ROOM
Woo	Janghoon	111012			9/12/2023 1:40PM-3:00PM	Dovers Room
Wu	Нао	111090	The Performance Investigation of Triboelectric Nanogenerator Based on Flow Induced Vibration by Applying Bluff Bodies With Different Cross Sections	anogenerator Based on Flow Induced Vibration by Harvesting 10		Dezavala Room
Yavuz	Hande	110391	5		9/12/2023 1:40PM-3:00PM	Austin Room
Yazbeck	Rawad	111065	Adaptive Bandgap Formation in a Periodic Tensegrity Structure	03-03: Compliant Structures and Mechanisms	9/11/2023 1:40PM-3:00PM	Dewitt Room
Zamarripa	Jessica	111014	Structurally Functional RC Filters Using Coupled Three-Dimensional Topology Optimization	04-04: Structural Design and Optimization	9/11/2023 3:30PM-4:50PM	Dovers Room
Zarepoor	Masoud	111072	Effect of Hysteresis on a Piezoelectric Inverted Beam Energy Harvester	07-03: Nonlinear Energy Harvesting	9/12/2023 1:40PM-3:00PM	Dezavala Room
Zeng	Siyuan	110975	An Experimental Investigation Into Design Parameters of 4D-Printed Actuators on Time- Depend Behavior	02-07: Smart Material Actuators and Their Applications	9/12/2023 3:30PM-4:50PM	Austin Room
Zhang	Yunlan	110907	Architected Material Analogs for Shape Memory Alloys	02-05: Mechanics and Behavior of Shape Memory Alloys	9/12/2023 10:50AM-12:10PM	Austin Room
Zhang	Haifeng	111038	Surface Acoustic Wave Sensors for Nondestructive Structural Monitoring of Nuclear Spent Fuel Canisters at Elevated Temperature	05-04: Wave-Based Sensing	9/12/2023 3:30PM-4:50PM	Dezavala Room
Zhang	Xinchang	117419	Smart Structural Materials With Embedded Fiber Optic Sensors for Health Monitoring in Harsh Environments	05-03: SHM and NDT	9/12/2023 10:50AM-12:10PM	Dezavala Room
Zhao	Qianyu	111412	Heterogeneous Nonlinear Stiffness Programming	03-01: Emerging Techniques in Control and Programming	9/11/2023 9:10AM-10:30AM	Dewitt Room
Zhong	Rui	111590	Effect of Multiple Combination Modes of Reactive Components on the Response of Electromagnetic Vibration Energy Harvester	07-04: Electromagnetic Energy Harvesting	9/13/2023 9:10AM-10:30AM	Dezavala Room
Zhou	Jian	112865	Non-Hookean Scale-Dependent Mechanical Properties in Rippled Films	02-09: Mechanics of Composites Films and Graded Materials	9/13/2023 10:50AM–12:10PM	Austin Room

SMASIS 2023 Conference Leadership

Dr. James Gibert General Conference Chair *Purdue University*

Dr. Shahrzad Towfighian Technical Conference Chair *Binghamton University*

Dr. Johannes Riemenschneider Technical Program Co-Chair *German Aerospace Center*

2022-2023 SMASIS Division Executive Committee is:

Rich Beblo Chair *Air Force Research Lab (AFRL/RQVC)*

Björn Kiefer Vice-Chair *TU Bergakademie Freiberg*

Onur Bilgen Secretary Rutgers University

Janet Sater Treasurer Institute for Defense Analyses

John Domann TC Active and Multifunctional Materials *Virginia Tech*

Sriram Malladi TC Adaptive Systems Dynamics and Controls *Michigan Tech*

Srinivas Vasista TC Active Materials Technology and Integrated Systems Vaeridion & DLR

Tyler Tallman TC Structural Health Monitoring Purdue University

Joseph Najem TC Bioinspired Smart Materials and Systems *Penn State* Shima Shahab TC Energy Harvesting Virginia Tech

Diann Brei Steering Committee Representative University of Michigan

2023–2024 ASME Officers

Dr. Thomas Kurfess President

Thomas Costabile, P.E. Executive Director/CEO

ASME Staff

Mary D. Jakubowski, CMP Manager, Events Management

Josalind Mercado Meetings Coordinator, Events Management

Laraine Lee Specialist, Conference E-Tools

Barbara Zlatnik Sr. Manager, Tech & Engineering Communities Houston Office

Mary Grace Stefanchik Director, Publishing Development

Mary Rose MacDonald Publishing Coordinator, Conf. Publications

108

Symposia Chairs

NUMBER	SYMPOSIUM NAME	ROLE	NAME	AFFILIATION
1	Development and Characterization of Multifunctional Materials	Chair Co-Chair Co-Chair	Mohammad Malakooti Amir Ameli Ji Su	University of Washington UMass Lowell NASA
2	Mechanics & Behavior Active Materials	Chair Co-Chair Co-Chair	Paris Von Lockette Douglas Nicholson John Gallagher	Penn State University Boeing Merrimack College
3	Modeling, Simulation and Control of Adaptive Systems – Chairs need to be confirmed	Chair Co-Chair Co-Chair	Giovanni Berselli Abdessattar Abdelkefi Jeff Hill	University of Genoa New Mexico State University Brigham Young University
4	Integrated System Design and Implementation	Chair Co-Chair Co-Chair	Brent Utter Patrick Musgrave Farhan Gandhi	Lafayette College University of Florida Rensselaer Polytechnic Institute
5	Structural Health Monitoring	Chair Co-Chair Co-Chair	Daewon Kim Zhenhua Tian Sumit Gupta	Embry Riddle Aeronautical University Virginia Tech Oak Ridge National Laboratory
6	Bioinspired Smart Materials and Systems	Chair Co-Chair Co-Chair	Matthew Bryant Vanessa Restrepo Perez Caterina Lamuta	North Carolina State University Texas A&M University University of Iowa
7	Energy Harvesting	Chair Co-Chair Co-Chair	Serife Tol Wei-Che Tai Lihua Tang	University of Michigan Michigan State University University of Auckland
	Hardware Competitions	Chair Co-Chair	Paul Motzki Maria Sakovsky	Saarland University Stanford University
	Student Best Paper Competition	Chair	Vanessa Restrepo Perez	Texas A&M University
	Student Outreach	Chair Co-Chair	Patrick Walgren Hongcheng Tao	AFRL Purdue University
	2022–2023 SMASIS Division Executive Committee Leadership	Chair Vice-Chair & Awards Secretary & Webmaster Treasure Vice-treasurer	Rich Beblo Björn Kiefer Onur Bilgen Janet Sater Cornel Ciocanel	Air Force Research Lab (AFRL/RQVC) TU Bergakademie Freiberg Rutgers University Institute for Defense Analyses Northern Arizona University

Symposia Chairs

Symposium 1: Development and Characterization of Multifunctional Materials

Amir Ameli Co-Chair

Ji Su Co-Chair

Symposium 2: Mechanics & Behavior Active Materials

Paris Von Lockette Chair

Douglas Nicholson Co-Chair

John Gallagher Co-Chair

Symposium 3: Modeling, Simulation and Control of Adaptive Systems

Giovanni Berselli

Chair

Co-Chair

Jeff Hill Co-Chair

Symposium 4: Structural Health Monitoring

Brent Utter Chair

Patrick Musgrave Co-Chair

Farhan Gandhi Co-Chair

Symposium 5: Integrated System Design and Implementation

Daewon Kim

Chair

Zhenhua Tian Co-Chair

Sumit Gupta Co-Chair

Symposium 6: Bioinspired Smart Materials and Systems

Matthew Bryant Chair

Vanessa Restrepo Perez Co-Chair

Caterina Lamuta Co-Chair

Symposium 7: Energy Harvesting

Serife Tol Chair

Wei-Che Tai Co-Chair

Lihua Tang Co-Chair

Hardware Competition

Paul Motzki Chair

Maria Sakovsky Co-Chair

Student Best Paper Competition

Vanessa Restrepo Perez Chair

Student Outreach

Patrick Walgren Chair

Hongcheng Tao Co-Chair

THANK YOU FOR YOUR PARTICIPATION!

SEE YOU IN ATLANTA, GA IN 2024!

The American Society of Mechanical Engineers • ASME [®]