

ASME SMASIS 2022

The ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems

CONFERENCE Sept 12 – 14, 2022

Location: The Dearborn Inn Dearborn, MI

https://event.asme.org/SMASIS

The American Society of Mechanical Engineers • ASME[®]

Dear SMASIS Community:

On behalf of the organizing committee, we welcome you to the 2022 ASME Conference on Smart Materials Adaptive Structures and Intelligent Systems. This year marks the 15th consecutive SMASIS conference, and we are glad that you are a part of it.

After two years of virtual conferences, we are enthusiastic for this in-person gathering for SMASIS 2022 to see each other and to share exciting scientific achievements. We would like to thank you for your support during the previous remote conferences and especially during this year. SMASIS is a cohesive community, and we did receive a lot of support organizing this year's event. We are grateful for the dependable familial ethos that our founders and former organizers successfully distilled into this yearly event. We are indeed a family that hosts a technical conference, and we hope that SMASIS 2022 will help you interact with, learn from, and mentor those around you.

We are enthusiastic for the reunion that SMASIS provides, the opportunities to collaborate, and the chances to see, firsthand, the technical and professional development of our students. Highlights of this year's three-day meeting include keynote presentations from Dr. Charles Farrar (Los Alamos National Laboratory), Dr. Paul Krajewski (General Motors), and Prof. James Hubbard (Texas A&M)—the 2022 Adaptive Structures and Material Systems Award Winner! We will host parallel virtual sessions organized by the following technical tracks.

- Symposium 1: Development & Characterization of Multifunctional Materials
- Symposium 2: Mechanics and Behavior of Active Materials
- Symposium 3: Modeling, Simulation and Control of Adaptive Systems
- Symposium 4: Integrated System Design and Implementation
- Symposium 5: Structural Health Monitoring
- Symposium 6: Bioinspired Smart Materials and Systems
- Symposium 7: Energy Harvesting
- Symposium 8: Emerging Technologies

The Pioneer banquet will be held on the Detroit Princess Riverboat, which offers a breathtaking panorama of the Detroit River and skyline. There are numerous opportunities to expand your own personal community and broaden your horizons, including Technical Committee Meetings, Journal Meetings, and the ASME SMASIS division meeting.

SMASIS is dedicated to developing future leaders in science, technology, and engineering. This is an emphasis of our Student and Young Professional Development group. Highlights of their symposium are the two student competitions on Monday with the Best Paper Competition and Hardware Competition. In additional, several student events are planned to provide networking. We are proud that our students and young professionals are always seeking ways to give back to the community. Please take advantage of these opportunities to see our rising stars and to meet your future colleagues and our future leaders! We did receive full support from our SMASIS community for organizing this conference. Returning to the in-person conference had many challenges and if it were not for this support, we would have not been able to make it. We especially would like to thank Prof. Diann Brei from the University of Michigan and Dr. Nancy Johnson from General Motors for their tremendous help and involvement. We are grateful to ASME staff, the ASME SMASIS Division, the ASME SMASIS Symposia Chairs and Co-Chairs, and the Technical Committees and organizing committees for their arduous work and guidance. Our thanks go to Symposia Chairs and Co-Chairs for assembling such outstanding technical programs. We also recognize all the authors, keynote and invited speakers, and panel participants who are the major contributors to the success of SMASIS. Finally, we have received generous support from our sponsors: General Motors, Polytec, Inc., Fort Wayne Metals, the University of Michigan and NextGen Aeronautics, Inc., all of which are greatly appreciated.

We want to thank each of you for participating in this event and reunion after two years and look forward to hopefully seeing you every year!

Amin Karami

General Conference Chair University at Buffalo

James Gibert Technical Conference Chair Purdue University

Shahrzad Towfighian Technical Program Co-Chair Binghamton University

WELCOME LETTER	2
GENERAL INFORMATION	
HOTEL REGISTRATION HOURS CONFERENCE PROCEEDINGS	5 5 6
SPECIAL SESSIONS	6
PIONEER AWARDS BANQUET	7
CONFERENCE EVENTS	7
STUDENT EVENTS	
BEST STUDENT PAPER COMPETITION BEST STUDENT HARDWARE COMPETITION	9 9
COMMITTEE MEETING SCHEDULE	10
KEYNOTE PRESENTATIONS	11
SYMPOSIA INVITED SPEAKERS	13
AWARDS	19
EXHIBITOR & SPONSORS	.29
SPONSOR ADVERTISEMENTS	31
TECHNICAL SESSIONS	.35
AUTHOR INDEX	.76
SESSION CHAIRS	.86
LEADERSHIP SYMPOSIA CHAIRS AND CO-CHAIRS	.90
2022 CONFERENCE LEADERSHIP	
SYMPOSIA CHAIRS AND CO-CHAIRS 2022–2023 AEROSPACE DIVISION EXECUTIVE COMMITTEE ASME STAFF 2022–2023 ASME OFFICERS	.91 .93 .94 .94
HOTEL FLOOR PLAN	.95
CALL FOR ABSTRACTS.	96

General Information

REGISTRATION INFORMATION

Registration will be located each day in the Banquet Foyer located on the first floor.

The hours are as follows:

Sunday, September 11 3:00PM–6:00PM

Monday, September 12 7:00AM-6:00PM

Tuesday, September 13 7:00AM–5:30PM

Wednesday, September 14 7:00AM–11:00AM

ACKNOWLEDGMENT

The ASME Conference on Smart Materials, Adaptive Structures, and Intelligent Systems is sponsored by the Aerospace Division of the American Society of Mechanical Engineers.

HOTEL

Built in 1931 on the former grounds of the Ford Motor Company, The Dearborn Inn, A Marriott Hotel, is a historic destination amid celebrated attractions. Surrounded by 23 lush, landscaped acres, our stately hotel inspires effortless relaxation with elegant rooms and suites, two colonial lodges and five homes, each appointed with modern essentials, plush furnishings, and thoughtful amenities. Ignite your senses with delectable fare, fine wines, and creative cocktails at our two restaurants, Edison's, and Ten Eyck Tavern. Explore some of the most popular attractions in Michigan, including the Henry Ford Museum, Greenfield Village, and Automotive Hall of Fame. Meetings are held in inspiring event spaces, enhanced by stunning chandeliers and classic refinements. Cap your day with a swim in our sparkling pool and work out in our modern fitness center. Escape to sophistication at our hotel near Detroit, MI, and experience refined comfort in the Detroit area.

NAME BADGES

Please always wear your name badge for all functions. Admission to all conference functions will be by name badge. Your badge also provides a helpful introduction to other attendees.

TICKETED FUNCTIONS

Entrance to all social functions is allowable by wearing your conference badge. If you have purchased an additional ticket for the Pioneer Awards Banquet on the Detroit Princess Riverboat for Monday, September 12, for your spouse and/or guests, "Banquet" will be printed on your registration badge.

TAX DEDUCTIBILITY

The expense of attending a professional meeting, such as registration fees and costs of technical publications, are tax deductible as ordinary and necessary business expenses for U.S. citizens. However, recent changes in the tax code have affected the level of deductibility.

HANDICAPPED REGISTRANTS

Whenever possible, we are pleased to plan for handicapped registrants. Advance notice may be required for certain requests. For on-site assistance, please visit the registration area and ask to speak with a conference representative.

HAVE QUESTIONS ABOUT THE MEETING?

If you have any questions or need assistance, an ASME representative will be located at the registration area.

Conference Events

BREAKFAST

Monday, September 12 7:00AM–8:00AM Tuesday, September 13 7:00AM–8:20AM **Alexandria Ballroom, Third Floor**

Starting with Tuesday morning prior to the start of the technical sessions, a continental breakfast will be provided. All registered conference attendees are welcome! Immediately following the breakfast will be the daily Keynote Presentation from 8:00AM to 9:00AM. See the Keynote section of this program for more details as well as information about our Invited Speakers.

COFFEE BREAKS

Monday, September 12 10:30AM–10:50AM and 3:20PM–3:40PM Tuesday, September 13 9:30AM–10:20AM and 3:20PM–3:40PM Wednesday, September 14 9:20AM–9:30AM Banquet Foyer, First Floor

LUNCHES

Monday, September 12–Tuesday, September 13 12:10PM–1:40PM Alexandria Ballroom, Third Floor

EXHIBIT

Tuesday, September 13 10:00AM–5:00PM Banquet Foyer, First Floor

Please Take advantage of the opportunity to visit the booths of the leading industries in the field that are making it happen! Experts will be on hand to speak with you from Polytec, Inc. Please stop by. Our exhibitors help support the conference, so let us support them!

SPECIAL SESSION ON ENGINEERED LIVING MATERIALS

Tuesday, September 13 9:50AM–11:10AM Salon II, First Floor Engineered Living Materials I - (Joint Sessions 6-6 and 8-3)

Wednesday, September 14 9:30AM–10:40AM Salon II, First Floor Engineered Living Materials II - (Joint Sessions 6-9 and 8-6)

Organizers: Jovana Jovanova, TU Delft, Netherlands Joseph Najem, The Pennsylvania State University

This vision session will introduce the emergent concept of "Living Materials" as next generation materials that are essential at advancing the science, technologies, policies, and practices needed for a sustainable world. In particular, discussions will center on engineered materials systems that have the essential characteristics of living things. Materials research has advanced significantly through groundbreaking work on bioinspired materials, smart, adaptive and multi-field responsive materials, self-healing and self-powered materials. With engineered living materials, researchers are seeking to combine and integrate these different aspects in a single materials system, that leverages the adaptive response, self-replicating potential, and robustness of biological systems for the programmed assembly and modulation of novel materials.

Experts from diverse backgrounds will answer the WHAT, WHY, and HOW questions concerning their vision for Engineered Living Materials and their potential impact on society. The session will include a 40-minute vision talk (Zoubeida Ounaies, Penn State) and a 40-minute interactive panel of experts (TBA).

PIONEER AWARDS CEREMONY BANQUET

Monday, September 12 6:30PM–8:45PM Detroit Princess Riverboat Dinner Cruise

Please note: Buses will depart from the hotel at 6:00PM Sharp and we will depart the boat by 8:45PM, arriving back at the hotel by 9:15PM. Times are approximate.

Please join us for a special evening on the beautiful Detroit Princess Riverboat that will include the Awards ceremony and a wonderful buffet dinner.

A Brief History...

The Detroit Princess has been entertaining Detroit in its current location since 2005, docked just downriver from Hart Plaza, but it has quite an interesting history prior to that. It was originally named the Players Riverboat Casino II and was built in Jennings, Louisiana in 1993. It ran as a Merv Griffin establishment for a number of years, located on the Mississippi River in Metropolis, Illinois.

Harrah's Hotel & Casinos eventually purchased the boat, bringing it back down south to Lake Charles, Louisiana where it ran as a casino boat for a number of years before being stripped of all its gambling decor and abandoned for a larger boat. The boat sat in Orange, Texas for a few years, not operating. The owners had plans to scrap the boat, but at the final hour some folks up north decided to step in.

The current owners purchased the riverboat in 2004, and the vessel made her first and last journey to her new home in Detroit. The boat was too large to make its way through the northern portions of the Mississippi River, so it had to be towed around Florida, up the inter-coastal waterway, past Nova Scotia, and through the St. Lawrence Seaway to reach the Great Lakes and a temporary home, Toledo.

The boat spent a number of months in Ohio being refitted to operate as a restaurant, adding a full kitchen with eight convection ovens, ten steam cabinets, ten movable heater cabinets, two walk in coolers, a fully functioning dish room, and serving kitchens on each level that would soon serve Detroiters and tourists alike. After retooling, the vessel was ready to come home.

Although the boat may have been built in the Mississippi Delta in the early 1990s, the Detroit Princess has been well received from day one. When researching the options to bring a boat-style restaurant to Detroit, we really wanted to provide something that Detroit that had been missing since the late 1980s. For almost a century the Boblo Boats SS Ste. Claire and SS Columbia entertained Detroiters on the river, but they sadly were sold in 1991. Until the Detroit Princess Riverboat's arrival in 2005 the riverfront felt a tad bit empty, and we have happily filled the role as Detroit's premier riverboat experience ever since.

Student Events

LET'S ZOOM OUT!

Sunday, September 11 3:30PM–6:30PM Fairlane Ballroom, Third Floor

The wait is finally over! You are invited to attend an IN-PERSON lighthearted meet and greet event. Leave your webcam at home and come hang out with your peers. Don't worry about having to mute yourself or find that one perfect background for this meeting. Bring the beverage of your choice and share your experience over the last couple of years, your worst Zoom moments, or anything you need to let out before heading to the conference the next day.

EDUCATIONAL OUTREACH

Monday, September 12–Wednesday, September 14

Educational outreach is a conference website and app-based campaign. So, head over to the conference website to check out what the SMASIS community is doing to engage with the next generation of scientists and engineers. Scan the QR code at registration located in Banquet Foyer on the first floor.

STUDENT TRIVIA LUNCH

Monday, September 12 12:10PM–1:40PM Rouge River, First Floor

Everyone is invited to test their knowledge of random facts during the Trivia Lunch. Participants are encouraged to form multicultural, intergenerational teams by sitting at the same lunch table. A quizmaster will guide the teams through a multi-round "Pub" Style trivia competition, which covers a wide array of nontechnical topics.

NETWORKING OVER COFFEE

Monday, September 12 and Tuesday, September 13 3:20PM–3:40PM Banquet Foyer, First Floor

It's time to grab your coffee and stretch your legs! Go check out the exhibitors, or talk to that person sipping their coffee, who might share your research interests, may be hiring, or just wants to chat! Share your profile via in-app QR code in a second.

STUDENT CAREER PANEL

9:30AM–10:10AM Tuesday, September 13 Rouge River, First Floor

Academia and industry and national lab, oh my! A panel of professionals from academia, industry, and government laboratories will be at lunch to discuss their career trajectories and responsibilities and answer questions about career options in their positions!

STUDENT GAME NIGHT

8:30PM–10:30PM Tuesday, September 13 **Ten Eyck Tavern**

Let's get the party on at game night! Everyone is welcome to mingle while playing board and card games at the Ten Eyck Tavern at the Dearborn Inn.

SYMPOSIUM 9 BEST STUDENT PAPER COMPETITION I – FINALISTS

Monday, September 12 9:30AM–10:40AM Grosse Pointe. Third Floor

BEST STUDENT PAPER COMPETITION II – FINALISTS

Monday, September 12 10:50AM–12:10PM Grosse Pointe, Third Floor

The ASME Adaptive Structures and Material Systems branch organized the Best Student Paper Competition as part of the ASME/AIAA Conference on Smart Materials, Adaptive Structures, and Integrated Systems (SMASIS).

A committee of smart materials and structures experts judged entrants. Finalists are required to present their papers at The Student Best Paper Sessions on Monday, September 9. All finalists will be honored during the Pioneer Banquet, Monday, September 12.

BEST STUDENT HARDWARE COMPETITION I – FINALISTS

Monday, September 12 1:40PM–3:20PM Grosse Pointe, Third Floor

BEST STUDENT HARDWARE COMPETITION II – FINALISTS

Monday, September 12 3:40PM–5:20PM Grosse Pointe, Third Floor

The ASME Adaptive Structures and Material Systems branch organized the Best Student Hardware Paper Competition as part of the ASME/AIAA Conference on Smart Materials, Adaptive Structures, and Intelligent Systems (SMASIS). Entrants in the competition will be judged by a committee of smart materials and structures experts, and a list of finalists will be determined based upon their technical papers. Finalists are required to present their papers at a regular conference session and must participate in a special exhibit session on Monday, September 12. All finalists will be honored during the Pioneer Banquet on Monday, September 12, 2022.

Committee Meeting Schedule

SUNDAY, SEPTEMBER 11			
MEETING	TIME	ROOM	
Leadership Summit (By Invitation Only)	1:00PM-5:00PM	Fairlane	
Leadership Dinner (By Invitation Only)	6:00PM-8:00PM	Ten Eyck Tavern	
Let's Zoom Out Student Event	3:30PM-6:30PM	Fairlane Ballroom	

MONDAY, SEPTEMBER 12			
TECHNICAL COMMITTEE MEETINGS	TIME	ROOM	
Bio Inspired Structures and Systems	12:10PM-1:40PM	Salons II	
Active Materials and Multifunctional Materials	12:10PM-1:40PM	Salon III	
Active Material Technologies and Integrated Systems	12:10PM-1:40PM	Salon IV	
Energy Harvesting	12:10PM-1:40PM	Salon I	
Structural Health Monitoring	12:10PM-1:40PM	Firestone	

ALEXANDRIA BALLROOM, THIRD FLOOR

MONDAY, SEPTEMBER 12 8:00AM-9:20 AM

SALONS I & II, FIRST FLOOR

James Hubbard, Jr., Ph.D. Texas A&M University College Station, TX

BIOGRAPHY: James E. Hubbard, Jr., Ph.D. is the Oscar S. Wyatt, Jr. Chair I professor at the Texas A&M University. He is internationally known for control of adaptive structures, and spatially distributed systems for the real-time control. He is widely viewed as a founding father of the field of Smart Structures. He is the recipient of the SPIE Lifetime Achievement Award, the SPIE Innovative Product of the Year Award, and is a Permanent Fellow of the Hagler Institute for Advanced Studies. He holds 24 patents and is the founder of 4 companies. He has published 4 books and more than 100 technical articles in peer reviewed journals. Hubbard is a Fellow of the AIAA, SPIE, ASME and a member of the National Academy of Engineering, The Academy of Medicine, Engineering and Science of Texas, and the Virginia Academy of Science, Engineering and Medicine.

THE SMART STRUCTURE OF THE MIND

ABSTRACT: We present our most recent research in the development of a Modal Approach to the Space Time Dynamics of Cognitive Biomarkers. More specifically, we apply well-known "black box" output only system identification techniques to the biomarker of electroencephalogram (EEG) data. The result is a Linear Time Invariant model that admits brain wave modes of human cognitive states. The weak nonlinearities and stochasticity present in the data is accommodated using an adaptive feedback scheme that adjust the model in near real-time to yield less than 1% error with the concomitant data stream. The brain wave "modes" are linearly independent and can be likened to the keys on a piano. Weighted linear combinations can produce "chords" which can be combined to produce music and reveal the symphony of the brain. The space-time modal patterns of the brain have the potential for widespread application in the diagnosis of Alzheimer's disease, dementia, seizures, human emotions, and the like.

TUESDAY, SEPTEMBER 13

12:10PM-1:40PM

Paul E. Krajewski, Ph.D.

General Motors Global Research and Development Center Warren, MI

BIOGRAPHY: Dr. Paul E. Krajewski is the Director of the Vehicle Systems Research Lab at the General Motors Global Research and Development Center. His laboratory is responsible for R&D in a variety of areas including Interior and Safety Systems, Autonomous Driving, Connectivity, User Experience, Cybersecurity, Displays, and Electrical Architecture. Paul also represents GM as the USCAR Leadership Group Director, as a JOG member for USDRIVE, and as the Technical Director for HRL. Dr. Krajewski is a global expert in vehicle lightweighting and lightweight materials. He received his Bachelor's and Doctorate in Materials Science and Engineering from the University of Michigan. Dr. Krajewski has over 75 publications and has been awarded 54 U.S. Patents. He has been recognized by Fortune Magazine (40 under 40) and MIT's Technology Review (TR100) as a leading innovator and is a Fellow of ASM International. He was inducted into the National Academy of Engineering in 2020. Paul has also published three children's STEM/STEAM books entitled "What's In Your Car," "What's In Your Body," and "What's In Your Plane."

AUTOMOTIVE UNOBTANIUM: MATERIAL CHALLENGES FOR THE FUTURE OF TRANSPORTATION

ABSTRACT: The future of ground transportation promises significant changes to how vehicles travel, how they are propelled, and how customers experience the trip. Materials are the common enabler for this future, with the ability to impact autonomous driving, electrification, cabin experience and connectivity while providing superior performance and sustainable, green vehicles. This talk will first provide a vision for the future of automobiles and then identify key challenges in each of these areas including materials for batteries, sensors, displays, structures, and a variety of interior systems. The goal is to provide targets for the materials research community to help drive the development of these enabling materials.

Keynote Speakers

WEDNESDAY, SEPTEMBER 14 8:00AM-9:20 AM

SALONS I & II, FIRST FLOOR

Charles R. (Chuck) Farrar, Ph.D., PE

The Engineering Institute Los Alamos National Laboratory Los Alamos, NM

BIOGRAPHY: Chuck Farrar is currently the leader of Los Alamos National Laboratory's (LANL) Engineering Institute, a research and education collaboration between LANL and the Univ. of California San Diego's (UCSD) Jacobs School of Eng. His research interests focus on developing integrated hardware and software solutions to structural health monitoring (SHM) and damage prognosis problems. The results of this research have been documented in many journal publications, conference proceedings and a book entitled Structural Health Monitoring A Machine Learning Perspective. Each year he teaches a graduate course on SHM for UCSD. Additional professional activities include the development of a structural health monitoring short course that has been offered more than 45 times to industry and government agencies in Asia, Australia, Europe and the U.S. He is the founder of the Los Alamos Dynamics Summer School (now in its 23rd year) and he is a co-developer of the Los Alamos Judicial Science School (now in its 10th year). In 2012 he was elected as a Fellow of Los Alamos National Laboratory. He is also a Fellow of the American Society of Mechanical Engineers, the American Society of Civil Engineers, and the Society for Experimental Mechanics.

ADDING RIGOR TO STRUCTURAL HEALTH MONITORING THROUGH STATISTICAL PHYSICS

ABSTRACT: This presentation will begin by briefly summarizing the historical developments of structural health monitoring (SHM) technology that have occurred over the last 30 years and outstanding challenges for this technology. With this background, the discussion will them focus on how developments in statistical physics can be applied to SHM and possibly address some of these remaining challenges. Here three topics will be introduced. First, damage increases the complexity of a system. Second, damage alters the causal relationship between sensor measurements. Third, the fluctuation-dissipation theorem provides insight into the selection of effective damage-sensitive features. Complexity and causality measures from statistical physics as well as econometrics, neuro-science and data science will be introduced. These measures will be applied to the monitoring of critical infrastructure and are assessed for robustness to monitoring such systems under varying operational and environmental conditions. Then the fluctuation-dissipation theorem will be described and more recent developments in the fluctuation theorem applied to non-equilibrium phase transitions will be examined in the context of SHM. The talk will conclude with a discussion of how these approaches from statistical physics can be used to generate a more principled approach to SHM damage-sensitive feature selection, which is the basis for all artificial intelligence approaches to critical infrastructure monitorina

SALON V, FIRST FLOOR

MONDAY, SEPTEMBER 12 9:30AM-10:10PM

FIRESTONE, THIRD FLOOR

Ken Loh, Ph.D. University of San Diego San Diego, CA

BIOGRAPHY: Ken Loh is a professor and was the former Vice Chair (2018–2021) of the Department of Structural Engineering at UC San Diego. He is the Director of the Active, Responsive, Multifunctional, and Orderedmaterials Research (ARMOR) Lab and is the Director of the UC San Diego, Jacobs School of Engineering, Center for Extreme Events Research (CEER). He is also an affiliate faculty member of the Materials Science & Engineering Program and the Center for Wearable Sensors. Dr. Loh received his B.S. in Civil Engineering from Johns Hopkins University in 2004. His graduate studies were at the University of Michigan, where he completed two M.S. degrees in Structural Engineering (2005) and Materials Science & Engineering (2008), as well as a Ph.D. in Structural Engineering in 2008. He started his Assistant Professor career in January 2009 in the Department of Civil & Environmental Engineering at UC Davis, before joining UC San Diego in January 2016. His research interests are in multifunctional and stimuli-responsive materials, tomographic imaging techniques, wearable sensors, active metamaterials, and soft material actuators applied towards solving problems related to human performance, structural sustainment, and human-structure interactions.

DISTRIBUTED DAMAGE CHARACTERIZATION ENABLED BY TOMOGRAPHIC METHODS

ABSTRACT: Structural systems are susceptible to damage caused by deterioration, changing operating conditions, natural disasters, or unexpected events. Undetected damage can propagate and cause catastrophic failure. Thus, structural health monitoring (SHM) is crucial for identifying damage initiation, directing repair, and ensuring system safety/ reliability. This presentation outlines a new paradigm shift in SHM, where sensors are designed from a materials perspective stemming from a "bottom-up" design methodology. By manipulating materials at the molecular level and then scaling them up to tangible length scales, one can engineer novel stimuli-responsive materials that respond to structural response (or damage) features of interest. By coupling these materials with tomographic methods, spatial structural sensing could be achieved. This seminar will highlight a few examples. First, nanocomposite thin films are coupled with electrical impedance tomography (EIT) to realize densely distributed 2D sensing. Damage, such as cracks, strain fields, and pH/ corrosion, could be identified and localized. EIT can also be extended to map the conductivity of patterned nanocomposites for strain field monitoring. Second, subsurface structural sensing could be achieved by embedding passive thin film sensors in structural components and then interrogating them using an electrical capacitance tomography (ECT) measurement strategy and algorithm. Cross-sectional images of structural components could be used to directly visualize and characterize defects (e.g., voids or cracks) in the component. In addition, noncontact and subsurface pH/corrosion and strain sensing was also validated.

MONDAY, SEPTEMBER 12

10:50AM-11:10AM

Farhan Gandhi Rensslear Polytechnic Institute Troy, NY

BIOGRAPHY: Farhan Gandhi obtained his PhD in Aerospace Engineering from U of Maryland's Alfred Gessow Rotorcraft Center in 1995. After 17 years on the Penn State Aerospace Faculty, he transferred to Rensselaer Polytechnic Institute in 2012 as the Redfern Chair in Aerospace Engineering. He assumed responsibilities as RPI's Aerospace Program Director in 2014, and as Founding Director of RPI's Center for Mobility with Vertical Lift (MOVE) in Spring 2018. Gandhi is an AIAA Fellow, a Technical Fellow of the Vertical Flight Society (formerly the American Helicopter Society), and a Fellow of the Royal Aeronautical Society. He has chaired multiple major technical conferences and technical committees. One of the nation's top experts in VTOL aircraft aeromechanics, advanced VTOL configurations (including multi-rotor aircraft), and reconfigurable vertical lift, he held a Joint Faculty Appointment with the US Army Research Lab, Vehicle Technology Directorate (2018–2021). Over a 27-year academic career, Gandhi has published over 340 technical papers, advised 26 PhD students to graduation, and currently maintains a vibrant research group comprising of 2 research scientists, 11 PhD students, and several MS and undergrad students.

AUTONOMOUS MORPHING IN ROTARY-WING SYSTEMS

ABSTRACT: Since the optimal geometric configuration for an aircraft (and other vehicles) can differ depending on the operating condition, morphing provides the ability to operate close to optimality at multiple diverse operating conditions, and even expand the operating envelope considerably. The big fundamental challenge with morphing aerospace structures has been the design of structures that are simultaneously rigid enough to carry the external aerodynamics and inertial loads, and at the same time compliant enough so that the actuation requirements (actuation power, actuator size, etc.) are not prohibitive. Other challenges include material strain capability and requirement for flexible skins. The use of novel materials and innovative structural design has certainly advanced morphing technology over the last decade-and-a-half. This presentation delves into a specific morphing concept—that of autonomous shape change—and seeks to advance this concept by providing several examples and discussing future opportunities. Examples covered will include those where RPM change of rotor blades (e.g., helicopter and wind-turbine blades), and the resulting change in centrifugal force are exploited to morph rotor blade span, and chord and twist distribution. Examples will also be provided where temperature change can be used to produce wing camber morphing to expand the operating envelope of the vehicle. Other possibilities, where change in pressure distribution can be used to induce or assist in shape morphing will also be discussed.

MONDAY, SEPTEMBER 12 11:30PM-12:10PM

SALONS I & II, FIRST FLOOR

Michael D. Dickey North Carolina State University Raleigh, NC

BIOGRAPHY: Michael Dickey received a BS in Chemical Engineering from Georgia Institute of Technology (1999) and a PhD from the University of Texas (2006) under the guidance of Professor Grant Willson. From 2006-2008 he was a post-doctoral fellow in the lab of Professor George Whitesides at Harvard University. He is currently the Camille and Henry Dreyfus Professor in the Department of Chemical & Biomolecular Engineering at NC State University. He completed a sabbatical at Microsoft in 2016. Michael's research interests include soft matter (liquid metals, gels, polymers) for soft and stretchable devices (electronics, energy harvesters, textiles, and soft robotics).

LIQUID METAL FOR SOFT, STRETCHABLE, AND ADAPTIVE SYSTEMS

ABSTRACT: Liquid metals based on gallium are often overlooked materials despite their remarkable properties: melting points below room temperature, water-like viscosity, low-toxicity, and effectively zero vapor pressure (they do not evaporate). They also have, by far, the largest interfacial tension of any liquid at room temperature. Normally small volumes of liquids with large tension form spherical or hemi-spherical structures to minimize surface energy. Yet, these liquid metals can be patterned into non-spherical shapes (cones, wires, antennas) due to a thin, oxide skin that forms rapidly on its surface. This talk will describe efforts in our research group to harness this oxide to pattern and manipulate metal into useful shapes—such as circuits, optical components, and particles that are useful for applications that call for soft, responsive, and adaptive features. Because it is a liquid, it is possible to pattern the metal in unique ways, such as injection or direct-write 3D printing at room temperature to form ultra-stretchable wires, self-healing circuits, and soft logic devices (the latter of which perform logic without semiconductors). The liquid metals can also be utilized for energy harvesting to convert waste heat or mechanical energy into electricity.

MONDAY, SEPTEMBER 12 2:20PM-3:20PM

Christopher Tabor Air Force Research Laboratory Davton, OH

SALONS III, FIRST FLOOR

BIOGRAPHY: Dr. Christopher Tabor is a Materials Research Scientist within the Air Force Research Laboratory (AFRL), located at Dayton, Ohio. He has been with AFRL for over 12 years, first as a National Research Council Fellow and then as a staff scientist, following his graduation with a Ph.D. in chemistry from Georgia Tech in 2009. He leads a multidiscipline team exploring room temperature liquid metals for embodiments such as stretchable skin electrodes, physically reconfigurable antennas, and soft robotics. Dr. Tabor's work has been highlighted in the defense technology media on multiple occasions and he has published over 40 peer-reviewed journal articles in the area of optical and electronic properties of metals with 8 patents awarded.

LIQUID METAL ELECTRONICS

ABSTRACT: Next-generation requirements for electronics will demand new materials and paradigms to address emerging areas such as smart wearables, resilient electronics, and advanced manufacturing such as printing. This talk will focus on one class of emerging materials, which has been gaining significant momentum in both the academic and industrial research fields, namely low temperature gallium based liquid metal alloys. These materials provide the potential for superior conductivity with the added benefit of the mechanical properties of a liquid. The formation of surface oxides on the liquid provides a tunable surface that can lend unprecedented control of the mechanical properties and responsivity to the liquid. Under-standing the surface chemistry on these thin oxide interfaces has been a key focus of our research, enabling us to create mechanically tunable microparticles, printed ultra-stretchable electronics, programmable RF hardware, and self-healing circuits.

TUESDAY, SEPTEMBER 13 8:30AM-9:10AM

ROUGE RIVER, FIRST FLOOR

Maria Sakovsky Stanford University Stanford, CA

BIOGRAPHY: Maria Sakovsky is an Assistant Professor in the Aeronautics and Astronautics Department at Stanford University. Her work focuses on the use of shape adaptation to realize space structures with reconfigurable geometry, stiffness, and even non-mechanical performance (ex. electromagnetic, optical). Particular focus is placed on the mechanics of thin fiber reinforced composite structures, the interplay between composite material properties and structural geometry, as well as embedded functionality and actuation of lightweight structures.

She received her BSc in Aerospace Engineering from the University of Toronto and MSc and PhD in Space Engineering at Caltech, where she developed a deployable satellite antenna based on origami concepts utilizing elastomer composites. She concurrently worked with NASA's Jet Propulsion Laboratory on developing cryogenically rated thin-ply composite antennas for deep space missions. After her PhD, she was awarded the ETH Zürich postdoctoral fellowship to investigate reconfigurable antennas based on mechanical metamaterials.

RE-PROGRAMMING MECHANICAL AND MULTI-PHYSICS RESPONSE IN METASTRUCTURES

ABSTRACT: Structures typically have fixed properties representing a compromise between optimal performance in a wide range of operating conditions. Adaptation of performance in response to a changing or unknown environment can increase efficiency in applications ranging from morphing wings to smart space structures to soft robotics. This talk will explore examples from our research that combine active structural elements into metastructures to enable robust re-programming of shape, stiffness, and even non-mechanical performance. In a first example, we will discuss the development of composite laminates with reversible lamination that enable rapid and stable re-programming of stiffness. In a second project, we demonstrate the use of flexible metamaterials to program coupling between mechanical strains and electromagnetic performance. We will specifically address the role of anisotropy and the multi-scale nature of the structures in enhancing functionality, discuss efficient embedded actuation of structures with many degrees of freedom, and open up discussion on the controllability of these new reprogrammable systems.

TUESDAY, SEPTEMBER 13

8:50AM-9:10AM

SALON V, FIRST FLOOR

Burkhard Maass Ingpuls GmbH Bochum, Germany

BIOGRAPHY: Burkhard Maass is the founder and CTO of Ingpuls GmbH, a German producer and developer of shape memory alloys and SMA-based products. He founded the company in 2009. Maass is also the managing director of Ingpuls Medical GmbH & Ingpuls Smart Shadings, the first subsidiaries and joint ventures of Ingpuls (2021–present). From 2002 to 2008, he was at Ruhr-University Bochum in Mechanical Engineering & Materials Science and spent a year abroad at the Escuela Superior de Ingenieros in Seville, Spain. In 2012, Maass earned his PhD in materials science from Ruhr-University Bochum. His focus was on the development of novel quaternary shape memory alloys. Aside from his science and entrepreneur activities, Maass has lectured on SMA for undergraduate students at the university and has been a speaker at TedX & other similar venues. He is also passionate about martial arts, trail running, sustainable technologies, and healthy living. And he's even more passionate about his wife and two children.

SHAPE MEMORY ALLOY ACTUATORS: A KEY TECHNOLOGY FOR INTEGRATED SYSTEMS

ABSTRACT: In the last decades, technical products for both B2C and B2B sectors have become more and more sophisticated, with an everincreasing number and hence, demand, for integrated systems. Actuator systems are found in a variety of applications and devices, from cell phones and cars to industrial automatization. The properties of these actuator systems are defined by the need to provide mechanical work in the shape of a linear or rotary movement combined with a force or torque under certain environmental conditions and requirements defined by the task at hand. The scale of actuator systems ranges from microscopic autofocus systems in cellphone cameras to high force locking mechanisms. Solutions based on conventional materials are often heavy, bulky and complex systems. Smart and functional materials such as Shape Memory Alloys (SMAs) allow for the design of simple, light and reliable actuator systems for many applications. Far from being a magic all-in-one solution or replacement for "old" technologies, the potential of SMA actuators can be exploited when the combination of force, speed, frequency and other conditions overlap with the properties of the SMA. To understand how to combine the customization of the SMA properties with the design of a system or product is paramount for the successful implementation of these functional alloys. If done correctly, SMAs are a scale-bridging and market-independent key technology, providing degrees of freedom for design and the functional material with the highest energy density known today. In this presentation, we give an overview of existing solutions and recent advances in the alloy and processing development addressing both challenges and opportunities for this fascinating class of materials.

TUESDAY, SEPTEMBER 13 9:50AM-10:30AM

SALONS I & II, FIRST FLOOR

Zoubeida Ounaies Pennsylvania State University University Park, PA

BIOGRAPHY: Zoubeida Ounaies is a professor of mechanical engineering and director of the Convergence Center for Living Multifunctional Material Systems (LiMC2) at the Pennsylvania State University. She joined Penn State in January 2011 as an associate professor with the Dorothy Quiggle Career Development Professorship in Mechanical Engineering. Previously, she was an associate professor of Aerospace Engineering and Material Science and Engineering at Texas A&M University (2005-2010). Her research focuses on the design and development of responsive polymerbased materials with unique combinations of mechanical, electrical, magnetic, and coupled properties. Broadly speaking, she aims to develop new lightweight smart materials for applications as varied as advanced electronics, autonomous robotics, aerospace, automotive, medical and consumer industries. At Penn State, she established the Electroactive Materials Characterization Laboratory (EMCLab), where she and her students focus on advancing the application of smart materials in energy storage, energy conversion and energy harvesting. She is associate editor of the Smart Materials and Structures Journal, and a fellow of ASME and SPIE.

LIVING MULTIFUNCTIONAL MATERIALS: OPPORTUNITIES FOR COLLABORATIONS, COMMUNITY BUILDING AND RESEARCH INNOVATIONS

ABSTRACT: Materials research has advanced significantly through groundbreaking work on bioinspired materials, smart, adaptive and responsive materials, self-healing materials, and redesign of living cells through synthetic biology. A new paradigm is envisaged using biological rules and bioinspired approaches to develop materials with living attributes, that include resilience, adaptability, and self-powering, while enhancing their sustainability and broadening the educational mission around academic convergence. These living multifunctional materials would leverage a synergy of materials and processing to achieve unprecedented control of material properties and functions. In addition to defining living materials and discussing research opportunities in this growing field, this talk will introduce recent research at the Convergence Center for Living Multifunctional Materials (LiMC2), where a holistic approach to living materials seeks to bring team members spanning science, engineering, arts, social sciences, and ethics, as well as members of multiple institutes at Penn State. Finally, we will share examples of research developments in three of our core research areas: adaptive architecture; advanced manufacturing; and materials for sensing, diagnostics and actuation.

TUESDAY, SEPTEMBER 13

10:30AM-12:10AM

Dr. Prof. Jian Zhao Dalian University of Technology Dalian, Liaoning, China

FAIRLANE BALLROOM, FIRST FLOOR

BIOGRAPHY: Dr. Prof. Jian Zhao (M, 2009) is currently the Dean of the School of Automotive Engineering, Dalian University of Technology, China. He received the Excellent Ph. D Graduate Award in Xidian University in 2009. He was granted 30 innovation patents and has published over 100 papers in a wide variety of MEMS fields, including intelligent structures, compliant mechanisms, MEMS, shock sensors, and acceleration switches. He was awarded as the excellent young scientist at Dalian City, the "Xinghai Excellent Youth" at Dalian University of Technology, Qianlingxi Excellent Teacher Award, the second prize of Chinese Institute of Electronics, the second prize for science & technology achievement from China Academy of Engineering Physics, the first prize of excellent technical research papers in Liaoning Province, the best paper award in IDETC/CIE MNS 2018, the special award of excellent technical research papers in Dalian City, and the best paper award from Chinese Journal of Sensors and Actuators. He has been chairs for many IEEE/ASME symposiums and sessions. Prof. Zhao was also elected as the technical committee member in the Chinese Society of Micro-Nano Technology, a member of the National Standard Committee for Audio and Video. And also, he has given many invited talks in many different international conferences, including ASME/IDETC 2018, MEMS sensors 2016, and young scientist symposium 2016 and 2018.

ULTRASENSITIVE MASS SENSING UTILIZING NONLINEAR COMPLIANT MICROBEAMS

ABSTRACT: Nonlinear resonant microsensors (NRS) can detect any tiny changes of mass, stress or damping in environment by detecting the bifurcation frequency shift. However, the uncontrollable bifurcation is the bottleneck problem for their engineering applications for monitoring the environment pollution and the hazardous article leakage in real time. In this report, a series of nonlinear mass sensors utilizing compliant structures and functional materials have been proposed, which include: 1) innovative design of compliant sensing structures, and the mass sensor with linear and nonlinear combined structures has been proposed for the incremental threshold values; 2) nonlinear bifurcation control method based on the piezoelectric parameters, a dynamic design model of the nonlinear sensor considering the absorption film, piezoelectric layer and excitation load, and the relationship between the bifurcation topology and the physical system parameters for controlling the bifurcation; and 3) a measuring strategy in the damping environment for online measurement have been manufactured and for completing and validating the proposed design methodology.

TUESDAY, SEPTEMBER 13 2:20PM-3:20PM

SALONS I & II, FIRST FLOOR

Prof. Alon A. Gorodetsky University of California Irvine, CA

BIOGRAPHY: Dr. Alon Gorodetsky is an Associate Professor in the Department of Chemical and Biomolecular Engineering at UC Irvine. Dr. Gorodetsky obtained dual B.S. degrees in Engineering Physics and Materials Science at Cornell University and a Ph.D. in Chemistry at the California Institute of Technology. He then completed postdoctoral work as an NSF American Competitiveness in Chemistry Fellow at Columbia University. At UC Irvine, his group has focused on developing adaptive infrared and thermoregulatory systems inspired by cephalopods, as well as on studying the materials properties and biomedical applications of cephalopod proteins called reflectins. For his research, Dr. Gorodetsky has received international recognition and numerous accolades, including the AFOSR Young Investigator Award, the DARPA Young Faculty Award with the Director's Option, the Presidential Early Career Award for Scientists and Engineers, the NIH Director's New Innovator Award, and the DARPA Embedded Entrepreneurship Initiative Award.

DYNAMIC MATERIALS INSPIRED BY CEPHALOPODS

ABSTRACT: Cephalopods (e.g., squids, octopuses, and cuttlefish) have captivated the imagination of both the general public and scientists alike due to their sophisticated nervous systems, complex behavioral patterns, and visually stunning camouflage displays. Given their unique capabilities and characteristics, it is not surprising that these marine invertebrates have emerged as exciting models for novel adaptive optical and photonic materials. Within this context, our laboratory has developed cephalopodderived and cephalopod-inspired systems with dynamic functionalities within the visible and infrared regions of the electromagnetic spectrum. These findings hold implications for next-generation biomedical imaging technologies and adaptive camouflage devices.

TUESDAY, SEPTEMBER 13 3:40PM-4:20PM

GROSSE POINTE, FIRST FLOOR

Chris Vermillion North Carolina State University Raleigh, NC

BIOGRAPHY: Chris Vermillion received his Ph.D. in Electrical Engineering from the University of Michigan in 2009 and received his undergraduate degrees in Aerospace and Mechanical Engineering from the University of Michigan in 2004. Immediately following his Ph.D. work, Dr. Vermillion worked on advanced automotive powertrain control, focusing on constrained optimal control approaches that simultaneously addressed the competing performance interests of fuel economy, emissions, drivability, and torgue delivery. Subsequently he served as a Lead Engineer for Altaeros Energies and managed all of the dynamic modeling, control system design, software development, and embedded hardware development for Altaeros' lighter-than-air wind energy system. Dr. Vermillion has participated in the full-scale fight testing of two of Altaeros' designs. He is currently an Associate Professor at NC State, where his research focuses on the dynamic characterization, design optimization, and optimal control of airborne wind energy systems, marine hydrokinetic energy systems, and energy-efficient connected and autonomous vehicles. Dr. Vermillion was the recipient of the National Science Foundation's CAREER Award in 2015, the UNC-Charlotte Maxheim Research Fellowship in 2016, the UNC-Charlotte College of Engineering Excellence in Teaching Award in 2017, and the NC State Mechanical and Aerospace Engineering Research Award in 2021.

MOTION IN THE OCEAN: REVOLUTIONIZING MARINE HYDROKINETIC ENERGY HARVESTING THROUGH THE DESIGN AND PERIODIC MOTION CONTROL OF UNDERWATER KITES

ABSTRACT: Tidal and ocean current resources in the United States have been collectively estimated to contain over 250 TWh/year of extractable hydrokinetic energy. This equates to powering tens of millions of homes, in addition to providing the opportunity to power so-called "blue economy" off-grid applications, such as supplying power to ocean observing platforms and autonomous underwater vehicles. The extraction of marine hydrokinetic energy in a 1 m/s flow speed through a fixed turbine requires approximately the same geometric sizing per unit of power as a wind turbine operating in a 10 m/s wind speed. However, complications associated with undersea installation result in dramatically higher costs than comparably scaled wind energy counterparts. This talk will examine the design and control of underwater kites as a game-changing solution for extracting ocean current and tidal resources. Compared with a fixed turbine design, an underwater kite eliminates massive rotating underwater machinery and in fact reduces the size and mass per unit power of the underwater system by more than an order of magnitude. The achievement of these levels of performance is dependent, however, on addressing two periodic optimal motion control challenges, which must be performed concurrently and robustly, within a flow environment that is varying in both space and time. First, the kite must follow efficient periodic flight paths (typically figure-8 or elliptical paths) to achieve the requisite high-speed operation for maximizing power output. Second, the kite must employ a

periodic power take-off (PTO) system that harvests energy either through on-board rotors whose operating parameters vary over the course of each repeated flight path, or through cyclic spooling motion. This seminar will illustrate how techniques from iterative learning control and continuoustime optimal control theory have been adapted to tackle these challenges. Furthermore, the seminar will highlight ongoing experimental efforts to validate dynamic models and control strategies for a prototype underwater kite design.

Our group is also studying encasing materials for these materials, such as tough elastomers and gels that can be used to create robust devices. Perhaps the most fascinating aspect of liquid metals it the ability to use interfacial electrochemistry chemistry to remove/deposit the oxide to manipulate the surface tension of the metal over unprecedented ranges (from the largest tension of any known liquid to near zero!). This allows manipulating the shape, position, and optical properties of the metal for reconfigurable devices. This work has implications for soft and stretchable electronics; that is, devices with desirable mechanical properties for human-machine interfacing, soft robotics, and wearable electronics.

Awards

ADAPTIVE STRUCTURES AND MATERIALS SYSTEMS AWARD

James Hubbard, Jr., Ph.D. Texas A&M University College Station, TX

BIOGRAPHY: James E. Hubbard, Jr., Ph.D. is the Oscar S. Wyatt, Jr. Chair I professor at the Texas A&M University. He is internationally known for control of adaptive structures, and spatially distributed systems for the real-time control. He is widely viewed as a founding father of the field of Smart Structures. He is the recipient of the SPIE Lifetime Achievement Award, the SPIE Innovative Product of the Year Award, and is a Permanent Fellow of the Hagler Institute for Advanced Studies. He holds 24 patents and is the founder of 4 companies. He has published 4 books and more than 100 technical articles in peer reviewed journals. Hubbard is a Fellow of the AIAA, SPIE, ASME and a member of the National Academy of Engineering, The Academy of Medicine, Engineering and Science of Texas, and the Virginia Academy of Science, Engineering and Medicine.

THE SMART STRUCTURE OF THE MIND

ABSTRACT: We present our most recent research in the development of a Modal Approach to the Space Time Dynamics of Cognitive Biomarkers. More specifically we apply well known "black box" output only system identification techniques to the biomarker of electroencephalogram (EEG) data. The result is a Linear Time Invariant model that admits brain wave modes of human cognitive states. The weak non-linearities and stochasticity present in the data is accommodated using an adaptive feedback scheme that adjust the model in near real-time to yield less than 1% error with the concomitant data stream. The brain wave "modes" are linearly independent and can be likened to the keys on a piano. Weighted linear combinations can produce "chords" which can be combined to produce music and reveal the symphony of the brain. The space-time modal patterns of the brain have the potential for widespread application in the diagnosis of Alzheimer's disease, dementia, seizures, human emotions and the like.

ASME DEDICATED SERVICE AWARD

Janet Sater

The Institute for Defense Analyses (IDA) Washington, DC

BIOGRAPHY: Janet Sater graduated from Grove City College with a B.S. in Metallurgical Engineering and from Purdue University with a M.S. and Ph.D. in Materials Science and Engineering. She has been employed for 34 years in the Science and Technology Division of the Institute for Defense Analyses, a Federally Funded Research and Development Center that works only for the Department of Defense and its agencies. She is a Fellow of ASME and of ASM International (materials professional society). She has been a member of the ASME Adaptive Structures and Materials Technical Committee and Branch for 27 years (first woman on the TC!), including a stint as Secretary and as Special Finance Committee Chair as well as a founding member and Executive Advisory Board member for the SMASIS conference. She also has been involved extensively in the Aerospace Division as Treasurer (12 years and counting!), Secretary, Executive Committee Member, and speaker at several Leadership Summits (educational seminar on Aerospace Division processes and procedures).

Awards

GARY ANDERSON AWARD

Youngsu Cha Korea University Seoul, South Korea

BIOGRAPHY: Dr. Youngsu Cha is currently an Assistant Professor in the School of Electrical Engineering at Korea University, Seoul, South Korea. He received the B.S. degree from Korea University, Seoul, South Korea, in 2004, and the M.S. degree from Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea, in 2007, both in electrical engineering, and the Ph.D. degree in mechanical engineering from New York University, New York, NY, USA, in 2015. After receiving the Ph.D., he was a Principal Research Scientist with the Center for Intelligent and Interactive Robotics, Korea Institute of Science and Technology (KIST), Seoul, South Korea, and he moved to Korea University in 2021. His current research interests include smart materials and structures, multiphysics modeling, flexible sensors and actuators, energy harvesting, and soft robotics. His research has generated 26 patents, 64 journal publications, and 38 conference proceedings.

SOFT ROBOTIC APPLICATIONS OF SMART MATERIALS

ABSTRACT: Smart materials have received considerable attention with various applications. Dr. Youngsu Cha has researched on soft robotics using the smart materials. His current work is the integration of piezoelectric materials into soft mobile robots, the development of soft robotic hands, and the development of soft wearable interface system for virtual reality and teleoperation. Specifically, he has done incredible work on thin, soft piezoelectric mobile robots, soft pneumatic hands using origami structure, human posture monitoring system for wearable healthcare, and human-computer interface gloves for virtual reality via flexible piezoelectric sensors. In addition, he has tried to adapt the smart materials to conventional robots through artificial piezoelectric skin for object classification using neural network and teleoperation system between a robot and human wearing a soft interface suit.

EPHRAHIM GARCIA AWARD

Priyanka Bhovad Bionaut Labs Los Angeles, CA

BIOGRAPHY: Priyanka Bhovad graduated from Clemson University with Ph.D. in Mechanical Engineering in December 2021. While at Clemson, she worked under the mentorship of Dr. Suyi Li on developing the design and analysis framework for hybrid mechanical-digital control of Soft Origami Robots. Currently, Priyanka is working at Bionaut Labs, a medical robotics startup headquartered in Los Angeles, California. As a Controls Engineer, she has developed the algorithms for untethered control of magnetic micro-bots. Prior to obtaining his Ph.D., she worked at the Indian Space Research Organisation (ISRO) as Aerospace Engineer for four years.

PHYSICAL RESERVOIR COMPUTING WITH ORIGAMI AND ITS APPLICATION TO ROBOTIC CRAWLING

ABSTRACT: A new paradigm called physical reservoir computing has recently emerged, where the nonlinear dynamics of high-dimensional and fixed physical systems are harnessed as a computational resource to achieve complex tasks. Via extensive simulations based on a dynamic truss-frame model, this study shows that an origami structure can perform as a dynamic reservoir with sufficient computing power to emulate high-order nonlinear systems, generate stable limit cycles, and modulate outputs according to dynamic inputs. This study also uncovers the linkages between the origami reservoir's physical designs and its computing power, offering a guideline to optimize the computing performance. Comprehensive parametric studies show that selecting optimal feedback crease distribution and fine-tuning the underlying origami folding designs are the most effective approach to improve computing performance. Furthermore, this study shows how origami's physical reservoir computing power can apply to soft robotic control problems by a case study of earthworm-like peristaltic crawling without traditional controllers. These results can pave the way for origami-based robots with embodied mechanical intelligence.

ADAPTIVE STRUCTURES AND MATERIAL SYSTEMS BEST PAPER AWARD IN STRUCTURES AND STRUCTURAL DYNAMICS

FLEXURAL-MODE SOLID-STATE THERMOACOUSTICS (MECHANICAL SYSTEMS AND SIGNAL PROCESSING 148, 107143, 2021)

C. Scarlo Purdue University West Lafayette, IN

H. Hao

Purdue University

West Lafayette, IN

BIOGRAPHY: Dr. Carlo Scalo is an Associate Professor in the School of Mechanical, and Aeronautical and Astronautical Engineering (by courtesy) at Purdue University. His research interests focus on computational aeroacoustics, vortex dynamics, low- and high-speed turbulent boundary layers, and hypersonics. In particular, Dr. Scalo has developed computational techniques for prediction of acoustic noise propagation and control in hypersonic boundary layers, low-speed and high-speed transitional and fully developed turbulence and thermoacoustic instability in combustion systems. Scalo has received three distinct Young Investigator Program (YIP) Awards from the Department of Defense in: hypersonic boundary layer transition (Air Force), hypersonic boundary layer turbulence (Navy) and vortex dynamics (Army). He is also the founder of HySonic Technologies – a Purdue start-up that received ONR funding to develop passive control of hypersonic boundary layers and high-speed propulsion systems.

F. Semperlotti Purdue University West Lafayette, IN

BIOGRAPHY: Dr. Fabio Semperlotti is a Professor and the Perry Academic Excellence Scholar in the School of Mechanical Engineering at Purdue University and holds a courtesy appointment in the School of Aeronautics and Astronautics Engineering. He received a M.S. in Aerospace Engineering (2000), and a M.S. in Astronautic Engineering (2002) both from the University of Rome "La Sapienza" (Italy), and a Ph.D. in Aerospace engineering (2009) from the Pennsylvania State University (USA). Prior to joining Penn State, Dr. Semperlotti served as a structural engineer for a few European aerospace industries, including the French Space Agency (CNES), working on the structural design of space launch systems (such as Ariane 5 and Vega) and satellite platforms.

Dr. Semperlotti is a member of the Ray W. Herrick laboratory and directs the Structural Health Monitoring and Dynamics laboratory (SHMD) where he conducts, together with his research group, research on several aspects of structures and materials including structural dynamics and wave propagation, elastic metamaterials, structural health monitoring, and computational mechanics. Dr. Semperlotti has been the recipient of national awards including the National Science Foundation CAREER award (2015), the Air Force Office of Scientific Research Young Investigator Program (YIP) (2015), the DARPA Young Faculty Award (YFA) 2019, and the ASME C.D. Mote Jr. Early Career Award 2019.

ADAPTIVE STRUCTURES AND MATERIAL SYSTEMS BEST PAPER AWARD IN MECHANICS AND MATERIAL SYSTEMS

Jesse Callanan Los Alamos National Laboratory Los Alamos, NM

BIOGRAPHY: Jesse Callanan is a Post-Doctoral Research Associate at Los Alamos National Laboratory. He received a BA in Physics from SUNY Geneseo and a PhD in Mechanical and Aerospace Engineering from the University at Buffalo, where his work focused on active wave control and dynamic system prototyping with an emphasis on advanced manufacturing.

Awards

Carson Willey UES, Inc. Beavercreek,OH

BIOGRAPHY: Carson Willey is a research scientist at UES, Inc. in Beavercreek, OH. He received a BS in Mechanical Engineering and an MS in Computational Science and Engineering from Miami University, and a PhD in Engineering Mechanics from the University of Cincinnati. His research is focused on the development of phononic crystals and resonant metamaterials for wave propagation and vibration control, with an aim towards practical applications. Dr. Willey was a visiting professor at Miami University in 2019, and currently serves on the ASME Technical Committee on Vibration and Sound.

Vincent Chen UES, Inc. Beavercreek, OH

BIOGRAPHY: Vincent Chen is a research scientist at UES, Inc. in Beavercreek, OH. He received a BA from Boston College and a PhD in Chemistry from the Georgia Institute of Technology. His research is focused on additive manufacturing and implementation of acoustic and mechanical metamaterials for practical applications.

Jonathan Liu Miami University, Oxford, OH

BIOGRAPHY: Jonathan Liu received his BS and MS degrees in Mechanical Engineering from Miami University. He enrolled at Wright State University in August 2021 to begin graduate level courses in computational methods, advanced fluid dynamics, computational fluid dynamics, and hypersonics. He will be attending North Carolina State University in August 2022 where he is pursuing his PhD.

Mostafa Nouh University at Buffalo Buffalo, NY

BIOGRAPHY: Mostafa Nouh is an Associate Professor of Mechanical and Aerospace Engineering at the University at Buffalo (SUNY). He received a BS from Cairo University and earned his MS and PhD in Mechanical Engineering from the University of Maryland. His research focuses on smart materials, structural dynamics, and acoustic metamaterials. He is a recipient of the NSF CAREER and ASME's Gary Anderson Early Achievement awards. He currently serves as an associate editor of the Journal of Vibration and Acoustics.

Abigail Juhl Air Force Research Laboratory Dayton, Ohio

BIOGRAPHY: Abigail Juhl is a Materials Research Engineer in the Materials and Manufacturing Directorate at Air Force Research Laboratory (AFRL). She received a BS in Materials Science and Engineering from North Carolina State University, and a PhD in Materials Science and Engineering from the University of Illinois Urbana-Champaign. Dr. Juhl's research is focused on dynamic control of mechanical wave propagation using architected materials with applications in acoustic and vibration mitigation. She is the 2020 recipient of the AFRL Early Career and the DOD Lab Scientist of the Quarter awards.

UNCOVERING LOW-FREQUENCY BAND GAPS IN ELECTRICALLY RESONANT METAMATERIALS THROUGH TUNED DISSIPATION AND NEGATIVE IMPEDANCE CONVERSION

ABSTRACT: A new electromechanically-coupled metamaterial is presented which relies on magnetic field interactions between the host structure and a local resonator circuit to realize novel vibration control capabilities. The electromechanical metamaterial exhibits a unique electrical metadampingphenomenon which is activated via the circuit's resistance, and a highly tunable band gap which can be easily placed at a desired frequency using the resonant circuit parameters, providing a robust mechanism to independently alter the band gap width, depth, and frequency of maximum attenuation. A robust experimental realization of the system is constructed which achieves strong electromechanical coupling through a moving coil and magnet system, and reveals fundamentally new properties of damped electrically-resonant structures.

ACTIVE MATERIAL TECHNOLOGIES AND INTEGRATED SYSTEMS BEST PAPER AWARD

Ting Tan Shanghai Jiao Tong University China

BIOGRAPHY: Ting Tan is currently an associate professor at the School of Mechanical Engineering, Shanghai Jiao Tong University, China. She received her B.S. and M.S. degrees in Civil Engineering from Chongqing University, China, and Ph.D. degree in Engineering Mechanics from Virginia Tech, USA. Her current research interests include piezoelectric self-powered sensor, soft electricity generator, and acoustic metamaterial based voice interaction.

DUAL-BAND PIEZOELECTRIC ACOUSTIC ENERGY HARVESTING BY STRUCTURAL AND LOCAL RESONANCES OF HELMHOLTZ METAMATERIAL

ABSTRACT: The current study on acoustic energy harvesting is based on a single-band vibroacoustic conversion performed by either structural resonance or local resonance. In this paper, we propose a Helmholtz acoustic metamaterial (HAM) piezoelectric device having dual-band acoustic energy harvesting characteristics. The Helmholtz resonator of the metamaterial amplifies both structural and local resonances. HAM is designed based on the Bloch theorem, plane wave expansion method, and electroacoustic impedance analogy. Numerical simulation is performed to show the sound pressure amplification effect of HAM. A piezoelectric disk is bonded on the point defect of the Helmholtz metamaterial for energy localization and conversion, and HAM is clamped on a self-made experimental platform by simply supported boundary conditions on four sides. The time-frequency image of the voltage output from the swept frequency experiment shows two distinct bands corresponding to the structural resonance frequency of 381 Hz with the band width of 45 Hz and the local resonance frequency of 1526 Hz with the band width of 290 Hz. The peak-to-peak power of HAM is 0.13 mW, and its peak-to-peak voltage is 3.2 V at 391 Hz with the sound pressure of 31 Pa. At the input sound pressure of 23.32 Pa and frequency of 1526 Hz, the output voltage and power are found to be 1.5 V and 0.11 mW, respectively. Under the same amplitude of the input sound pressure, the output power of HAM is found 12.7 times and 4.4 times higher than those of the traditional acoustic metamaterial in the structural and local resonance bands, respectively. Field tests validate the superiority of the designed structure. In the milling environment, the voltage-pressure transmission rate reaches 0.11 V/Pa. The acoustic energy wall composed of HAM will be capable to provide a power solution for an intelligent factory.

ADAPTIVE SYSTEMS DYNAMICS AND CONTROLS BEST JOURNAL PAPER AWARD

Jesse Callanan Los Alamos National Laboratory Los Alamos, NM

BIOGRAPHY: Jesse Callanan is a Post-Doctoral Research Associate at Los Alamos National Laboratory. He received a BA in Physics from SUNY Geneseo and a PhD in Mechanical and Aerospace Engineering from the University at Buffalo, where his work focused on active wave control and dynamic system prototyping with an emphasis on advanced manufacturing.

Carson Willey UES, Inc. Beavercreek,OH

BIOGRAPHY: Carson Willey is a research scientist at UES, Inc. in Beavercreek, OH. He received a BS in Mechanical Engineering and an MS in Computational Science and Engineering from Miami University, and a PhD in Engineering Mechanics from the University of Cincinnati. His research is focused on the development of phononic crystals and resonant metamaterials for wave propagation and vibration control, with an aim towards practical applications. Dr. Willey was a visiting professor at Miami University in 2019, and currently serves on the ASME Technical Committee on Vibration and Sound.

Vincent Chen UES, Inc. Beavercreek, OH

BIOGRAPHY: Vincent Chen is a research scientist at UES, Inc. in Beavercreek, OH. He received a BA from Boston College and a PhD in Chemistry from the Georgia Institute of Technology. His research is focused on additive manufacturing and implementation of acoustic and mechanical metamaterials for practical applications.

Jonathan Liu Miami University, Oxford, OH

BIOGRAPHY: Jonathan Liu received his BS and MS degrees in Mechanical Engineering from Miami University. He enrolled at Wright State University in August 2021 to begin graduate level courses in computational methods, advanced fluid dynamics, computational fluid dynamics, and hypersonics. He will be attending North Carolina State University in August 2022 where he is pursuing his PhD.

Mostafa Nouh University at Buffalo Buffalo, NY

BIOGRAPHY: Mostafa Nouh is an Associate Professor of Mechanical and Aerospace Engineering at the University at Buffalo (SUNY). He received a BS from Cairo University and earned his MS and PhD in Mechanical Engineering from the University of Maryland. His research focuses on smart materials, structural dynamics, and acoustic metamaterials. He is a recipient of the NSF CAREER and ASME's Gary Anderson Early Achievement awards. He currently serves as an associate editor of the Journal of Vibration and Acoustics.

Awards

Abigail Juhl Air Force Research Laboratory Dayton, Ohio

BIOGRAPHY: Abigail Juhl is a Materials Research Engineer in the Materials and Manufacturing Directorate at Air Force Research Laboratory (AFRL). She received a BS in Materials Science and Engineering from North Carolina State University, and a PhD in Materials Science and Engineering from the University of Illinois Urbana-Champaign. Dr. Juhl's research is focused on dynamic control of mechanical wave propagation using architected materials with applications in acoustic and vibration mitigation. She is the 2020 recipient of the AFRL Early Career and the DOD Lab Scientist of the Quarter awards.

UNCOVERING LOW-FREQUENCY BAND GAPS IN ELECTRICALLY RESONANT METAMATERIALS THROUGH TUNED DISSIPATION AND NEGATIVE IMPEDANCE CONVERSION

ABSTRACT: A new electromechanically-coupled metamaterial is presented which relies on magnetic field interactions between the host structure and a local resonator circuit to realize novel vibration control capabilities. The electromechanical metamaterial exhibits a unique electrical metadampingphenomenon which is activated via the circuit's resistance, and a highly tunable band gap which can be easily placed at a desired frequency using the resonant circuit parameters, providing a robust mechanism to independently alter the band gap width, depth, and frequency of maximum attenuation. A robust experimental realization of the system is constructed which achieves strong electromechanical coupling through a moving coil and magnet system, and reveals fundamentally new properties of damped electrically-resonant structures.

ADAPTIVE SYSTEMS DYNAMICS AND CONTROLS BEST SYMPOSIUM PAPER AWARD

Mario Baggetta University of Genova Italy

BIOGRAPHY: Mario Baggetta received the B.S. and M.S. degrees in mechanical engineering from the University of Genova (Italy) in 12/2016 and 03/2019, respectively. He worked on the Ansaldo Energia's "Lighthouse Plant" project as a predoctoral Fellow from 06/2019 to 10/2020 and he is currently (11/2020-today) a Ph.D. student at DIME, Mechanical Engineering Department, University of Genova. He is interested on the integrated design of compliant mechanisms, variable stiffness actuators and collaborative robots. His doctoral research is mainly focused on the virtual and physical prototyping of compliant mechanisms and underactuated robotic hands.

Giovanni Berselli University of Genova Italy

BIOGRAPHY: Giovanni Berselli is Full Professor and Chair of Design Methods for Industrial Engineering at the University of Genova, Italy, where he coordinates the PhD Degree in Mechanical, Energy and Management Engineering. He is also Affiliated Researcher with the Advanced Robotics Department at the Italian Institute of Technology (IIT). Prof. Berselli is currently the Chair of the American Society of Mechanical Engineers (ASME) - Italy Section and the past Chair of the ASME Technical Committee on Modeling, Dynamics, and Control of Adaptive Systems. He has been Visiting & Affiliated Scientist of the Medical Device and Simulation Lab. at Massachusetts General Hospital & Harvard Medical School, Visiting Scientist at the German Aerospace Agency (DLR), Visiting Professor at the University of Twente, and Research Associate at Monash University, Australia, and with the School of Advanced Studies of the University of Navarra, Spain. Within his Department, Prof. Berselli coordinates the Erasmus Program and he is Delegate for International Relations. He has authored more than 200 publications in peer-reviewed international journals or conference proceedings, and edited two international books. Recipient of several IFToMM, ASME and IEEE Best Paper Awards and finalist for an ERC starting grant. He is currently Associate Editor for IEEE/ASME Transactions on Mechatronics, International Journal of Interactive Design & Manufacturing, and Mechanical Science. Prof. Berselli's scientific activity is focused on the design, modelling and experimental evaluation of: i) robot hands and grippers; ii) compliant mechanisms and soft actuators for safe human-robot interaction; iii) energy-aware industrial robotics.

Gianluca Palli University of Bologna Italy

BIOGRAPHY: Gianluca Palli received the M.Sc. and Ph.D. degrees in automation engineering from the University of Bologna, Bologna, Italy, in 2003 and 2007, respectively. He was a Visiting Student at the Robotic Institute of the German Aerospace Center (DLR), Munich, Germany, in 2006. He is currently Full Professor at the University of Bologna. His research interests include many aspects related to the development of robots able to interact with unstructured environments, deformable objects and to cooperate with humans. He coordinated the WIRES FP7 projects, which aim was to automatize the switchgears wiring process, and he is now the coordinator of the REMODEL H2020 project, aiming at the development of robotic technologies for the manipulation of complex deformable linear objects, and of the HE IntelliMan project, which aims to develop an artificial intelligence-based manipulation system for advanced robotic services, industrial manufacturing and prosthetics.

Claudio Melchiorri University of Bologna Italy

BIOGRAPHY: Claudio Melchiorri graduated in 1985 in Electronic Engineering and obtained the PhD in 1990 at the University of Bologna. He began his research activity in 1985 at DEIS, the Department of Computer Electronics and Systems of the University of Bologna, where in 1990 he became a Researcher and in 2001 Full Professor in Industrial Robotics. He currently is with DEI, the Department of Electrical Energy and Information Engineering "Guglielmo Marconi". In the period 2007 - 2013 he was President of the Course of Studies in Automation Engineering at the Faculty of Engineering of the University of Bologna, and in the period 2004-2010 he was Coordinator of the PhD program in "Automation and Operations Research" at DEIS. From 2014 to 2016 he was Coordinator of the PhD program in "Biomedical, Electrical and Systems Engineering" (IBES). He is in charge of the Almatong program, an educational and scientific cooperation with Tongji University, Shanghai, China, where since 2015 he has also held the position of "High End Expert" of the Chinese University Ministry. Since 2014 he has been a member of the Academy of Sciences, Institute of Bologna, and since 2020 he is Fellow of the IEEE. He was Director of the Department of Electrical, Energy and Information Engineering "Guglielmo Marconi" in the period 2015-2021, and is currently the Rector's Delegate for Relations with Businesses and Industrial Research.

MECHATRONIC DESIGN AND PHYSICAL PROTOTYPING OF A THREE-FINGERED GRIPPER FOR UNDERWATER MANIPULATION

ABSTRACT: Researchers involved in the development of dexterous robotic hands agree that a mechatronics approach to hand design is the only way to generate new levels of functional capabilities. As reported by several authors, the problems relative to the single component or subsystem design must be solved within a general frame of compatibility and integrability. In this paper the virtual and physical prototyping of a three-fingered gripper designed to be mounted on an autonomous underwater vehicle (AUV) for underwater manipulation as well as sampling specimens is reported. In particular, an overall description of the gripper design is discussed, with special attention to the required actuation and tendon transmission system, its integration within the mechanical structure and the required control architecture. Different solutions for the joint configuration and the structure of the tendon network adopted for the transmission system are presented. The integrated design of the finger is reported and the motivations leading to this particular implementation are thoroughly addressed, taking into account both the mechanical constraints and the control requirements. The overall finger design is modular, so that other design solutions comprising multiple fingers (e.g. for in-hand manipulation purposes or realization of cage gripper) are easily achievable by adding further modules without increase the overall dimensions of the device. Virtual prototype results are finally provided and discussed to prove the gripper behaviour and capabilities.

STRUCTURAL HEALTH MONITORING

2021 BEST JOURNAL PAPER AWARD

Susu Xu Stonybrook University Stonybrook, NY

BIOGRAPHY: Dr. Susu Xu is an assistant professor at Department of Civil Engineering, Stony Brook University. She received her Ph.D. in Civil Engineering and Master in Machine Learning from Carnegie Mellon University, and her bachelor's degree from Tsinghua University. She has been a postdoctoral research fellow at Stanford University and research scientist at the AI research team in Qualcomm Technologies. Her research focuses on crowdsensing, physics-informed machine learning, and causal Bayesian inference for enabling resilient, effective, and equitable infrastructure systems. She received the Best Paper Award at the IEEE International Conference of Machine Learning and Applications (ICMLA) in 2018, and the champion of NeurIPS 2018 Adversarial Vision Challenge. She is also the recipient of 2019 MIT CEE Rising Star and Dowd Fellowship.

Hae Young Noh Stanford University Stanford, CA

BIOGRAPHY: Dr. Hae Young Noh is an Associate Professor in the Department of Civil and Environmental Engineering at Stanford University. Her research focuses on indirect sensing and physics-guided data analytics to enable low-cost non-intrusive monitoring of cyber-physicalhuman systems. She is particularly interested in developing structures to be self-, user-, and surrounding-aware to improve users' quality of life and provide a safe and sustainable built environment. The results of her work have been deployed in a number of real-world applications from trains, to the Amish community, to eldercare centers, to pig farms. Before joining Stanford, she was a faculty member at Carnegie Mellon University. She received her Ph.D. and M.S. degrees in Civil and Environmental Engineering and the second M.S. degree in Electrical Engineering at Stanford University. She earned her B.S. degree in Mechanical and Aerospace Engineering at Cornell University. She received several awards, including the Google Faculty Research Awards (2013, 2016), the Dean's Early Career Fellowship (2018), the NSF CAREER Award (2017), and various Best Paper Awards from ASCE, ASME, ACM, IEEE, and SEM conferences.

Awards

PHYMDAN: PHYSICS-INFORMED KNOWLEDGE TRANSFER BETWEEN BUILDINGS FOR SEISMIC DAMAGE DIAGNOSIS THROUGH ADVERSARIAL LEARNING

ABSTRACT: Automated structural damage diagnosis after earthquakes is important for improving efficiency of disaster response and city rehabilitation. Conventional supervised learning requires historical structural response data and corresponding damage states (i.e., labels). However, historical data with labels are often not immediately available for many buildings in the affected area after earthquakes. Further, directly using the historical data from previous buildings and earthquakes to construct a damage diagnosis model for the target building would lead to inaccurate results, as each building has unique physical properties and thus unique data distribution. To this end, we introduce a new framework, Physics-Informed Multi-source Domain Adversarial Networks (PhyMDAN), to transfer the model learned from other buildings to diagnose structural damage states in the target building without any labels. This framework is based on an adversarial domain adaptation approach that extracts domain-invariant feature representations of data from different buildings. We evaluate our framework on both numerical simulation and field data collected from multiple building structures. The results show a significant damage detection and quantification accuracy improvement by successfully fusing and transferring the knowledge from multiple simulated buildings to real-world frame, compared to the state-of-the-art benchmark methods.

ENERGY HARVESTING BEST PAPER AWARD

Xiaofan Li Virginia Tech Blacksburg, VA

BIOGRAPHY: Xiaofan Li currently is a postdoc research associate in the Department of Mechanical Engineering at Virginia Tech. He received his BS degree in Mechanical Engineering from Xi'an Jiaotong University, Xi'an, China, in 2015 and his PhD degree in Mechanical Engineering from Virginia Tech, Blacksburg, USA, in 2020. His research interest includes design, dynamic analysis and optimization of the ocean renewable energy systems. He has published more than 20 journal and conference papers in the related fields and holds two patents. He served as an advisor and won 3rd place in DOE Marine Energy Collegiate Competition for 2 years in a row in 2020 and 2021.

Dillon Martin Virginia Tech Blacksburg, VA

BIOGRAPHY: Dillon Martin is currently working as a Project Mechanical Engineer at Oceaneering. He received his MS degree in Mechanical Engineering in 2017, and his BS degree in Mechanical Engineering in 2013, both from Virginia Tech, Blacksburg, VA, USA. After graduating with his MS, Dillon worked as a post-master's associate in the Energy Harvesting and Mechatronics Research Lab at Virginia Tech. From his thesis research, Dillon has published multiple conference papers and journal articles. His research interests are energy harvesting and vibration control.

Changwei Liang Virginia Tech Blacksburg, VA

BIOGRAPHY: Changwei Liang is a mechanical engineer working at Advanced Micro Devices, Inc. Prior joining to AMD, he obtained his PhD from State University of New York at Stony Brook in 2016 under the supervision of Prof. Lei Zuo. He was a visiting PhD student at Virginia Tech from 07/2014-12/2016. His research interest includes energy harvesting, vibration & control, mechatronics design, and wave energy conversion. He has published more than 10 research papers. He won EPA P3 award in 2014 and R&D 100 Awards in 2015. Changwei Liang completed his BS (07/2006) and MS (07/2010) in Engineering Mechanics from Harbin Institute of Technology.

Chien-An Chen Virginia Tech Blacksburg, VA

BIOGRAPHY: Chien-An Chen currently works as a senior system application engineer at Vicor Corporation. He received the BS degree in electrical and control engineering from National Chiao-Tung University, Hsinchu, Taiwan, in 2005 and the MS degree in electrical engineering from National Tsing-Hua University, Hsinchu, Taiwan, in 2007. He received his PhD degree in electrical engineering with the Center for Power Electronics Systems, Virginia Tech, Blacksburg, VA, USA. He was a Senior Electrical Engineer with Delta Electronics, Inc., Taiwan, from 2008 to 2014. He held a summer position in 2019 with Eaton Corporation, Pittsburgh, CA, USA, where he worked on the wide-bandgap solid-state circuit breaker. His research interests include power electronics converters and applications in renewable energy systems, adjustable-speed drive, and reliability.

Robert G. Parker University of Utah Salt Lake city, UT

BIOGRAPHY: Robert G. Parker is a Professor in the Mechanical Engineering Department at the University of Utah. Previously he was Department Head at Virginia Tech and Executive Dean at the University of Michigan-Shanghai Jiao Tong University Joint Institute. He served 13 years on the faculty at Ohio State. He received MS and PhD degrees from the University of California, Berkeley. His expertise is in mechanical system vibration and dynamics. He has published about 140 journal papers, been cited well over 10,000 times. He is a Fellow of the American Society of Mechanical Engineers (ASME), the American Association for the Advancement of Science, and the International Institute of Acoustics and Vibration. He received the 2015 ASME N. O. Myklestad Award for "major innovation in vibration research and engineering." He has received the US Presidential Early Career Award for Scientists and Engineers ("the highest honor awarded by the US government to scientists and engineers early in their independent research careers"), the National Science Foundation CAREER, and the US Army Young Investigator Awards, as well as the ASME Gustus Larson Award, Ford Chief Engineer Award, French government Poste Rouge Award, SAE Ralph Teetor Educational Award, and ASEE's Global Engineering Educator and Outstanding Faculty Awards.

Lei Zuo Virginia Tech Blacksburg, VA

BIOGRAPHY: Lei Zuo is currently an endowed professor of Naval Architecture and Marine Engineering at the University of Michigan. He was previously the Robert E. Hord Jr. Professor of Mechanical Engineering at Virginia Tech, and the director of NSF IUCRC Center for Energy Harvesting Materials and Systems. His research interest includes marine renewable energy (ocean waves, tidal currents, offshore wind), blue economy, energy harvesting, vibration and control, mechatronics design, vehicles and transportation, and advanced manufacturing. His research has been funded with over 80 projects of USD \$25M by various funding agencies and industries. He has authored about 360 papers including over 10 with the best paper awards. He has supervised 16 Ph.D. and 52 master students to completion of their degrees, mentored over 10 postdocs, and advised about 200 undergraduates in senior designs or research. Lei Zuo was the sole recipient of the 2017 ASME Leonardo da Vinci Award and the 2015 ASME Thar Energy Design Award. He also received R&D 100 Awards twice (2015 and 2011) and received 2014 SAE Ralph R. Teetor Educational Award. Lei Zuo completed his BS in Automotive Engineering (07/1997) from Tsinghua University and his MS (02/2002) and Ph.D. (02/2005) in Mechanical Engineering from MIT. He also held a MS (02/2002) in Electrical Engineering from MIT.

CHARACTERIZATION AND VERIFICATION OF A TWO-BODY WAVE ENERGY CONVERTER WITH A NOVEL POWER TAKE-OFF

ABSTRACT: The lack of high efficient, predictable, and reliable power take-off (PTO) systems limits developments of ocean wave energy technology. In this paper, a two-body self-reacting wave energy converter (WEC) with a novel PTO is designed, modelled and implemented for efficiency enhancement. A novel mechanical motion rectifier (MMR) using a ball screw mechanism and an enclosed gear set is integrated to improve the energy harvesting efficiency and reliability by rectifying the oscillatory wave motion into unidirectional rotation of the generator. Detailed design and dynamic modelling for the proposed WEC are presented. A prototype of the PTO is tested in a dry lab to characterize and refine the dynamic modelling. The characterized PTO model is combined with the WEC model to create an overall system model. A water tank test is conducted to verify the overall system dynamics, which proves the accuracy of the model and shows the advantages of the proposed WEC on efficiency and predictability. Following the method of how the WEC system is characterized, performance prediction of the proposed WEC with MMR PTO can be achieved with high accuracy.

ACTIVE AND MULTIFUNCTIONAL MATERIALS TC BEST PAPER AWARD

Cerwyn Chiew University of Washington Seattle, WA

BIOGRAPHY: Cerwyn Chiew is a Ph.D. candidate at the Department of Mechanical Engineering in the University of Washington – Seattle. He is currently a graduate researcher in iMatter Lab, a research group led by Prof. Mohammad Malakooti. Cerwyn is interested in modeling the complex behaviors of soft functional composites which can serve as intelligent materials that can advance the performance of existing wearable devices. To achieve this, his dissertation aims to develop, modify, and apply micromechanics models that can help better understand the mechanics and rapidly predict the multifunctional nonlinear behaviors of novel soft matter composites. Cerwyn received his B.S. and M.S. in Mechanical Engineering from the University of Washington in 2018 and 2022, respectively.

Awards

Mohammad H. Malakooti University of Washington Seattle, WA

BIOGRAPHY: Mohammad H. Malakooti is an Assistant Professor of Mechanical Engineering at the University of Washington – Seattle. He leads the iMatter Lab, a research group dedicated to creating materials that match the extraordinary adaptability, rich multi-functionality, and embodied intelligence of natural material systems by bridging the gap between nanoscale engineering and system-level functionality. He received his PhD at the University of Florida in 2015, had a Postdoctoral Fellowship at the University of Michigan (2015-2017), and was a Research Scientist at Carnegie Mellon University (2017-2019). Dr. Malakooti has published 38 peer-reviewed articles with an h-index of 25 and has given 15 invited talks at top engineering schools in the United States.

A DOUBLE INCLUSION MODEL FOR LIQUID METAL POLYMER COMPOSITES

ABSTRACT: Liquid metal elastomer composites have gained significant attention in advanced technologies including wearable electronics, soft robotics, and human-computer interactions. This is due to the combination of metallic conductivity and fluidic properties of liquid metal (LM) inclusions in addition to their facile fabrication process. With the emergence of gallium-based liquid metal nanocomposites and advances in synthesis and integration of LM nanoparticles in a variety of polymer matrices, there is a pressing need for a materials design tool to accelerate the development of these multifunctional composites. Here, we introduce a double inclusion (DI) model capable of predicting the properties of polymer composites with core-shell liquid metal droplets. The sizedependent elasticity of LM inclusions is modeled by considering the solid gallium oxide interphase between the liquid metal core and the solid polymer matrix. As the size of inclusions reduces from tens of microns to tens of nanometers, the role of the oxide interface (shell) becomes more dominant. The results of the DI model show excellent agreement with finite element analysis and experimental results for a wide range of droplet sizes and volume fractions. This model provides a design framework for the synthesis of LM composites with tailored multifunctional properties.

THANK YOU TO OUR SPONSORS!

PIONEER AWARDS BANQUET & GOLD SPONSOR

GM Research & Development

GM's goal is to deliver world-class customer experiences at every touchpoint and do so on a foundation of trust and transparency. Our vision is a world with zero crashes, zero emissions and zero congestion. Our diverse team of 155,000 employees brings their collective passion for engineering, technology and design to deliver on this ambitious future. And the bold commitments we've made are moving us closer to realizing this vision. Visit us at: https://www.gm.com

BRONZE SPONSOR

Polytec

Polytec is the world's leading manufacturer of high precision, laser-based dynamic characterization systems. Some of the applications we support include MEMS dynamic and material properties characterization, FE-experimental correlation, modal analysis, imaging wave propagation, studying energy harvesting transducers and medical device characterization. In a nutshell, Polytec has a solution for applications demanding high performance, wide dynamic range, fine spatial resolution, 3-D data, or an extensive bandwidth. Visit us at: www.polytec.com

SMASIS DIVISION SPONSOR

University of Michigan

At University of Michigan's Integrative Systems + Design, we empower Systems and Design leaders through our integrative mindset, methodologies and actions to serve the common good. We shape the discipline of Systems + Design through our distinctive integrative research, education, experience, and community. Visit us at: <u>https://isd.engin.umich.edu/</u>

Exhibitors & Sponsors

STUDENT SPONSOR

Fort Wayne Metals

Fort Wayne Metals is a manufacturer of precision wire-based products used in critical applications around the world. Founded in 1970, we're driven by a spirit of innovation, quality, and continual improvement that has pioneered the development of new alloys and revolutionary materials to accommodate a range of applications.

As the world's leading melt-to-finish source for Nitinol to the medical device industry, Fort Wayne Metals processes Nitinol in multiple forms and finishes, including shape set parts and actuators. Powered by a spirit of innovation and a mission to make lives better, we enable solutions for complex design requirements.

Our customers are the focus of everything we do. That's why we are FDA registered and ISO 9001, AS 9100C, and ISO 13485 certified. We constantly expand upon a wide breadth of materials, capabilities, and technical expertise, offering a range of alloys – including Nitinol, titanium, and stainless steel – for a wide spectrum of materials, including round wire, shaped wire, rod, strands, cables, and more. We'll continue to push boundaries because we love advancing our knowledge, enabling us to find better solutions for our customers. Visit us at: www.fwmetals.com

GENERAL SPONSOR

NextGen Aeronautics

At NextGen Aeronautics, we provide innovative solutions to the warfighter and commercial customers. We have proven expertise in a broad range of technical areas, including design, fabrication and testing of UAVs and complex wind tunnel models, multi-functional materials and structures, sensing and control systems, integrated antennas, secure wireless sensors, and composite patch repair of high-performance structures. We have an outstanding team of engineers, scientists, and technicians working on an ever-changing set of exciting and challenging projects, in close collaboration with customers and partners.

Since our founding in 2003, we have completed over 200 projects, ranging from basic research to complete flight and underwater vehicles, for DARPA, Air Force, Navy, Army, major systems integrators, and small companies. Our team generates concepts, develops the designs, creates the technologies, integrates them into systems, and fabricates and tests complete products. We offer extensive design and analysis experience in linear and non-linear finite element analysis, aeroelasticity, and CFD. We can fabricate unique one-of-a-kind prototypes as well as limited rate production of complete vehicles. <u>www.nextgenaero.com</u>

MEDIA SPONSOR

MECHANICAL ENGINEERING

Sponsor Advertisements

C Polytec

QTec[®] multipath technology reinventing scanning vibrometry

Reliable results every time

The cutting-edge testing solution for fast, easy and robust measurement results

Testing Services. Rentals. Leasing. Purchases.

Take advantage of the latest advancements in **vibrometry**: measure on any surface and on moving objects without surface treatment. Achieve the **shortest measurement times** at **high spatial resolution** and **high frequency**. Measure objects in adverse environments such as under vacuum, at high temperatures or when submerged.

Learn more: www.polytec.com

WELCOME TO MICHIGAN!

Home of U-M's Division of Integrative Systems + Design

Our multi-disciplinary division empowers leaders to transform our world in rapidly evolving industries such as automotive, manufacturing and energy systems.

What's our difference?

Embedded in our premier research, education and practice, we apply an integrative mindset to complex systems + design. The result is positively transformative!

Connect with us and experience the IS+D difference.

33

Sponsor Advertisements

We would like to express our appreciation to our Sponsors, General Motors, Polytec, Inc., Fort Wayne Metals, the University of Michigan and NextGen Aeronautics, Inc. for their generosity and continued support. Their contributions help make this conference viable.

THANK YOU!

MONDAY, SEPTEMBER 12 - 8:00AM-9:20AM			
8:30AM	8:50AM	9:10AM	
Salon II			
Day 1 Keynote: James E. Hubbard			
Chairs: Amin Karami, University at Buffalo, James Gibert, Purdue University, Shahrzad Towfighian, Binghamton University			
The Smart Structure of the Mind			
Invited Speaker Presentation: SMASIS2022-100365			
James Hubbard - Texas A&M University			

Technical Sessions

36

MONDAY, SEPTEMBER 12 - 9:30AM-10:40AM			
9:30AM	9:50AM	10:10AM	
Symposium 1 - Development and Characterization of Multifunctional Materials Salon III			
01-01: Shape Memory Alloy Characterization I			
Chair: Guher Pelin Tokar , University of Kentucky Co-Chair: Reza Rizvi – York University			
Effects of Heat Treatments on the Shape Memory Behavior	Empirical Relationships for Calculating the Fracture	Miniature Self-Biasing High Temperature SMA Actuators:	
of NiTiHf High Temperature Shape Memory Alloys	Toughness of Ni2MnGa Magnetic Shape Memory Alloys	Production and Characterization	
Fabricated by Laser Powder Bed Fusion	Mechanical Loading	Technical Presentation Only: SMASIS2022-98912	
Technical Presentation Only: SMASIS2022-91014			
Outor Della Talana (14) and to (14) at a la Mahammadaan	Technical Presentation Only: SMASIS2022-98015	Jak Li - Smarter Alloys, Siu Kei Tang - Smarter Alloys, Michael	
Nematollahi - University of Toledo. Kevvan Safaei - University	Glen D'Silva - Northern Arizona University. Constantin	Kuntz - Smarter Alloys, Ibraneem Knan - Smarter Alloys	
of Toledo, Othmane Benafan - NASA Glenn Research Center,	Ciocanel - Northern Arizona University		
Osman Anderoglu - University of New Mexico, Mohammad			
Elahinia - University of Toledo, Haluk Ersin Karaca - University			
of Rentucky			

Symposium 2 - Mechanics & Behavior Active Materials		Salon IV		
02-01: Multiferroics				
Chair: Paris Von Lockette - Pennsylvania State University Co-Chair: Douglas Nicholson - The Boeing Company				
Magnetoelectric Response of Multiferroic Polymeric Composites Containing a Magnetoactive Elastomer	Effect of Viscoelasticity on Tunneling Conduction of Piezoresistive Carbon Nanotube Polymer Composites	Multiscale Modeling of Mangetostriction; a Probabilistic Approach to Magnetic Domain Structures		
Technical Presentation Only: SMASIS2022-90574	Technical Presentation Only: SMASIS2022-90591	Technical Presentation Only: SMASIS2022-91058		
Gašper Glavan - East Bavarian Centre for Intelligent Materials, Ostbayerische Technische Hochschule Regensburg, Inna Belyaeva - East Bavarian Centre for Intelligent Materials, Ostbayerische Technische Hochschule Regensburg, Mikhail Shamonin - East Bavarian Centre for Intelligent Materials, Ostbayerische Technische Hochschule Regensburg	Kawai Kwok - University of Central Florida, Wolfgang Klimm - University of Central Florida	Alecsander Imhof - Virginia Tech, John Domann - Virginia Tech		
MONDAY, SEPTEMBER 12 - 9:30AM-10:40AM				
---	---	--	--	--
9:30AM	10:10AM			
Symposium 3 - Modeling, Simulation and Control of Adaptive Systems Fairlane Ballroom				
03-01: Design of Smart and Adaptive Systems I				
Chair: Andres Arrieta - Purdue University Co-Chair: Jovana Jovanova - TUDelft, Netherlands				
Actuation of Fiber-Reinforced Polymer Surfaces with Multiple Programmable Shapes	Implementation of an Origami Dynamics Model Based on the Absolute Nodal Coordinate Formulation (ANCF)	Self-Assembly by 4D Printing: Design and Fabrication of Sequential Self-Folding		
Technical Presentation Only: SMASIS2022-88954	Technical Paper Publication: SMASIS2022-89315	Technical Paper Publication: SMASIS2022-89459		
Giada Risso - ETH Zürich, Maria Sakovsky - Stanford University, Paolo Ermanni - ETH Zurich	Jiayue Tao - Clemson University, Suyi Li - Clemson University	Siyuan Zeng - Zhejiang University, Yicong Gao - Zhejiang University, Jianrong Tan - Zhejiang University, Zhe Wei - Shenyang University of Technology		

Symposium 4 - Integrated System Design and Implementation Salon I					
04-01: Adaptive Aerospace Structures I	04-01: Adaptive Aerospace Structures I				
Chair: Srinivas Vasista – German Aerospace Center (DLR) Co-Chair: Farhan Gandhi – Rensslear Polytechnic Institute					
Design and Manufacture of a Fluid-Actuated Morphing Winglet Trailing Edge Control Surface	Aerodynamic Modeling and Analysis of a Variable Camber Piezocomposite Rotor	A Reduced-Order Multi-Body Model for Ornithopters with Piezocomposite Flapping Wings			
Technical Paper Publication: SMASIS2022-91054	Technical Paper Publication: SMASIS2022-91111	Technical Paper Publication: SMASIS2022-90409			
Srinivas Vasista - German Aerospace Center, Felix Nolte - Technische Universitaet Braunschweig, Michael Schäfer - German Aerospace Center, Johannes Riemenschneider - German Aerospace Center	Bharg Shah - <i>Rutgers University</i> , Onur Bilgen - <i>Rutgers</i> <i>University</i>	Xin Shan - Rutgers University, Onur Bilgen - Rutgers University			

MONDAY, SEPTEMBER 12 - 9:30AM-10:40AM			
9:30AM	9:50AM	10:10AM	
Symposium 5 - Structural Health Monitoring		Firestone	
05-01: Machine Learning			
Chair: Nathan Salowitz - University of Wisconsin-Milwaukee Co-Chair: Rishikesh Srinivasaraghavan Govindaraj - Embry Ridd	le Aeronautical University		
Distributed Damage Characterization Enabled by Tomographic	Methods	An Information Theory Approach for Internet of Things Enabled Damage Monitoring	
Invited Speaker Presentation: SMASIS2022-98033		Technical Paper Publication: SMASIS2022-91119	
Kenneth Lon - University of California, San Diego		Sarah Malik - Drexel University, Antonios Kontsos - Drexel University	
Symposium 6 - Bioinspired Smart Materials and Systems		Salon II	
06-01: Design and Modeling of Bioinspired Systems I			
Chair: Eric Freeman - University of Georgia Co-Chair: Jeong Yong Kim – North Carolina State University			
On the Paradox of Twisted and Coiled Polymer Actuators (Matt, this moved from Wednesday to Monday)	Workspace Evolution of Hard Magnetic Soft Elastica Technical Paper Publication: SMASIS2022-91001	Rapid Design Cycles of Insect Scale Jumping Robot Phenotypes	
Technical Presentation Only: SMASIS2022-91495	Juturu Swetha - Indian Institute of Technology Madras,	Technical Presentation Only: SMASIS2022-91234	
Qiong Wang - University of Illinois, Liuyang Cheng - University of Illinois at Urbana-Champaign, Anan Ghrayeb - University of Illinois at Urbana-Champaign, Jeongmin Kim - University of Illinois at Urbana-Champaign, Seong Hyeon Kim - University of Illinois at Urbana-Champaign, Samuel Tsai - University of Illinois at Urbana-Champaign, Sameh Tawfick - University of Illinois at Urbana-Champaign	Ganesh Tamadapu - Indian Institute of Technology Madras, Shaikh Faruque Ali - Indian Institute of Technology Madras	Yuzhe Wang - University of Illinois at Urbana-Champaign, Qiong Wang - University of Illinois at Urbana-Champaign, Mingchao Liu - University of Oxford, Yimeng Qin - University of Illinois at Urbana-Champaign, Liuyang Cheng - University of Illinois at Urbana-Champaign, Ophelia Bolmin - University of Illinois at Urbana-Champaign, Marianne Alleyne - University of Illinois at Urbana-Champaign, Aimy Wissa - Princeton University, Ray H. Baughman - The University of Texas at Dallas, Dominic Vella - University of Oxford, Sameh Tawfick -	

University of Illinois at Urbana-Champaign

38_

MONDAY, SEPTEMBER 12 - 10:50AM-12:10PM			
10:50AM	11:10AM	11:30AM	11:50AM
Symposium 1 - Development and Characterizat	tion of Multifunctional Materials		Salon III
01-02: Active Polymers and Elastomers			
Chair: Ji Su – <i>University of Kentucky</i> Co-Chair: Mason Zadan – <i>Carnegie Mellon</i>			
Fabrication of 3D Printed Thermoelectric Devices for Integration into Liquid Crystal	Thermomechanical Properties of Liquid Crystal Elastomer Films	Effect of Multilayer Dielectric Elastomer Actuator (DEA) Construction on	
Elastomer Actuators	Technical Presentation Only:	Performance and Breakdown Strength	
Technical Paper Publication: SMASIS2022-91144	SMASIS2022-91149	Technical Paper Publication: SMASIS2022-93851	
	Russell Mailen - Auburn University		
Mason Zadan - Carnegie Mellon University, Dinesh K. Patel - Carnegie Mellon University, Mohammad Malakooti - University of Washington, Lining Yao - Carnegie Mellon University, Carmel Majidi - Carnegie Mellon University		Md Abdulla Al Masud - 3M Company, Lindsey Hines - 3M Company, Chin-Yee Ng - 3M Company, Jia Hu - 3M Company	

MONDAY, SEPTEMBER 12 - 10:50AM-12:10PM	L. C.		
10:50AM	11:10AM	11:30AM	11:50AM
Symposium 2 - Mechanics & Behavior Active N	laterials		Salon IV
02-02: Performance of Shape Memory Alloys			
Chair: Douglas Nicholson – The Boeing Compan Co-Chair: Drew Forbes – Fort Wayne Metals	<i>ny</i>		
Investigations of the Long-Term Behavior of Electrically Heated Shape Memory Alloy Wires Deflected by a 90° Pulley	Influence of the Phase Transformation Behaviour of NiTi Shape Memory Alloy Wires on the Predictability of Strain During Operation	Design of a Modular Lifespan Test Bench for Shape Memory Alloy Wires	A Thermodynamically-Informed Phase-Field Model to Study the Martensite Formation in a Novel Type of Iron-Based SMA
Technical Paper Publication: SMASIS2022-88502	Technical Paper Publication: SMASIS2022-88882	SMASIS2022-90483 Joshua Mayer - Center for Mechatronics	Technical Presentation Only: SMASIS2022-90911
Tobias Schmelter - Ruhr-University Bochum, Benedict Theren - Ruhr-University Bochum, Adrian Kielczewski - Ruhr-University Bochum, Bernd Kuhlenkötter - Ruhr-University Bochum	Benedict Theren - Ruhr-University Bochum, Philipp Heß - Bergische Universität Wuppertal, Stefan Bracke - Bergische Universität Wuppertal, Bernd Kuhlenkötter - Ruhr-University Bochum	and Automation Technology (ZeMA gGmbH), Philipp Molitor - Center for Mechatronics and Automation Technology (ZeMA gGmbH), Yannik Goergen - Center for Mechatronics and Automation Technology (ZeMA gGmbH), Paul Motzki - Center for Mechatronics and Automation Technology (ZeMA gGmbH)	Bjoern Kiefer - <i>TU Bergakademie Freiberg,</i> Vincent Von Oertzen - <i>TU Bergakademie</i> <i>Freiberg,</i> Andreas Leineweber - <i>TU</i> <i>Bergakademie Freiberg,</i> Alexander Walnsch - <i>TU Bergakademie Freiberg</i>

MONDAY, SEPTEMBER 12 - 10:50AM-12:10PM	L. C.		
10:50AM	11:10AM	11:30AM	11:50AM
			·
Symposium 3 - Modeling, Simulation and Cont	rol of Adaptive Systems		Fairlane Ballroom
03-02: Acoustics and Vibration Control			
Chair: Uwe Marschner - Technische Universität I Co-Chair: Jovana Jovanova - TU Delft, Netherla	Dresden nds		
2D Active Liner Experimental Results in	Numerical Computation of the Acoustic	Electroelastic Metasurface With Multi-	Characterization of Adaptive Piezoelectric
Acoustic Flow Duct Facility	Response of an Active Airfoil With	Resonant Piezoelectric Shunts for	Elastic Waveguiding Metasurfaces
	Impedance Boundary Conditions to a	Simultaneous Anomalous Wavefront Control	
Technical Paper Publication:	Turbulent Wake	Over Distinct Frequencies	Technical Presentation Only:
SMASIS2022-88324			SMASIS2022-98824
	Technical Paper Publication:	Technical Presentation Only:	
Kevin Billon - Université de Lyon, Manuel	SMASIS2022-90914	SMASIS2022-98911	Joshua Dupont - University of Connecticut,
Collet - Université de Lyon, Edouard Salze -			Ting Wang - University of Connecticut, Yang
Université de Lyon, Martin Gillet - Université	Mouhamed Mounibe Ezzine - Université de	Zhenkun Lin - University of Michigan, Serife	Zhang - University of Connecticut, Jiong Tang
de Bourgogne Franche-Comté, Morvan	Lyon, Jonathan Rodriguez - Université de	Tol - University of Michigan	- University of Connecticut
Ouisse - Université de Bourgogne Franche-	Lyon, Matthias Perez - Université de Lyon,		
Comté, Maxime Volery - Ecole Polytechnique	Kevin Billon - Université de Lyon, Jacky		
Fédérale de Lausanne, Hervé Lissek - Ecole	Mardjono - Safran Aircraft Engines, Vincent		

Clair - Université de Lyon, Manuel Collet -

Université de Lyon

Polytechnique Fédérale de Lausanne, Jacky

Mardjono - Safran Aircraft Engines

MONDAY, SEPTEMBER 12 - 10:50AM-12:10PM			
10:50AM	11:10AM	11:30AM	11:50AM
Symposium 4 - Integrated System Design and	Implementation		Salon I
04-02: Adaptive Aerospace Structures II			
Chair: Johannes Riemenschneider - German Ae Co-Chair: Patrick Musgrave - University of Floria	rospace Center (DLR) 'a		
Autonomous Morphing	02	Aeroacoustic and Structural Achievements for a Morphing Blade Twist System	Experimental Tests of a SMA Based Blade Twist System: Wind Tunnel and Whirl Tower
Invited Speaker Presentation: SMASIS2022-910	83	Adaptive Blades for Rotorcraft Efficiency	Outcomes
Farhan Gandhi - Rensselaer Polytechnic Univers	ity	Technical Paper Publication: SMASIS2022-90790 Salvatore Ameduri - Italian Aerospace Research Centre, Antonio Concilio - Centro Italiano Ricerche Aerospaziali, Antonio Visingardi - Centro Italiano Ricerche	Technical Paper Publication: SMASIS2022-91454 Salvatore Ameduri - Italian Aerospace Research Centre, Monica Ciminello - Centro Italiano Ricerche Aerospaziali, Antonio Concilio - Centro Italiano Ricerche Aerospaziali, Ignazio Dimino - Centro Italiano
		Aerospaziali, Luigi Federico - Centro Italiano Ricerche Aerospaziali, Mattia Barbarino - Centro Italiano Ricerche Aerospaziali, Pier Luigi Vitagliano - Centro Italiano Ricerche Aerospaziali	Ricerche Aerospaziali, Bernardino Galasso - Centro Italiano Ricerche Aerospaziali, Mariano Guida - Centro Italiano Ricerche Aerospaziali, Marco Miceli - Aerospace Laboratory for Innovative Components, Johannes Riemenschneider - Deutsches Zentrum für Luft- und Raumfahrt, Steffen Kalow - Deutsches Zentrum für Luft- und Raumfahrt, Jannis Luebker - Deutsches Zentrum für Luft- und Raumfahrt, Stephane Fournier - University of Bristol, Andres E Rivero - University of Bristol, Benjamin King Sutton Woods - University of Bristol

MONDAY, SEPTEMBER 12 - 10:50AM-12:10PM	л		
10:50AM	11:10AM	11:30AM	11:50AM
Symposium 5 - Structural Health Monitoring			Firestone
05-02: Impedance Based Methods			
Chair: Daewon Kim - Embry Riddle Aeronautica	University		
Co-Chair: Muhammad Istiaque Haider - Univers	sity of Wisconsin Milwaukee		
On the Development of a Concentric	Temperature Compensation for	Towards Meta-Fixture Design for	
Cylindrical Model for the Deformation-	Electromechanical Impedance Signatures	Indirect Electromechanical Impedance	
Dependent Electrical Resistivity of Fiber-	with Data-Driven Modeling	Measurements: On the Effects of Elastic	
Reinforced Composites		Metastructures on Defect Detection	
	Technical Paper Publication:	Capabilities	
Technical Paper Publication:	SMASIS2022-91151		
SMASIS2022-89142		Technical Paper Publication:	
	James Femi-Oyetoro - Tennessee	SMASIS2022-91160	
Sultan Ghazzawi - Purdue University, Tyler	Technological University, Sourabh Sangle		
Tallman - Purdue University	- Texas A&M University, Pablo Tarazaga -	Peter Oyekola - Tennessee Technological	
	Texas A&M University, Mohammad Albakri	University, Mohammad Albakri - Tennessee	
	- Virginia Tech	Technological University, Rogers William -	
		Tennessee Technological University	

MONDAY, SEPTEMBER 12 - 10:50AM-12:10PM				
10:50AM	11:10AM	11:30AM	11:50AM	
Symposium 6 - Bioinspired Smart Materials an	Symposium 6 - Bioinspired Smart Materials and Systems Salon II			
06-02: Microfabrication and Soft Tissues				
Chair: Caterina Lamuata – University of Iowa Co-Chair: Steven Anton - Tennessee Tech Unive	ersity			
Analyzing the Mechanical Properties Along the Length of Human Achilles Tendon	Bioprinted Droplet Network Functionalized Tissues	Invited Speaker Presentation		
Technical Paper Publication: SMASIS2022-91158	Technical Presentation Only: SMASIS2022-91060	North Carolina State University		
Miguel Angel Fuentes Garcia - Tennessee Technological University, Abigail Wohlfert - Alma College, David Chesson - Tennessee Technological University, Jennifer Vranish - Alma Collage, Steven Anton - Tennessee Technological University	Jessie D. Ringley - University of Tennessee, Mckayla Torbett - University of Tennessee, Aída Fica-Conejeros - University of Texas at Austin, Manish Kumar - University of Texas at Austin, Stephen A. Sarles - University of Tennessee			

MONDAY, SEPTEMBER 12 - 1:40PM-3:20PM			
1:40PM	2:00PM	2:20PM	3:00PM
Symposium 1 - Development and Characteriza	tion of Multifunctional Materials		Salon III
01-03: Liquid Metal Composites			
Chair: Mohammed Malakooti - University of Was Co-Chair: Eric Markvicka - University of Nebrash	shington Ka		
Elastomer Composites with Hybrid Liquid Metal Fillers for Independently Controllable Properties	Functional Elastomer Composites for Wearable Thermoelectric Energy Scavengers	Liquid Metal Electronics Invited Speaker Presentation: SMASIS2022-100)315
Technical Presentation Only: SMASIS2022-88921	Technical Presentation Only: SMASIS2022-88584	Christopher Tabor - Air Force Research Laborat	ory
Ethan Krings - University of Nebraska- Lincoln, Haipeng Zhang - University of Nebraska-Lincoln, Suchit Sarin - University of Nebraska-Lincoln, Jeffery Shield - University of Nebraska-Lincoln, Sangjin Ryu - University of Nebraska-Lincoln Eric Markvicka - University of Nebraska- Lincoln	Youngshang Han - University of Washington, Leif-Erik Simonsen - University of Washington, Mohammad H. Malakooti - University of Washington		

MONDAY, SEPTEMBER 12 - 1:40PM-3:20PM			
1:40PM	2:00PM	2:20PM	3:00PM
Symposium 2 - Mechanics & Behavior Active N	laterials		Salon IV
02-03: Shape Memory Alloys			
Chair: Mike Kuntz – Smarter Alloys Co-Chair: Douglas Nicholson – The Boeing Con	npany		
Micro Laser Welding of NiTi Shape Memory Wires and Printed Circuit Boards	Shape Memory Alloy Rendering of Experimental Analysis and Calibration Tool	Design of Soft Magnetic Materials	
		Technical Presentation Only:	
Technical Paper Publication: SMASIS2022-90970	Technical Presentation Only: SMASIS2022-91582	SMASIS2022-98307	
		Ananya Renuka Balakrishna - University of	
Marvin Schuleit - Ruhr-Universität Bochum, Benedict Theren - Ruhr-Universität Bochum, Burkhard Maaß - Ingpuls GmbH, Bernd Kuhlenkoetter - Ruhr-Universität Bochum, Cemal Esen - Ruhr University Bochum	Suhrit Lavu - Texas A&M University, Tiago Gunter - Texas A&M University, Muning Fan - Texas A&M University, Priscilla Nizio - Texas A&M University, Patrick Walgren - Texas A&M University, Jacob Mingear - Texas A&M University, Darren Hartl - Texas A&M University	Southern California	

MONDAY, SEPTEMBER 12 - 1:40PM-3:20PM			
1:40PM	2:00PM	2:20PM	3:00PM
Symposium 3 - Modeling, Simulation and Cont	trol of Adaptive Systems		Fairlane Ballroom
03-03: Modeling Complex Materials and Syste	ms		
Chair: Uwe Marschner – Technische Universität	Dresden		
Mechatronic Design and Physical Prototyping of a Three-Fingered Gripper for Underwater Manipulation	Dynamic Modelling and Robust Control for Twisted and Coiled Artificial Muscles	Analogies Between Stimuli-Responsive (Smart) Hydrogel-Based Microfluidic Valves and Electronic Transistors	Electromechanical Model of Dielectric Elastomer Transducers
Technical Paper Publication: SMASIS2022-92010	Technical Presentation Only: SMASIS2022-89013	Technical Paper Publication: SMASIS2022-91225	Technical Paper Publication: SMASIS2022-90955
Mario Baggetta - University of Genoa, Giovanni Berselli - University of Genoa, Gianluca Palli - University of Bologna, Claudio Melchiorri - University of Bologna	Thilina Weerakkody - University of Iowa, Maxwell Hammond - University of Iowa, Venanzio Cichella - University of Iowa, Caterina Lamuta - University of Iowa	Uwe Marschner - Technische Universität Dresden, Anthony Beck - Technische Universität Dresden, Philipp Mehner - Technische Universität Dresden, Georgi Paschew - Technische Universität Dresden, Andreas Voigt - Technische Universität Dresden, Andreas Richter - Technische Universität Dresden	Petko Bakardjiev - Technische Universität Dresden, Uwe Marschner - Technische Universität Dresden, Andreas Richter - Technische Universität Dresden, M. Ercan Altinsoy - Technische Universität Dresden

MONDAY, SEPTEMBER 12 - 1:40PM-3:20PM				
1:40PM	2:00PM	2:20PM	3:00PM	
Symposium 4 - Integrated System Design and	Symposium 4 - Integrated System Design and Implementation Salon I			
04-03: Optimization and Control of Active Sys	tems			
Chair: Patrick Musgrave – University of Florida Co-Chair: Onur Bulgen – Rutgers University				
Feedback Control for Traveling Wave Generation with Bending Actuators	Modified Triply Periodic Actuator Topologies Technical Paper Publication:	Experimental Validation for a Multi- Objective Optimized Piezocomposite Morphing Airfoil	Design Optimization of a Piezocomposite Ornithopter Wing Planform Using a Genetic Algorithm	
Technical Paper Publication: SMASIS2022-90695	SMASIS2022-91015 Marc Sparenberg - German Aerospace	Technical Paper Publication: SMASIS2022-90581	Technical Paper Publication: SMASIS2022-90706	
Amit Bhayadia - University at Buffalo, Anthony Olivett - University at Buffalo, M. Amin Karami - University at Buffalo	Center Braunschweig, Jörg Melcher - German Aerospace Center Braunschweig	Cody Wright - Rutgers University Onur Bilgen - Rutgers University	Mohammad Katibeh - Rutgers University Onur Bilgen - Rutgers University	

Symposium 5 - Structural Health Monitoring

05-03: Vibration Based Methods

Chair: **Tyler Tallman** – *Purdue University* Co-Chair: **Daewon Kim** - *Embry Riddle Aeronautical University*

Random Vibration Based Robust Damage Detection on an Operating Wind Turbine Blade Under Variable Natural Excitation	Vibration-Based Bridge Damage Detection Using Image-Based Pre-Trained Deep Learning Network	Towards Computational Super-Resolution Ultrasonic Array Imaging of Material Defects via Hierarchical Multi-Scale Deep Learning
Conditions		
	Technical Paper Publication:	Technical Presentation Only:
Technical Paper Publication:	SMASIS2022-88421	SMASIS2022-97722
SMASIS2022-90936		
	Xi Song - University of Hawaii at Manoa,	Homin Song - Gachon University, Yongchao
Panagiotis Konis - University of Patras, Dmitri	Joshua Dyogi - University of Hawaii at	Yang - Michigan Technological University
Tcherniak - Bruel & Kjaer, Spilios Fassois -	Manoa, Chunhee Cho - University of Hawaii	
University of Patras	at Manoa	

Firestone

MONDAY, SEPTEMBER 12 - 1:40PM-3:20PM			
1:40PM	2:00PM	2:20PM	3:00PM
Symposium 6 - Bioinspired Smart Materials an	d Systems		Salon II
06-03: Artificial Synapses and Electroactive M	aterials		
Chair: Andy Sarles – University of Tennessee Co-Chair: Steve Anton – Tennessee Tech Unive	rsity		
Biomolecular Membrane-Based Soft Materials for Multifunctional, Adaptive, and Neuromorphic Systems	Novel Geopolymer Based Artificial Synapses	Biorealistic Short-Term Plasticity in Biomolecular Synapses Enhances Reservoir Computing Classification	Investigation Into Piezoelectric Nanoparticle Dispersion in Polymethyl Methacrylate Bone Cement
Technical Presentation Only: SMASIS2022-91217	Mahmudul Alam Shakib - The University of	Technical Presentation Only: SMASIS2022-89181	Technical Paper Publication: SMASIS2022-91020
Michelle Makhoul-Mansour - The University of Tennessee, Joshua Maraj - The University of Tennessee, Stephen A. Sarles - The University of Tennessee	lowa, Zhaolin Gao - The University of Iowa, Caterina Lamuta - The University of Iowa	Joshua Maraj - The University of Tennessee, Stephen A. Sarles - The University of Tennessee	Brandon Hines - Tennessee Tech University, Steven Anton - Tennessee Tech University, Holly Stretz - Tennessee Tech University

MONDAY, SEPTEMBER 12 - 3:40PM-5:20PM			
3:40PM	4:00PM	4:20PM	5:00PM
Symposium 1 - Development and Characteriza	tion of Multifunctional Materials		Salon III
01-04: Modeling and Characterization of Multi	functional Materials		
Chair: Sumit Gupta – Oak Ridge National Labor Co-Chair: Gary Siedel – Virginia Tech	atory		
Effective Property Prediction of	Simulating the Effects of Porosity on the D31	Effect of Heterogeneity and Voids on	Shape Morphing Mechanical Metamaterials
Multifunctional CNT-Polymer	Piezoelectric Coefficient of Polyvinylidene	the Piezoresistive Response of CNT-	for Multifunctional Robots
Nanocomposites via Reduced-Order Two-	Fluoride	Based Polymer Bonded Energetics Using	
Point Cluster and Blocking Functions		Statistical Correlation Functions	Technical Presentation Only:
	Technical Paper Publication:		SMASIS2022-91256
Technical Presentation Only:	SMASIS2022-90607	Technical Presentation Only:	
SMASIS2022-91426		SMASIS2022-91429	Michael D. Bartlett - Virginia Tech
	Jack Kloster - University of Minnesota Duluth		
Kavan Shah - Virginia Tech	Matthew Danley - University of Minnesota	Pranay Anekal - Virginia Tech	
Gary Seidel - Virginia Tech	Duluth	Gary Seidel - Virginia Tech	
	Victor Lai - University of Minnesota Duluth		
	Ping Zhao - University of Minnesota Duluth		
	Tony Struntz - University of Minnesota Duluth		

MONDAY, SEPTEMBER 12 - 3:40PM-5:20PM			
3:40PM	4:00PM	4:20PM	5:00PM
Symposium 2 - Mechanics & Behavior Active N	laterials		Salon IV
02-04: Modeling and Simulation of Active Mat	erials		
Chair: Paris Von Lockette - Pennsylvania State L Co-Chair: Douglas Nicolson – The Boeing Comp	Jniversity Dany		
Multi-Objective Optimization of Predicted Magnetic Properties from Multifield Processing Conditions in Polymer Matrix Particle Composites	Finite Element Analysis of the Nonlinear Material Behavior of Ferroelectrics Under Complex Load Scenarios	A Comparison of Meshfree and Finite Element Based Magnetostatic Modeling Technical Presentation Only:	A Common Simulating Model on Complicated Self-Deformation of 4D Printed Bilayer Structures
Technical Paper Publication: SMASIS2022-91175	Technical Presentation Only: SMASIS2022-91710 Felix Sutter - Karlsruhe Institute of	SMASIS2022-92672 Bala Shanmugam - Virginia Tech, John Domann - Virginia Tech	Technical Paper Publication: SMASIS2022-89036 Yixiong Feng - Zhejiang University, Junjie
Denise Widdowson - The Pennsylvania State University, Anil Erol - Air Force Research Lab, Dashiell Papula - The Pennsylvania State University, Zoubeida Ounaies - The Pennsylvania State University, Paris Von Lockette - The Pennsylvania State University	Technology, Marc Kamlah - Karlsruhe Institute of Technology		Song - Zhejiang University, Yong Wang - Zhejiang University, Siyuan Zeng - Zhejiang University, Zhaoxi Hong - Zhejiang University, Hao Qiu - Zhejiang University, Jianrong Tan - Zhejiang University

MONDAY, SEPTEMBER 12 - 3:40PM-5:20PM			
3:40PM	4:00PM	4:20PM	5:00PM
Symposium 3 - Modeling, Simulation and Cont	rol of Adaptive Systems		Fairlane Ballroom
03-04: Shape Memory Alloy Characterization I	I.		
Chair: Kenny Pagel , Fraunhofer Institute for Maca Co-Chair: Jovana Jovanova , TU Delft, Netherlan	hine Tools and Forming Technology ds		
Characterization and Modeling of the System Behavior of High Load SMA Actuators	Effect of Coating on the Continuous Cycle Actuation of Shape Memory Alloy Wires: Analyses and Experiments	A Finite-Strain Phase-Field Model for Fracture in Shape Memory Alloys: Modeling Framework and Experimental Validation	
Technical Paper Publication: SMASIS2022-88892	Technical Paper Publication: SMASIS2022-90983	Technical Presentation Only: SMASIS2022-88386	
Daniel Maiwald - Fraunhofer IWU, Toennis Trittler - Fraunhofer Institute for Machine Tools and Forming, André Bucht - Fraunhofer Institute for Machine Tools and Forming, Kenny Pagel - Fraunhofer Institute for Machine Tools and Forming, Welf-Guntram Drossel - Fraunhofer Institute for Machine Tools and Forming	Ahmad Shaikh - Indian Institute of Science, Shardul Panwar - Toyota Research Institute of North America, Ryohei Tsuruta - Toyota Research Institute of North America, Umesh Gandhi - Toyota Research Institute of North America	Theocharis Baxevanis - University of Houston, Mehedi Md Hasan - University of Houston	

MONDAY, SEPTEMBER 12 - 3:40PM-5:20PM			
3:40PM	4:00PM	4:20PM	5:00PM
Symposium 4 - Integrated System Design and	Implementation		Salon I
04-04: Integrated Smart Systems			
Chair: Brent Utter – <i>Lafayette College</i> Co-Chair: Jonathan Luntz – <i>University of Michig</i>	an		
Investigation of Mounting Techniques for Concrete Floor-Mounted Accelerometers Used in Smart Buildings	Hinged Tile-Based Air Surface for Morphing Windshield Cowling	Challenges of Upscaling Power Composites for Aerospace Applications	Integrated Piezoceramic Sensors for Local Ice Detection
	Technical Paper Publication:	Technical Paper Publication:	Technical Presentation Only:
Technical Paper Publication: SMASIS2022-91178	SMASIS2022-91443	SMASIS2022-91201	SMASIS2022-91089
	Tiantian Li - University of Michigan, Jonathan	Sebastian Geier - German Aerospace Center,	Johannes Riemenschneider - German
Jacob Hott - Tennessee Technological	Luntz - University of Michigan, Diann Brei	Jan Petersen - German Aerospace Center,	Aerospace Center, Julia Feder - Technical
University, Steven Anton - Tennessee	- University of Michigan, Wonhee Kim -	Peter Wierach - German Aerospace Center	University of Braunschweig, Martin Pohl
Technological University	General Motors Research and Development,		- German Aerospace Center, Michael
	Paul Alexander - General Motors Research		J. Sinapius - Technical University of
	ana Development		Braunschweig
Symposium 5 - Structural Health Monitoring Firestone			

05-04: Sensor Design

Chair: **Rishikesh Srinivasaraghavan Govindaraj** - *Embry Riddle Aeronautical University* Co-Chair: **Tyler Tallman** - *Purdue University*

Flexible Piezoelectric Wave-Based Sensor: Numerical Analysis and Validation	Additive Manufacturing of Advanced Active Sensing Tags for Structural Health Monitoring Systems	Development of Embeddable Additive Manufacturing Microsensors for Structural Health Monitoring
Technical Paper Publication:		J
SMASIS2022-91069	Technical Presentation Only:	Technical Paper Publication:
	SMASIS2022-91045	SMASIS2022-91047
Rishikesh Srinivasaraghavan Govindarajan		
- Embry-Riddle Aeronautical University,	Jeffrey Bergman - NextFlex, Alexander Cook	Nicholas Reed - Embry-Riddle Aeronautical
Foram Madiyar - Embry-Riddle Aeronautical	- NextFlex, Kevin Durkee - Aptima, Inc., John	University, Daewon Kim - Embry-Riddle
University, Daewon Kim - Embry-Riddle	Feeney - Aptima, Inc., Ian Trase - Aptima,	Aeronautical University
Aeronautical University	Inc., Robert Mcmanus - NextFlex, Alexander	
	Brandt - NextFlex	

MONDAY, SEPTEMBER 12 - 3:40PM-5:20PM			
3:40PM	4:00PM	4:20PM	5:00PM
Symposium 6 - Bioinspired Smart Materials an	d Systems		Salon II
06-04: Design and Modeling of Bioinspired Sy	rstems II		
Chair: Eric Freeman – University of Georgia Co-Chair: Michael Philen – Virginia Tech			
Modeling of a Nonlinear Superelastic Thermally Actuated Compliant Mechanism	A Method to Generate 3D Patient-Specific Total Knee Arthroplasty Tibia Models	Optimal Bipennate Fluidic Artificial Muscle Bundle Design for Ankle Joint Motion with Limited Volumetric Capacity	Implications of Resistive Force on Variable Recruitment Fluidic Artificial Muscle Bundle State Transition
Technical Presentation Only:	Technical Paper Publication:		
SMASIS2022-90690	SMASIS2022-91008	Technical Paper Publication: SMASIS2022-92022	Technical Paper Publication: SMASIS2022-91587
Brianne Hargrove - The Pennsylvania State	Andrew Gothard - Tennessee Technological		
University, Mary Frecker - The Pennsylvania	University, Steven Anton - Tennessee	Emily Duan - North Carolina State University,	Jeong Yong Kim - North Carolina State
State University, Jovana Jovanova - TU Delft,	Technological University	Matthew Bryant - North Carolina State	University, Matthew Bryant - North Carolina
Netherlands		University	State University

Symposium 8 - Emerging Technologies			Rouge River
08-01: Design and Optimization			
Chair: Richard Beblo - <i>Air Force Research Labc</i> Co-Chair: Paul Motzki - <i>Saarland University</i>	oratory/RQVC		
Dispersion Optimization of Phononic	Development of Material Property	Broadband Subwavelength Imaging via	In-Plane Mechanical Properties of an
Crystals Using Learning-Based Approach	Feasibility Constraints for a Multiscale	Phononic Crystal Flat Lenses	Adaptive Honeycomb Structure
	Topology Optimization Framework Using		
Technical Presentation Only:	Radial Basis Function Interpolations	Technical Presentation Only:	Technical Presentation Only:
SMASIS2022-98861		SMASIS2022-98817	SMASIS2022-90737
	Technical Paper Publication:		
Wei-Chun Lu - University of Michigan,	SMASIS2022-97312	Hrishikesh Danawe - University of Michigan,	Ting Li - Harbin Institute of Technology, Jian
Hrishikesh Danawe - University of Michigan,		Serife Tol - University of Michigan	Sun - Harbin Institute of Technology, Jinsong
Serife Tol - University of Michigan	Brent Bielefeldt - National Research		Leng - Harbin Institute of Technology, Yanju
	Council, Richard Beblo - Air Force Research		Liu - Harbin Institute of Technology
	Laboratory, Kevin Lawson - University of		
	Dayton, Robert Lowe - University of Dayton		

TUESDAY, SEPTEMBER 13 - 8:30AM-9:40AM			
8:30AM	8:50AM	9:10AM	
Symposium 1 - Development and Characterization of Multifunc	tional Materials	Salon III	
01-05: Composites and Hybrid Systems			
Chair: Amir Ameli , <i>University of Massachusetts Lowell</i> Co-Chair: Tyler Tallman - <i>Purdue University</i>			
Electrical Conductivity of Multifunctional Blend Composites of Polycarbonate and Polyethylene with Hybrid Fillers	On the Use of Magnetic Fields for Dispersing Steel Fibers in Silicone	Investigation Into Etching Effects on the Interface Strength Between Nickel Titanium and Bismuth Tin for the Creation of Metal Matrix Self-Healing Composites	
Technical Paper Publication: SMASIS2022-97843	Technical Presentation Only: SMASIS2022-93699	Technical Paper Publication: SMASIS2022-90256	
Ahmed Naji - University of Babylon, Petra Pötschke - Leibniz- Institut für Polymerforschung Dresden e.V., Amir Ameli - University of Massachusetts Lowell	M. Amin Jamshidi - University of Toronto, Melissa Ma - University of Toronto, Chul B. Park - University of Toronto, Fae Azhari - University of Toronto	Muhammad Istiaque Haider - University of Wisconsin- Milwaukee, Benjamin Church - University of Wisconsin-Milwaukee, Pradeep Rohatgi - University of Wisconsin-Milwaukee, Nathan Salowitz - University of Wisconsin-Milwaukee	

Symposium 2 - Mechanics & Behavior Active Materials Salon IV 02-05: Development of Advanced Actuators and Sensors Chair: Patrick Walgren – Texas A&M University Co-Chair: Mike Kuntz – Smarter Alloys High Strength Actuators Self-Folding Polymer Origami as a Deployable Spacecraft Reconfigurable Metamaterials for Aerospace Applications Structure Technical Presentation Only: SMASIS2022-90797 Technical Presentation Only: SMASIS2022-98904 Technical Presentation Only: SMASIS2022-91134 Biswanath Paira - The Ohio State University, Jianxiong Li Latha Nataraj - CCDC-ARL, Todd Henry - CCDC-ARL, Nic - The Ohio State University, **Boyd Panton** - The Ohio State Ryan Long - Auburn University, Russell Mailen - Auburn Herard - University of California, San Diego, Nicholas University, Anupam Vivek - The Ohio State University, Glenn Boechler - University of California, San Diego, Shengqiang University **Daehn** - The Ohio State University Cai - University of California, San Diego

TUESDAY, SEPTEMBER 13 - 8:30AM-9:40AM				
8:30AM 8:50AM		9:10AM		
Symposium 3 - Modeling, Simulation and Control of Adaptive Systems Fairlane Ballroom				
03-05: Advanced Materials and Transduction Applications				
Chair: Oliver Myers – <i>Clemson University</i> Co-Chair: Maria Sakovsky – <i>Stanford University</i>				
Simulating Age Related Radial Pulses Using Magneto- Rheological Fluids	Numerical Investigation of Bistable Energy Harvesting Based on Silicone Dielectric Elastomer Generators	Design Tradeoffs and Meso-Architecture in a Magnetorheological Elastomer Peristaltic Pump		
Technical Paper Publication: SMASIS2022-90793	Technical Paper Publication: SMASIS2022-90988	Technical Presentation Only: SMASIS2022-91114		
Miranda Eaton - Miami University, Jeong-Hoi Koo - Miami University, Tae-Heon Yang - Korea National University of Transportation, Young-Min Kim - Korea Institute of Oriental Medicine	Giacomo Moretti - Saarland University, Gianluca Rizzello - Saarland University	Niknam Momenzadeh – Pennsylvania State University, Christian Bergen - Pennsylvania State University, Paris Vonlockette - Pennsylvania State University		

Symposium 4 - Integrated System Design and Implementation	Salon I
04-05: Shape Memory Alloy Applications in Integrated Systems	
Chair: Johannes Riemenschneider - German Aerospace Center (DLR) Co-Chair: Srinivas Vasista - German Aerospace Center (DLR)	
Shape Memory Alloy Actuator: A Key Technology for Integrated Systems	High-Power SMA Bowling Ball Catapult
Invited Speaker Presentation: SMASIS2022-91898	Technical Paper Publication: SMASIS2022-90573
Burkhard Maass - Ingpuls GmbH	 Philipp Molitor - Center for Mechatronics and Automation Technology (ZeMA gGmbH), Rouven Britz - Center for Mechatronics and Automation Technology (ZeMA gGmbH), Yannik Goergen - Center for Mechatronics and Automation Technology (ZeMA gGmbH), Paul Motzki - Center for Mechatronics and Automation Technology (ZeMA gGmbH)

TUESDAY, SEPTEMBER 13 - 8:30AM-9:40AM			
8:30AM	8:50AM	9:10AM	
Symposium 5 - Structural Health Monitoring		Firestone	
05-05: Boundary Condition Considerations			
Chair: Muhammad Istiaque Haider - University of Wisconsin Milw Chair: Nathan Salowitz - University of Wisconsin Milwaukee	aukee		
Methods for the Rapid Detection of Boundary Condition Variations in Structural Systems	Damage Assessment from Attractor Boundary Deformation		
Technical Paper Publication: SMASIS2022-90377	Andrew Sloboda - Bucknell University Chin Ting Kong -		
Xuyang Li - Michigan State University, Talal Salem - Michigan State University, Hamed Bolandi - Michigan State University, Vishnu Boddeti - Michigan State University, Nizar Lajnef - Michigan State University	Bucknell University		
Symposium 6 - Bioinspired Smart Materials and Systems		Salon II	
06-05: Design and Modeling of Bioinspired Systems III			

Chair: **Mary Frecker** – *Pennsylvania State University* Co-Chair: **Emily Duan** – *North Carolina State University*

Computational Validation That Whiffling- Inspired Gaps Require Less Work for Roll Control Than Conventional Ailerons at High Rolling Moment Coefficients	Modeling Shape-Shifting Networks of Biologically Inspired Membranes	Analytical Modeling of Segmented Magneto-Active Elastomer Unimorph Actuators with Soft or Hard Magnetic Particles
	Technical Presentation Only: SMASIS2022-91026	
Technical Paper Publication:		Technical Presentation Only: SMASIS2022-91123
SMASIS2022-89275	Joyce El-Beyrouthy - University of Georgia, Michelle	
	Makhoul-Mansour - The University of Tennessee, Eric	Tan Pan - Pennsylvania State University , Rui Leng
Piper Sigrest - University of Michigan, Neil Wu - University of	Freeman - University of Georgia	- Pennsylvania State University, Zoubeida Ounaies -
Michigan, Daniel Inman - University of Michigan		Pennsylvania State University, Mary Frecker - Pennsylvania
		State University

TUESDAY, SEPTEMBER 13 - 8:30AM-9:40AM			
8:30AM 8:50AM		9:10AM	
Symposium 8 - Emerging Technologies		Rouge River	
08-02: Advanced Manufacturing			
Chair: Jovana Jovanova - <i>TU Delft, Netherlands</i> Co-Chair: Juliana Abel - <i>University of Minnesota</i>			
Automated Manufacturing Process for Carbon Fiber Twisted and Coiled Artificial Muscles (TCAMs)	Re-Programming Mechanical andMulti-Physics Response in Metastructures		
Technical Presentation Only: SMASIS2022-88987	Invited Speaker Presentation		
Samantha Bell - The University of Iowa, Arnold Bangel - The University of Iowa, Xuan Song - The University of Iowa, Caterina Lamuta - The University of Iowa	Maria Sakovsky -Stanford University		

TUESDAY, SEPTEMBER 13 - 10:20AM-11:40AM	Λ		
10:20AM	10:40AM	11:00AM	11:20AM
Symposium 7 - Energy Harvesting			Gross Pointe
07-01: Applications in Energy Harvesting			
Chair: Hrishikesh Danawe - University of Michig Co-Chair: Serif Tole - University of Michigan	an		
Energy Harvesting from Motions of a Robotic Worm Technical Paper Publication: SMASIS2022-90798	Characterization of Work Output for NiTi- Based SMA Accounting for Application Based Transient Thermo-Mechanical Behaviour	An Equivalent Circuit Model for the Reconfigurable Ducted Turbine Array Concept Technical Paper Publication:	
Sara Aghazadeh - Binghamton University, Mark Zajkowski - GE Research, Svetlana Bakhmatova - GE Research, Emily Marie Boggs - GE Research, Pei-Hsin Kuo - GE Research, Deepak Trivedi - GE Research, Pu Zhang - Binghamton University, Shahrzad Towfighian - Binghamton University	SMASIS2022-98913 Siu Kei Tang - Extract Energy Shahzad Ahsan - Extract Energy Michael Kuntz - Extract Energy Ibraheem Khan - Extract Energy	Nazim Erol - Rutgers University Xin Shan - Rutgers University Onur Bilgen - Rutgers University	
Symposium 1 - Development and Characteriza	tion of Multifunctional Materials		Salon III
01-06: Additive Fabrication and Manufacturing	g of Materials and Novel Material Systems		
Chair: Christopher Bowland – Oak Ridge Nation Co-Chair: Constantin Ciocanel – Northern Arizo	nal Laboratory na State University		
3D Printed Flexible Dielectric Electroactive Polymer Sensors	Material Characterization of Fused Filament Fabrication for Lower-Limb Prosthetic Sockets	4D Printing of Thermosetting Shape Memory Polymer for Active Deformation Structures	Digital Information Storage Mechanical Metamaterials
Technical Paper Publication: SMASIS2022-91072	Technical Paper Publication: SMASIS2022-88833	Technical Presentation Only: SMASIS2022-90852	Technical Paper Publication: SMASIS2022-90268
David Gonzalez Rodriguez - Purdue University, Cole Maynard - Purdue University, Julio Hernandez - Purdue University, Corey O'brien - Purdue University, Tyler Tallman - Purdue University, Brittany Newell - Purdue	Clara Phillips - University of Toronto, Mark Kortschot - University of Toronto, Fae Azhari - University of Toronto	Linlin Wang - Harbin Institute of Technology, Fenghua Zhang - Harbin Institute of Technology, Yanju Liu - Harbin Institute of Technology, Jinsong Leng - Harbin Institute	Gianyun Zhang - University of Pittsburgh, Kaveh Barri - University of Pittsburgh, Zhong Lin Wang - Georgia Institute of Technology, Amir Alavi - University of Pittsburgh

of Technology

University, Jose Garcia - Purdue University

TUESDAY, SEPTEMBER 13 - 10:20AM-11:40AM			
10:20AM	10:40AM	11:00AM	11:20AM
Symposium 2 - Mechanics & Behavior Active N	laterials		Salon IV
02-06: Characterization of Advanced Sensors	and Actuators		
Chair: Drew Forbes – Fort Wayne Metals Co-Chair: Patrick Walgren – Texas A&M Univers	ity		
Quantifying Stored Energy for Shape Recovery via Enthalpy Relaxation	Characterization and Uncertainty Analysis of Heat Transport in 3D Printed Multifractal Media	Fatigue Analysis of Bistable Composite Laminate	Experimental Investigation of Strain and Damage Sensing of Binder With MWCNTs and Conductive Grains Under Cyclic
Technical Presentation Only:		Technical Paper Publication:	Compressive Loads
SMASIS2022-91124	Technical Paper Publication:	SMASIS2022-90215	
	SMASIS2022-89537		Technical Presentation Only:
Midhan Siwakoti - Auburn University, Russell		Shoab Ahmed Chowdhury - Clemson	SMASIS2022-91428
Mailen - Auburn University	Dinesh Ramesh - Florida A&M/Florida	University, Suyi Li - Clemson University,	
	State University, Eugenia Stanisauskis -	Oliver J. Myers - Clemson University	Viswajit Talluru - Virginia Tech, Nishant
	Florida A&M/Florida State University, Jakob		Shirodkar - Virginia Tech, Gary Seidel -
	Consoliver-Zack - Florida A&M/Florida State		Virginia Tech
	University, Basanta Pahari - Florida A&M/		
	Florida State University, William Oates -		
	Florida A&M/Florida State University		

TUESDAY, SEPTEMBER 13 - 10:20AM-11:40AM			
10:20AM	10:40AM	11:00AM	11:20AM
Symposium 3 - Modeling, Simulation and Cont	rol of Adaptive Systems		Fairlane Ballroom
03-06: Reduced Order Modeling			
Chair: Hongcheng Tao – Purdue University Co-Chair: Yongchao Yang – Michigan Technolog	gical University		
Can the Mathematics of Constitutive	A Physics-Integrated Deep Learning	Ultrasensitive Mass Sensing Utilizing	
Plasticity Describe Structural Nonlinearities?	Framework for Discovering Reduced-Order	Nonlinear Compliant Microbeams	
Reduced Order Modeling for Efficient	Models of Nonlinear Dynamical Systems		
Adaptive Structures Design		Invited Speaker Presentation	
	Technical Presentation Only:		
Technical Presentation Only:	SMASIS2022-97724	Jian Zhao	
SMASIS2022-93713			
	Shanwu Li - Michigan Technological		
Patrick Walgren - Texas A&M University,	University, Yongchao Yang - Michigan		
Walker Buckle - Texas A&M University,	Technological University		
Darren Hartl - Texas A&M University			

TUESDAY, SEPTEMBER 13 - 10:20AM-11:40AM			
10:20AM	10:40AM	11:00AM	11:20AM
Symposium 4 - Integrated System Design and	Implementation		Salon I
04-06: Shape Memory Alloy Enabled Mechanis	sms l		
Chair: Paul Motzki - Saarland University Co-Chair: Brent Utter – Lafayette College			
A Novel Compact Concept Design of an	Design and Control Strategy of Tip	Development of Contacting Solutions for	
SMA Based Endoscope	Manipulation for Shape Memory Alloy Actuated Steerable Needle	Shape Memory Alloy Wires	
Technical Paper Publication:		Technical Paper Publication:	
SMASIS2022-90957	Technical Paper Publication: SMASIS2022-91002	SMASIS2022-90586	
Yannik Goergen - Center for Mechatronics		Benjamin John - Fraunhofer Institute for	
and Automation Technology (ZeMA gGmbH),	Sharad Acharya - Temple University,	Machine Tools and Forming Technology,	
Rouven Britz - Center for Mechatronics and	Parsaoran Hutapea - Temple University	Kenny Pagel - Fraunhofer Institute For	
Automation Technology (ZeMA gGmbH),		Machine Tools and Forming, Sven Langbein	
Michele Mandolino - Center for Mechatronics		- Feindrahtwerk Adolf Edelhoff GmbH & Co.	
and Automation Technology (ZeMA gGmbH),		KG, Welf-Guntram Drossel - Fraunhofer	
Gianluca Rizzello - Saarland University,		Institute for Machine Tools and Forming	
Paul Motzki - Center for Mechatronics and		Technology	
Automation Technology (ZeMA gGmbH)			

Symposium 6 - Bioinspired Smart Materials and Systems and Symposium 8 - Emerging Technologies

Salon II

06-06 and 08-03: Vision Session - Engineered Living Materials I

Chair: Joseph Njem – Pennsylvania State University Co-Chair: Jovana Jovanova – TU Delft, Netherlands

Living Multifunctional Materials: Opportunities for Collaborations	Discussion Panel on Engineered Living Materials	
Invited Speaker Presentation		
Zoubeida Ounaies – Pennsylvania State University		

TUESDAY, SEPTEMBER 13 - 12:10PM-1:40PM			
12:10PM	12:30PM	12:50PM	1:10PM
			Alexandria Ballroom
Day 2 Keynote: Paul E. Krajewski			
Chairs: Amin Karami, University at Buffalo, Jame	es Gibert, Purdue University, Shahrzad Towfighian,	Binghamton University	
Automotive Unobtanium: Material Challenges f	or the Future of Transportation		
Invited Speaker Presentation			
Paul E. Krajewski, General Motors Global Resea	arch and Development Center		
TUESDAY, SEPTEMBER 13 - 1:40PM-3:20PM			
1:40PM	2:00PM	2:20PM	3:00PM
Symposium 1 - Development and Characterizat	tion of Multifunctional Materials		Salon III
01-07: Composites for Actuation and Sensing			
Chair: Mohammed Malakooti – University of Wa Co-Chair: Christopher Bowland – Oak Ridge No	shington ational Laboratory		
Mornhing Composite Membrane with	Design and Testing of a Variable Stiffness	Model-Enabled Design of Multifunctional	Adaptive Magneto-Responsive Surfaces
Temperature Induced Shape-Shifting	Honeycomb Composite	Composites for Passive Self-Sensing	Fabricated by Laser-Based Microstructuring
Capabilities	Technical Paper Publication:	Mechanical Strength	Technical Paper Publication:
Technical Presentation Only: SMASIS2022-89153	SMASIS2022-90788	Technical Presentation Only:	SMASIS2022-90742
	Carson Squibb - Virginia Polytechnic Institute	SMASIS2022-93821	Gaia Kravanja - University of Ljubljana,
Vanessa Restrepo - Texas A&M University,	and State University, Michael Philen - Virginia		Inna A. Belyaeva - East Bavarian Centre
Oscar Ojeda - Texas A&M University	Polytechnic Institute and State University	Sumit Gupta - Oak Ridge National	for Intelligent Materials, Ostbayerische
		Laboratory, Amit Naskar - Oak Ridge	Technische Hochschule, Luka Hribar -
		National Laboratory, Christopher Bowland -	University of Ljubljana, Irena Drevenšek-
		Oak Ridge National Laboratory	Olenik - J. Stefan Institute, Mikhail Shamonin
			- East Bavarian Centre for Intelligent
			Materiais, Ostbayerische Technische
			Liubliana

TUESDAY, SEPTEMBER 13 - 1:40PM-3:20PM			
1:40PM	2:00PM	2:20PM	3:00PM
		·	
Symposium 3 - Modeling, Simulation and Cont	rol of Adaptive Systems		Fairlane Ballroom
03-07: Dynamics and Control of Morphing Win	g		
Chair: Anthony Olivett - University at Buffalo Co-Chair: Rafael Heeb - University of Bristol			
Dynamics and Stability of Camber Morphing Wing with Time-Varying Stiffness	MFC Morphing Aileron Control with Intelligent Sensing	Analysis of Aeroelastic Deformation in Reconfigurable Wings	Design Space Exploration and Modelling of GATOR 3D Printed Morphing Skins
Technical Paper Publication: SMASIS2022-90198	Technical Paper Publication: SMASIS2022-92009	Technical Presentation Only: SMASIS2022-93736	Technical Paper Publication: SMASIS2022-93488
Manoj Prabhakar - Indian Institute of Technology Madras, Senthil Murugan - Indian Institute of Technology Madras	Kevin Haughn - University of Michigan, Lawren Gamble - Exponent Inc., Daniel Inman - University of Michigan	Francis Phillips - DEVCOM Army Research Laboratory, Trent White - Texas A&M University, Darren Hartl - Texas A&M University	Rafael Heeb - University of Bristol, Michael Dicker - University of Bristol, Benjamin King Sutton Woods - University of Bristol

TUESDAY, SEPTEMBER 13 - 1:40PM-3:20PM			
1:40PM	2:00PM	2:20PM	3:00PM
			·
Symposium 4 - Integrated System Design and	Implementation		Salon I
04-07: Shape Memory Alloy Enabled Mechanis	sms II		
Chair: Kenny Pagel - <i>Fraunhofer Institute for Mac</i> Co-Chair: Brent Utter – <i>Lafayette College</i>	chine Tools and Forming Technology		
Control of Rotatory Decoupled Antagonistic SMA Actuators	Characteristic Value-Based Design System for Shape Memory Springs	Development of Design Principles for SMA Wave Springs	
Technical Paper Publication: SMASIS2022-90552	Technical Presentation Only: SMASIS2022-90335	Technical Paper Publication: SMASIS2022-90364	
Tom Gorges - Center for Mechatronics and Automation Technology (ZeMA gGmbH), Philipp Molitor - Center for Mechatronics and Automation Technology (ZeMA gGmbH), Rouven Britz - Center for Mechatronics and Automation Technology (ZeMA gGmbH), Yannik Goergen - Center for Mechatronics and Automation Technology (ZeMA gGmbH), Paul Motzki - Center for Mechatronics and Automation Technology (ZeMA gGmbH)	Alexander Hiekel - Fraunhofer IWU, Fabian Hoffmann - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Kenny Pagel - Fraunhofer IWU, Romina Krieg - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Ralf Theiß - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Simon Horn - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Welf-Guntram Drossel - Fraunhofer IWU, Peter Dültgen - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V.	Kenny Pagel - Fraunhofer Institute for Machine Tools and Forming, Marco Gnauck - Fraunhofer Institute for Machine Tools and Forming Technology, Tom Stapf - Fraunhofer Institute for Machine Tools and Forming Technology, Welf-Guntram Drossel - Fraunhofer Institute for Machine Tools and Forming Technology	

TUESDAY, SEPTEMBER 13 - 1:40PM-3:20PM				
1:40PM	2:00PM	2:20PM	3:00PM	
Symposium 6 - Bioinspired Smart Materials an	d Systems		Salon II	
06-07: Cephalopods-Inspired Systems				
Chair: Caterina Lamuta – University of Iowa Co-Chair: Jeong Yong Kim – North Carolina Sta	te University			
Marine Biofilm Removal via Cephalopod- Inspired Smart Skin	Muscular Hydrostats Inspired by Cephalopods	Dynamic Materials Inspired by Cephalopods		
Technical Presentation Only: SMASIS2022-89004 Tatum Johnson - The University of Iowa,	Technical Presentation Only: SMASIS2022-89024 Sean Maxson - The University of Iowa,	Invited Speaker Presentation Alon Gorodetsky – University of California, Irvine		
Parth Kotak - The University of Iowa, Caterina Lamuta - The University of Iowa	Caterina Lamuta - The University of Iowa, Parth Kotak - The University of Iowa			

Symposium 7 - Energy Harvesting			Gross Pointe
07-02: Energy Harvesting Structures			
Chair: Hongcheng Tao – Purdue University			
Energy Harvesting from Transition Waves in	Strain Based Tire Pressure Monitoring	Nonlinear Dynamics of a Two Members	
Bistable Metamaterials	Systems (TPMS) With Synchronous Electric Charge Extraction (SECE)	Angle-Shaped Energy Harvester	
Technical Presentation Only:		Technical Paper Publication:	
SMASIS2022-98866	Technical Paper Publication: SMASIS2022-91168	SMASIS2022-90623	
Myungwon Hwang - Purdue University,		Francesco Danzi - Purdue University,	
Yeongeun Ki - Purdue University, Andres	Maxim Germer - Technische Universität	Hongcheng Tao - Purdue University, Amin	
Arrieta - Purdue University	Dresden, Uwe Marschner - Technische	Joodaky - Michigan State University, James	
	Universität Dresden, Andreas Richter -	Gibert - Purdue University	
	Technische Universität Dresden		

TUESDAY, SEPTEMBER 13 - 1:40PM-3:20PM			
1:40PM	2:00PM	2:20PM	3:00PM
Symposium 8 - Emerging Technologies			Rouge River
08-04: Design of Smart Structures			
Chair: Guangbo Hao - <i>University College Cork</i> Co-Chair: Andres Arrieta – <i>Purdue University</i>			
Preliminary Design of Martian Rover Wheels Using Superelastic NiTi Textiles	Controlled Underactuated Soft Robotics from Hierarchical Multistability	Enchanced Functionality Design of Soft Grabbing Robot with Virtual Reality	
Technical Presentation Only: SMASIS2022-93859	Technical Presentation Only: SMASIS2022-99787	Technical Paper Publication: SMASIS2022-90772	
Berik Kallevig - University of Minnesota Twin Cities, Julianna Abel - University of Minnesota Twin Cities	Andres Arrieta - Purdue University, Juan Osorio - Purdue University, Harith Morgan - Purdue University	Tashko Rizov - Ss. Cyril and Methodius University, Jelena Djokikj - Ss. Cyril and Methodius University, Jovana Jovanova - Transport Engineering and Logistics	

TUESDAY, SEPTEMBER 13 - 3:40PM	1-5:20PM			
3:40PM	4:00PM	4:20PM	5:00PM	5:20PM
Symposium 1 - Development and Cl	haracterization of Multifunctional Mater	ials		Salon III
01-08: Shape Memory Materials				
Chair: Ji Su - <i>NASA</i> Co-Chair: Amir Ameli - <i>University of I</i>	Massachusetts Lowell			
Shape Memory Epoxy Resin and Its Composites with Narrow Transition Temperature Technical Presentation Only: SMASIS2022-90905 Lan Luo - Harbin Institute of Technology, Fenghua Zhang - Harbin Institute of Technology, Jinsong Leng - Harbin Institute of Technology	The Dependency of Twinning Stress on the Magneto- Mechanical Loading in Ni2MnGa Magnetic Shape Memory AlloysTechnical Presentation Only: SMASIS2022-98731Glen D'Silva - Northern Arizona University, Heidi Feigenbaum - Northern Arizona University, Constantin Ciocanel - Northern Arizona University	Investigation of Transformation Temperatures, Microstructure, and Deformation Behavior of a Pseudoelastic Cu-Based Shape Memory Alloy Technical Paper Publication: SMASIS2022-90933 Christian Krancher - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Benjamin Schelnberger - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Fabian Hoffmann - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Romina Krieg - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Romina Krieg - Forschungsgemeinschaft	 Bridging the Scales Between Twin Level and Component Level Models of Magnetic Shape Memory Alloys Technical Paper Publication: SMASIS2022-91681 Robert Courant - Technische Universität Berlin, Jürgen Maas - Technische Universität Berlin 	Examination of the Interdependency of Applied Load, Realizable Stroke and Transition Temperatures in Cyclic Tests Concerning Lifetime of Single Crystalline CuAINi Technical Paper Publication: SMASIS2022-90963 Moritz Langhoff - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Simon Horn - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Romina Krieg - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Christian Krancher - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Christian Krancher - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Christian Hoffmann -
		Werkzeuge und Werkstoffe e.V., Peter Dültgen - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V.		Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Ralf Theiß - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Peter Dültgen - Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V.

68

3:40PM4:00PM4:20PM5:00PM5:20PMSymposium 3 - Modeling, SimulationFairlane BaltO3-08: Design of Smart and Adaptive Systems IICo-Chair: Manuel Collet - Université de Lyon Co-Chair: Uwe Marschner - Technische Universitet DresdenConceptual Design of a Shape- Adaptive Structure with Tailored Structural InstabilityLow-Energy Stiffness Modulation in Laminated HingesDigital Inertial Programming Technical Presentation Only: SMASIS2022-91622Conceptual Design of a Shape- Adaptive Structure with Tailored Structural InstabilityMachine Learning and Finite Element Hybrid Analysis for Reduced Cost Flow SimulationsFachnical Presentation Only: SMASIS2022-88355SMASIS2022-89963 Maria Sakovsky - StanfordXinhao Quan - Purdue University, James Gibert - Purdue University, James Gibert - Purdue University, James Gibert - Purdue University,SMASIS2022-88355Macina Central Presentation Only: SMASIS2022-88356	TUESDAY, SEPTEMBER 13 - 3:40PM-	-5:20PM			
Symposium 3 - Modeling, Simulation and Control of Adaptive Systems Fairlane Ballr 03-08: Design of Smart and Adaptive Systems II Chair: Manuel Collet - Université de Lyon Co-Chair: Uwe Marschner - Technische Universität Dresden Conceptual Design of a Shape- Adaptive Structure with Tailored Machine Learning and Finite Low-Energy Stiffness Modulation in Laminated Hinges Digital Inertial Programming Conceptual Design of a Shape- Adaptive Structure with Tailored Machine Learning and Finite Technical Presentation Only: SMASIS2022-91622 Structural Instability Reduced Cost Flow Simulations SMASIS2022-89963 Xinhao Quan - Purdue University, James Gibert - Purdue University, SMASIS2022-88355 SMASIS2022-88516	3:40PM	4:00PM	4:20PM	5:00PM	5:20PM
Symposium 3 - Modeling, Simulation and Control of Adaptive Systems Fairlane Ballr 03-08: Design of Smart and Adaptive Systems II Chair: Manuel Collet - Université de Lyon Co-Chair: Uwe Marschner - Technische Universität Dresden Conceptual Design of a Shape- Adaptive Structure with Tailored Machine Learning and Finite Low-Energy Stiffness Modulation in Laminated Hinges Digital Inertial Programming Conceptual Design of a Shape- Adaptive Structure with Tailored Machine Learning and Finite Technical Presentation Only: SMASIS2022-91622 Structural Instability Reduced Cost Flow Simulations SMASIS2022-89963 Xinhao Quan - Purdue University, James Gibert - Purdue University, SMASIS2022-88355 Technical Presentation Only: SMASIS2022-88356					
O3-08: Design of Smart and Adaptive Systems II Chair: Manuel Collet - Université de Lyon Co-Chair: Uwe Marschner - Technische Universität Dresden Low-Energy Stiffness Modulation in Laminated Hinges Digital Inertial Programming Conceptual Design of a Shape- Adaptive Structure with Tailored Machine Learning and Finite Technical Presentation Only: SMASIS2022-91622 Structural Instability Reduced Cost Flow Simulations SMASIS2022-89963 Xinhao Quan - Purdue University, SMASIS2022-88355 SMASIS2022-88356	Symposium 3 - Modeling, Simulation	and Control of Adaptive Systems			Fairlane Ballroom
Chair: Manuel Collet - Université de Lyon Co-Chair: Uwe Marschner - Technische Universität Dresden Low-Energy Stiffness Modulation in Laminated Hinges Digital Inertial Programming Conceptual Design of a Shape- Adaptive Structure with Tailored Machine Learning and Finite Technical Presentation Only: SMASIS2022-91622 Structural Instability Reduced Cost Flow Simulations Maria Sakovsky - Stanford James Gibert - Purdue University, SMASIS2022-88355 SMASIS2022-88516	03-08: Design of Smart and Adaptive	Systems II			
Co-Chair: Uwe Marschner - Technische Universität Dresden Low-Energy Stiffness Modulation in Laminated Hinges Digital Inertial Programming Conceptual Design of a Shape- Adaptive Structure with Tailored Structural Instability Machine Learning and Finite Element Hybrid Analysis for Reduced Cost Flow Simulations Technical Presentation Only: SMASIS2022-89963 SMASIS2022-91622 Technical Paper Publication: SMASIS2022-88355 Technical Presentation Only: SMASIS2022-88356 Machine Learning and Finite Element Hybrid Analysis for Reduced Cost Flow Simulations Maria Sakovsky - Stanford James Gibert - Purdue University, James Gibert - Purdue University, SMASIS2022-88355 SMASIS2022-88356	Chair: Manuel Collet - Université de Ly	'on			
Low-Energy Stiffness Modulation in Laminated HingesDigital Inertial ProgrammingConceptual Design of a Shape- Adaptive Structure with Tailored Structural InstabilityMachine Learning and Finite Element Hybrid Analysis for Reduced Cost Flow SimulationsTechnical Presentation Only: SMASIS2022-89963SMASIS2022-91622Technical Paper Publication: SMASIS2022-88355Technical Presentation Only: SMASIS2022-88356Maria Sakovsky - StanfordJames Gibert - Purdue University, I James Gibert - Purdue University,SMASIS2022-88355SMASIS2022-88356	Co-Chair: Uwe Marschner - Technische	e Universität Dresden			
In Laminated Hinges Adaptive Structure with Tailored Element Hybrid Analysis for Technical Presentation Only: Technical Presentation Only: SMASIS2022-91622 SMASIS2022-89963 Technical Paper Publication: Technical Presentation Only: Xinhao Quan - Purdue University, SMASIS2022-88355 SMASIS2022-88356 Maria Sakovsky - Stanford James Gibert - Purdue University, SMASIS2022-88355 SMASIS2022-88356	Low-Energy Stiffness Modulation	Digital Inertial Programming	Conceptual Design of a Shape-	Machine Learning and Finite	
Technical Presentation Only:Structural InstabilityReduced Cost Flow SimulationsTechnical Presentation Only:SMASIS2022-91622Technical Paper Publication:Technical Presentation Only:SMASIS2022-89963Technical Paper Publication:Technical Presentation Only:SMASIS2022-88355Maria Sakovsky - StanfordJames Gibert - Purdue University,SMASIS2022-88355SMASIS2022-88356	in Laminated Hinges		Adaptive Structure with Tailored	Element Hybrid Analysis for	
Technical Presentation Only: SMASIS2022-91622 SMASIS2022-89963 Technical Paper Publication: Technical Presentation Only: Xinhao Quan - Purdue University, SMASIS2022-88355 SMASIS2022-88516 Maria Sakovsky - Stanford James Gibert - Purdue University, SMASIS2022-88355		Technical Presentation Only:	Structural Instability	Reduced Cost Flow Simulations	
SMASIS2022-89963 Technical Paper Publication: Technical Presentation Only: Xinhao Quan - Purdue University, SMASIS2022-88355 SMASIS2022-88516 Maria Sakovsky - Stanford James Gibert - Purdue University, SMASIS2022-88355	Technical Presentation Only:	SMASIS2022-91622			
Xinhao Quan - Purdue University,SMASIS2022-88355SMASIS2022-88516Maria Sakovsky - StanfordJames Gibert - Purdue University,SMASIS2022-88355SMASIS2022-88516	SMASIS2022-89963		Technical Paper Publication:	Technical Presentation Only:	
Maria Sakovsky - Stanford James Gibert - Purdue University,		Xinhao Quan - Purdue University,	SMASIS2022-88355	SMASIS2022-88516	
	Maria Sakovsky - Stanford	James Gibert - Purdue University,			
University Hongcheng Tao - Purdue Ed Wheatcroft - University of Kazuko Fuchi - University of	University	Hongcheng Tao - Purdue	Ed Wheatcroft - University of	Kazuko Fuchi - University of	
University Bristol, Jiajia Shen - University of Dayton Research, Eric Wolf - Ohio		University	Bristol, Jiajia Shen - University of	Dayton Research, Eric Wolf - Ohio	
Bristol, Rainer Groh - University of Aerospace Institute, David Makhija			Bristol, Rainer Groh - University of	Aerospace Institute, David Makhija	
Bristol, Alberto Pirrera - University - Lateral Unbounded Software,			Bristol, Alberto Pirrera - University	- Lateral Unbounded Software,	
of Bristol, Mark Schenk - University LLC, Christopher Schrock - Air			of Bristol, Mark Schenk - University	LLC, Christopher Schrock - Air	
of Bristol Force Research Laboratory,			of Bristol	Force Research Laboratory,	
Philip Beran - Air Force Research				Philip Beran - Air Force Research	
Laboratory				Laboratory	

TUESDAY, SEPTEMBER 13 - 3:40PM-5:20PM				
3:40PM	4:00PM	4:20PM	5:00PM	5:20PM
	·	·	·	
Symposium 4 - Integrated System De	esign and Implementation			Salon I
04-08: Emerging Integrated System	Applications			
Chair: Wonhee Kim – General Motors Co-Chair: Amit Bhayadia -University a	it Buffalo			
Power Efficiency of Drag Reduction Using Traveling Waves for Morphing Wing Airfoils	Analysis and Design of an Adaptive Turbofan Engine Inlet	Novel Method to Fabricate Monolithic NiTi Based Torque Tubes Using Electrical Discharge	Charging Plug with Smart Clamp Contacts for Fast Charging of Electric Cars	Planar Design of Multi-Axial Rigid Load-Bearing Tendon Constrained Inflatables
Technical Presentation Only: SMASIS2022-91090	Sinitian Variate Corman	Technical Presentation Only:	Technical Presentation Only: SMASIS2022-90430	Technical Presentation Only: SMASIS2022-99246
Anthony Olivett - University at Buffalo, Amit Bhayadia - University at Buffalo, Amin Karami - University at Buffalo	Aerospace Center, Giada Abate - German Aerospace Center, Michael Rose - German Aerospace Center, Johannes Riemenschneider - German Aerospace Center	Siu Kei Tang - Smarter Alloys, Jak Li - Smarter Alloys, Hadi Razmpoosh - Smarter Alloys, Michael Kuntz - Smarter Alloys, Ibraheem Khan - Smarter Alloys	Sven Langbein - Adolf Edelhoff Gmbh & Co. KG, Dietrich Lembke - BEST!LE Technologies GmbH, Kenny Pagel - Fraunhofer Institute for Machine Tools and Forming Technology	Ellen Kim - University of Michigan, Jonathan Luntz - University of Michigan, Diann Brei - University of Michigan

TUESDAY, SEPTEMBER 13 - 3:40PM-	5:20PM			
3:40PM	4:00PM	4:20PM	5:00PM	5:20PM
Symposium 6 - Bioinspired Smart Mat	terials and Systems			Salon II
06-08: Bioinspired Vehicles and Mech	hanisms			
Chair: Zahra Soltani - Pennsylvania Sta Co- Chair: Michael Philen – Virginia Te	ate University ech			
Free Flight Experiment and Design of a Deployable Wing Mechanism of an Insect-Inspired Glider Based on Morphological and Aerodynamic Characterization of Dissosteira Carolina Grasshoppers Technical Presentation Only: SMASIS2022-93775 Kyung Jun "Paul" Lee - Princeton University, Siti Fauziyah - University of Illinois at Urbana-Champaign, Marianne Alleyne - University of Illinois at Urbana-Champaign, Aimy	The Role of Compliance in Generating Traveling Waves on a Bio-Inspired Flexible Propulsor Technical Paper Publication: SMASIS2022-88529 Isabel Hess - University of Florida, Patrick Musgrave - University of Florida	Design, Fabrication, and Evaluation of a Flying Fish Inspired Robotic Model Organism Technical Presentation Only: SMASIS2022-93727 Valeria Saro-Cortes - Princeton University, Aimy Wissa - Princeton University	Coverts as Yaw and Roll Bio- Inspired Control Devices for Tailless UAVs Technical Presentation Only: SMASIS2022-93789 Diaa Zekry - Princeton University, Aimy Wissa - Princeton University	Traveling Waves for Flow Control: Biological Mechanisms in Aquatic Life Guide Design of Efficient Morphing Wing Aircraft Technical Presentation Only: SMASIS2022-91075 Anthony Olivett - University at Buffalo, Amit Bhayadia - University at Buffalo, Amin Karami - University at Buffalo

TUESDAY, SEPTEMBER 13 - 3:40PM-5:20PM				
3:40PM	4:00PM	4:20PM	5:00PM	5:20PM
Symposium 7 - Energy Harvesting				Gross Pointe
07-03: Emerging Frontiers in Energy	Harvesting			
Chair: Serif Tol – University of Michiga	n			
Motion in the Ocean – Revolutionizing Harvesting Through the Design and F Underwater Kites	g Marine Hydrokinetic Energy Periodic Motion Control of	Micro Triboelectric Generators to Toggle Mems Switches		
Invited Speaker Presentation		Technical Presentation Only: SMASIS2022-91165		
Chris Vermillion – North Carolina Stat	e University	Mohammad Mousavi - SUNY at Binghamton, Mohammad Alzgool - Binghamton University, Benyamin Davaji - Northeastern University, Shahrzad Towfighian - Binghamton University		
Technical Sessions

3:40PM	4:00PM	4:20PM	5:00PM	5:20PM
Symposium 8 - Emerging Technolog	ies			Firestone
08-05: Sensing and Actuation				
Chair: Juliana Abel – University of Mir Co-Chair: Paul Motzki – Saarland Uni	nnesota versity			
Characterizing the Effects of	Investigation of the Resistive	Soft Actuators From Auxetic	Design of a Flexible Transducer	
Annealing Temperature on Knitted	Response of Reduced Graphene	Structures and Shape Memory	Array and Characterisation	
Shape Memory Actuators	Oxide for Sensing Large Strains	Alloys	of Piezoelectric Sensors for	
	(>10%)		Curvature Compensation	
Technical Paper Publication:		Technical Presentation Only:		
SMASIS2022-90779	Technical Paper Publication:	SMASIS2022-89055	Technical Paper Publication:	
	SMASIS2022-90349	Janghoon Woo - University of	SMASIS2022-90707	
Robert Pettys-Baker - University		Minnesota Twin Cities, Julianna		
of Minnesota, Niharikha Subash	Armin Yazdi - University of	Abel - University of Minnesota Twin	Christiaan Boerkamp - Delft	
- University of Minnesota, Isidora	Wisconsin-Milwaukee, Li-Chih	Cities	University of Technology, Tiago	
Mack - University of Minnesota,	Tsai - University of Wisconsin-		Costa - Delft University of	
Surbhi Shah - Mayo Clinic,	Milwaukee, Nathan Salowitz -		Technology, Jovana Jovanova -	
Julianna Abel - University of	University of Wisconsin-Milwaukee		Delft University of Technology	
Minnesota, Brad Holschuh -	-			
University of Minnesota				

Technical Sessions

WEDNESDAY, SEPTEMBER 14 - 8:00AM-9:20AM					
8:00AM	8:20AM	8:40AM			
		Salon II			
Day 3 Keynote: Chuck Farrar					
Chairs: Amin Karami, University at Buffalo, James Gibert, Purdue	University, Shahrzad Towfighian, Binghamton University				
Adding Rigor to Structural Health Monitoring Through Statistica	al Physics				
Invited Speaker Presentation					
Charles R. (Chuck) Farrar – The Engineering Institute					
WEDNESDAY, SEPTEMBER 14 - 9:30AM-10:40AM					
9:30AM	9:50AM	10:10AM			
Symposium 1 - Development and Characterization of Multifunc	tional Materials	Salon III			
01-09: Advanced Electronic Materials					
Chair: Reza Rizvi - York University					
Co-Chair: Sumit Gupta - Oak Ridge National Laboratory					

Enhanced Electrical Conductivity of Functionally Graded Graphene Oxide Films for Transient Electronics	A Special Electrode Can Be Bonded to Stainless Steel for High Temperature Application in MEMS Structure
Technical Presentation Only: SMASIS2022-93861	Technical Paper Publication: SMASIS2022-89332
Aref Soltani Tehrani - York University Reza Rizvi - York University	Yi-Yen Liu - National Taiwan University, Shun-Chiu Lin - National Taiwan University, Wen-Jong Wu - National Taiwan University

WEDNESDAY,	SEPTEMBER 14 - 9:30AM-10:40AM	
------------	-------------------------------	--

9:30AM	9:50AM	10:10AM

Symposium 6 - Bioinspired Smart Materials and Systems, Symposium 8 - Emerging Technologies					
06-09 and 08:06: Vision Session: Engineered Living Materials II					
Chair: Caterina Lamuta - University of Iowa Co-Chair: Jovana Jovanova - TU Delft, Netherlands					
Chains of Miura-Ori Spring Origami Blocks	Shark Skin Inspired Lattice Structure for Drag Reduction	Electrostatic Artificial Muscle Soft Actuators			
Technical Presentation Only: SMASIS2022-91281	Technical Presentation Only: SMASIS2022-90743	Technical Presentation Only: SMASIS2022-98870			
Salvador Rojas - Purdue University, Andres F. Arrieta - Purdue University	Jovana Jovanova - Technische Universität Delft, Sepideh Ghodrat - Technische Universität Delft , Aimée Sakes Jovanova - Technische Universität Delft	Maduran Palaniswamy - Toyota Research Institute of North America, Erin Rutledge - Toyota Research Institute of North America, Michael Rowe - Toyota Research Institute of North America			

Symposium 7 - Energy Harvesting					
07-04: Triboelectric Energy Harvesting					
Chair: Zenkun Lin - University of Michigan Co-Chair: Mohammad Alzgool - Binghamton University	Chair: Zenkun Lin - University of Michigan Co-Chair: Mohammad Alzgool - Binghamton University				
A Triboelectric Transduction Mechanism from Flow Induced Low-Frequency Structural Resonance	Comparison of Power Density of Triboelectric Generators via Frequency-Up-Conversion Method	A Liquid Metal-Based Flexible and Stretchable Triboelectric Generator for Soft Robotic Applications			
Technical Paper Publication: SMASIS2022-89368	Technical Paper Publication: SMASIS2022-90875	Technical Presentation Only: SMASIS2022-91120			
Xiaowei Li - Shanghai University, Yuan Zhou - Shanghai University, Zhongjie Li - University of Toronto, Dan Zhang - Shanghai University, Hao Wu - Shanghai University, Ying Gong - Shanghai University, Di Zhang - Shanghai University, Xuzhang Peng - Shanghai University	Zhongjie Li - Shanghai University, Chao Yang - Shanghai University, Yan Peng - Shanghai University, Fan Shen - Shanghai University	Nabid Aunjum Hossain - Binghamton University, Sara Aghazadeh - Binghamton University, Pu Zhang - Binghamton University, Shahrzad Towfighian - Binghamton University			

76

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
91002	Acharya	Sharad	Design and Control Strategy of Tip Manipulation for Shape Memory Alloy Actuated Steerable Needle	04-06: Shape Memory Alloy Enabled Mechanisms I
90798	Aghazadeh	Sara	Energy Harvesting From Motions of a Robotic Worm	07-01: Applications in Energy Harvesting
91120	Aghazadeh	Sara	A Liquid Metal-Based Flexible and Stretchable Triboelectric Generator for Soft Robotic Applications.	07-04: Triboelectric Energy Harvesting
90268	Alavi	Amir	Digital Information Storage Mechanical Metamaterials	01-06: Additive Fabrication and Manufacturing of Materials and Novel Material Systems
91151	Albakri	Mohammad	Temperature Compensation for Electromechanical Impedance Signatures With Data-Driven Modeling	05-02: Impedance Based Methods
90790	Ameduri	Salvatore	Aeroacoustic and Structural Achievements for a Morphing Blade Twist System Developed for the European Project: Shape Adaptive Blades for Rotorcraft Efficiency	04-02: Adaptive Aerospace Structures II
91454	Ameduri	Salvatore	Experimental Tests of a SMA Based Blade Twist System: Wind Tunnel and Whirl Tower Outcomes	04-02: Adaptive Aerospace Structures II
97843	Ameli	Amir	Electrical Conductivity of Multifunctional Blend Composites of Polycarbonate and Polyethylene With Hybrid Fillers	01-05: Composites and Hybrid Systems
99787	Arrieta	Andres	Controlled Underactuated Soft Robotics From Hierarchical Multistability	08-04: Design of Smart Structures
92010	Baggetta	Mario	Mechatronic Design and Physical Prototyping of a Three-Fingered Gripper for Underwater Manipulation	03-03: Modeling Complex Materials and Systems
90955	Bakardjiev	Petko	Electromechanical Model of Dielectric Elastomer Transducers	03-03: Modeling Complex Materials and Systems
91256	Bartlett	Michael D.	Shape Morphing Mechanical Metamaterials for Multifunctional Robots	01-04: Modeling and Characterization of Multifunctional Materials
88386	Hasan	Mehedi	A Finite-Strain Phase-Field Model for Fracture in Shape Memory Alloys: Modeling Framework and Experimental Validation	03-04: Shape Memory Alloy Characterization II
88987	Bell	Samantha	Automated Manufacturing Process for Carbon Fiber Twisted and Coiled Artificial Muscles (TCAMs)	08-02: Advanced Manufacturing
91045	Bergman	Jeffrey	Additive Manufacturing of Advanced Active Sensing Tags for Structural Health Monitoring Systems	05-04: Sensor Design
90695	Bhayadia	Amit	Feedback Control for Traveling Wave Generation With Bending Actuators	04-03: Optimization and Control of Active Systems
97312	Bielefeldt	Brent	Development of Material Property Feasibility Constraints for a Multiscale Topology Optimization Framework Using Radial Basis Function Interpolations	08-01: Design and Optimization
91111	Bilgen	Onur	Aerodynamic Modeling and Analysis of a Variable Camber Piezocomposite Rotor	04-01: Adaptive Aerospace Structures I

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
88324	Billon	Kevin	2D Active Liner Experimental Results in Acoustic Flow Duct Facility	03-02: Acoustics and Vibration Control
90707	Boerkamp	Christiaan	Design of a Flexible Transducer Array and Characterisation of Piezoelectric Sensors for Curvature Compensation	08-05: Sensing and Actuation
90215	Chowdhury	Shoab Ahmed	Fatigue Analysis of Bistable Composite Laminate	02-06: Characterization of Advanced Sensors and Actuators
91681	Courant	Robert	Bridging the Scales Between Twin Level and Component Level Models of Magnetic Shape Memory Alloys	01-08: Shape Memory Materials
98817	Danawe	Hrishikesh	Broadband Subwavelength Imaging via Phononic Crystal Flat Lenses	08-01: Design and Optimization
90623	Danzi	Francesco	Nonlinear Dynamics of a Two Members Angle-Shaped Energy Harvester	07-02: Energy Harvesting Structures
91058	Domann	John	Multiscale Modeling of Mangetostriction: A Probabilistic Approach to Magnetic Domain Structures	02-01: Multiferroics
92672	Domann	John	A Comparison of Meshfree and Finite Element Based Magnetostatic Modeling	02-04: Modeling and Simulation of Active Materials
98015	D'Silva	Glen	Empirical Relationships for Calculating the Fracture Toughness of Ni2MnGa Magnetic Shape Memory Alloys Accounting for Their Elastic Anisotropy and Magneto-Mechanical Loading	01-01: Shape Memory Alloy Characterization I
98731	D'Silva	Glen	The Dependency of Twinning Stress on the Magneto- Mechanical Loading in Ni2MnGa Magnetic Shape Memory Alloys	01-08: Shape Memory Materials
92022	Duan	Emily	Optimal Bipennate Fluidic Artificial Muscle Bundle Design for Ankle Joint Motion With Limited Volumetric Capacity	06-04: Design and Modeling of Bioinspired Systems II
98824	Dupont	Joshua	Characterization of Adaptive Piezoelectric Elastic Waveguiding Metasurfaces	03-02: Acoustics and Vibration Control
90793	Eaton	Miranda	Simulating Age Related Radial Pulses Using Magneto- Rheological Fluids	03-05: Advanced Materials and Transduction Applications
91270	Erol	Nazim	An Equivalent Circuit Model for the Reconfigurable Ducted Turbine Array Concept	07-01: Applications in Energy Harvesting
90914	Ezzine	Mouhamed Mounibe	Numerical Computation of the Acoustic Response of an Active Airfoil With Impedance Boundary Conditions to a Turbulent Wake	03-02: Acoustics and Vibration Control
90936	Fassois	Spilios	Random Vibration Based Robust Damage Detection on an Operating Wind Turbine Blade Under Variable Natural Excitation Conditions	05-03: Vibration Based Methods
91026	Freeman	Eric	Modeling Shape-Shifting Networks of Biologically- Inspired Membranes	06-05: Design and Modeling of Bioinspired Systems III

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
88516	Fuchi	Kazuko	Machine Learning and Finite Element Hybrid Analysis for Reduced Cost Flow Simulations	03-08: Design of Smart and Adaptive Systems II
91158	Fuentes Garcia	Miguel Angel	Analyzing the Mechanical Properties Along the Length of Human Achilles Tendon	06-02: Microfabrication and Soft Tissues
91083	Gandhi	Farhan	Autonomous Morphing	04-02: Adaptive Aerospace Structures II
91201	Geier	Sebastian	Challenges of Upscaling Power Composites for Aerospace Applications	04-04: Integrated Smart Systems
89142	Ghazzawi	Sultan	On the Development of a Concentric Cylindrical Model for the Deformation-Dependent Electrical Resistivity of Fiber-Reinforced Composites	05-02: Impedance Based Methods
90574	Glavan	Gašper	Magnetoelectric Response of Multiferroic Polymeric Composites Containing a Magnetoactive Elastomer	02-01: Multiferroics
90957	Goergen	Yannik	A Novel Compact Concept Design of an SMA Based Endoscope	04-06: Shape Memory Alloy Enabled Mechanisms I
90552	Gorges	Tom	Control of Rotatory Decoupled Antagonistic SMA Actuators	04-07: Shape Memory Alloy Enabled Mechanisms II
91008	Gothard	Andrew	A Method to Generate 3D Patient-Specific Total Knee Arthroplasty Tibia Models	06-04: Design and Modeling of Bioinspired Systems II
93821	Gupta	Sumit	Model-Enabled Design of Multifunctional Composites for Passive Self-Sensing and Energy Harvesting With Improved Mechanical Strength	01-07: Composites for Actuation and Sensing
90690	Hargrove	Brianne	Modeling of a Nonlinear Superelastic Thermally Actuated Compliant Mechanism	06-05: Design and Modeling of Bioinspired Systems III
92009	Haughn	Kevin	MFC Morphing Aileron Control With Intelligent Sensing	03-07: Dynamics and Control of Morphing Wing
93488	Heeb	Rafael	Design Space Exploration and Modelling of GATOR 3D Printed Morphing Skins	03-07: Dynamics and Control of Morphing Wing
88529	Hess	Isabel	The Role of Compliance in Generating Traveling Waves on a Bio-Inspired Flexible Propulsor	06-08: Bioinspired Vehicles and Mechanisms
91020	Hines	Brandon	Investigation Into Piezoelectric Nanoparticle Dispersion in Polymethyl Methacrylate Bone Cement	06-03: Artificial Synapses and Electroactive Materials
91178	Hott	Jacob	Investigation of Mounting Techniques for Concrete Floor-Mounted Accelerometers Used in Smart Buildings	04-04: Integrated Smart Systems
100365	Hubbard	James	The Smart Structure of the Mind	Day 1 Keynote: James E. Hubbard
98866	Hwang	Myungwon	Energy Harvesting From Transition Waves in Bistable Metamaterials	07-02: Energy Harvesting Structures
93699	Jamshidi	M. Amin	On the Use of Magnetic Fields for Dispersing Steel Fibers in Silicone	01-05: Composites and Hybrid Systems

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
89004	Johnson	Tatum	Marine Biofilm Removal via Cephalopod-Inspired Smart Skin	06-07: Cephalopods-Inspired Systems
90743	Jovanova	Jovana	Shark Skin Inspired Lattice Structure for Drag Reduction	06-08: Bioinspired Vehicles and Mechanisms
93859	Kallevig	Berik	Preliminary Design of Martian Rover Wheels Using Superelastic NiTi Textiles	08-04: Design of Smart Structures
90706	Katibeh	Mohammad	Design Optimization of a Piezocomposite Ornithopter Wing Planform Using a Genetic Algorithm	04-03: Optimization and Control of Active Systems
98913	Khan	lbraheem	Characterization of Work Output for NiTi-Based SMA Accounting for Application Based Transient Thermo- Mechanical Behaviour.	07-01: Applications in Energy Harvesting
90911	Kiefer	Bjoern	A Thermodynamically-Informed Phase-Field Model to Study the Martensite Formation in a Novel Type of Iron-Based SMA	02-02: Performance of Shape Memory Alloys
91587	Kim	Jeong Yong	Implications of Resistive Force on Variable Recruitment Fluidic Artificial Muscle Bundle State Transition	06-04: Design and Modeling of Bioinspired Systems II
99246	Kim	Ellen	Planar Design of Multi-Axial Rigid Load-Bearing Tendon Constrained Inflatables	04-08: Emerging Integrated System Applications
90607	Kloster	Jack	Simulating the Effects of Porosity on the D31 Piezoelectric Coefficient of Polyvinylidene Fluoride	01-04: Modeling and Characterization of Multifunctional Materials
90933	Krancher	Christian	Investigation of Transformation Temperatures, Microstructure, and Deformation Behavior of a Pseudoelastic Cu-Based Shape Memory Alloy	01-08: Shape Memory Materials
90963	Krancher	Christian	Examination of the Interdependency of Applied Load, Realizable Stroke and Transition Temperatures in Cyclic Tests Concerning Lifetime of Single Crystalline CuAlNi	01-08: Shape Memory Materials
90742	Kravanja	Gaia	Adaptive Magneto-Responsive Surfaces Fabricated by Laser-Based Microstructuring	01-07: Composites for Actuation and Sensing
98912	Kuntz	Michael	Miniature Self-Biasing High Temperature SMA Actuators: Production and Characterization	01-01: Shape Memory Alloy Characterization I
90591	Kwok	Kawai	Effect of Viscoelasticity on Tunneling Conduction of Piezoresistive Carbon Nanotube Polymer Composites	02-01: Multiferroics
90430	Langbein	Sven	Charging Plug With Smart Clamp Contacts for Fast Charging of Electric Cars	04-08: Emerging Integrated System Applications
93775	Lee	Kyung Jun "Paul"	Free Flight Experiment and Design of a Deployable Wing Mechanism of an Insect-Inspired Glider Based on Morphological and Aerodynamic Characterization of Dissosteira Carolina Grasshoppers	06-08: Bioinspired Vehicles and Mechanisms
90377	Li	Xuyang	Methods for the Rapid Detection of Boundary Condition Variations in Structural Systems	05-05: Boundary Condition Considerations

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
90737	Li	Ting	In-Plane Mechanical Properties of an Adaptive Honeycomb Structure	08-01: Design and Optimization
91443	Li	Tiantian	Hinged Tile-Based Air Surface for Morphing Windshield Cowling	04-04: Integrated Smart Systems
98911	Lin	Zhenkun	Electroelastic Metasurface With Multi-Resonant Piezoelectric Shunts for Simultaneous Anomalous Wavefront Control Over Distinct Frequencies	03-02: Acoustics and Vibration Control
89332	Liu	Yi-Yen	A Special Electrode Can Be Bonded to Stainless Steel for High Temperature Application in MEMS Structure	01-09: Advanced Electronic Materials
98033	Loh	Kenneth	Distributed Damage Characterization Enabled by Tomographic Methods	05-01: Machine Learning
91134	Long	Ryan	Self-Folding Polymer Origami as a Deployable Spacecraft Structure	02-05: Development of Advanced Actuators and Sensors
98861	Lu	Wei-Chun	Dispersion Optimization of Phononic Crystals Using Learning-Based Approach	08-01: Design and Optimization
90905	Luo	Lan	Shape Memory Epoxy Resin and Its Composites With Narrow Transition Temperature	01-08: Shape Memory Materials
91898	Maass	Burkhard	Shape Memory Alloy Actuators: A Key Technology for Integrated Systems	04-05: Shape Memory Alloy Applications in Integrated Systems
91149	Mailen	Russell	Thermomechanical Properties of Liquid Crystal Elastomer Films	01-02: Active Polymers and Elastomers
91217	Makhoul-Mansour	Michelle	Biomolecular Membrane-Based Soft Materials for Multifunctional, Adaptive, and Neuromorphic Systems	06-03: Artificial Synapses and Electroactive Materials
88584	Malakooti	Mohammad H.	Functional Elastomer Composites for Wearable Thermoelectric Energy Scavengers	01-03: Liquid Metal Composites
91119	Malik	Sarah	An Information Theory Approach for Internet of Things Enabled Damage Monitoring	05-01: Machine Learning
89181	Maraj	Joshua	Biorealistic Short-Term Plasticity in Biomolecular Synapses Enhances Reservoir Computing Classification	06-03: Artificial Synapses and Electroactive Materials
88921	Markvicka	Eric	Elastomer Composites With Hybrid Liquid Metal Fillers for Independently Controllable Properties	01-03: Liquid Metal Composites
91168	Marschner	Uwe	Strain Based Tire Pressure Monitoring Systems (TPMS) With Synchronous Electric Charge Extraction (SECE)	07-02: Energy Harvesting Structures
91225	Marschner	Uwe	Analogies Between Stimuli-Responsive (Smart) Hydrogel-Based Microfluidic Valves and Electronic Transistors	03-03: Modeling Complex Materials and Systems
93851	Masud	Md. Abdulla Al	Effect of Multilayer Dielectric Elastomer Actuator (DEA) Construction on Performance and Breakdown Strength	01-02: Active Polymers and Elastomers

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
89024	Maxson	Sean	Muscular Hydrostats Inspired by Cephalopods	06-07: Cephalopods-Inspired Systems
90483	Mayer	Joshua	Design of a Modular Lifespan Test Bench for Shape Memory Alloy Wires	02-02: Performance of Shape Memory Alloys
90573	Molitor	Philipp	High-Power Sma Bowling Ball Catapult	04-05: Shape Memory Alloy Applications in Integrated Systems
91114	Momenzadeh	Niknam	Design Tradeoffs and Meso-Architecture in a Magnetorheological Elastomer Peristaltic Pump	03-05: Advanced Materials and Transduction Applications
90988	Moretti	Giacomo	Numerical Investigation of Bistable Energy Harvesting Based on Silicone Dielectric Elastomer Generators	03-05: Advanced Materials and Transduction Applications
98904	Nataraj	Latha	Reconfigurable Metamaterials for Aerospace Applications	02-05: Development of Advanced Actuators and Sensors
91072	Newell	Brittany	3D Printed Flexible Dielectric Electroactive Polymer Sensors	01-06: Additive Fabrication and Manufacturing of Materials and Novel Material Systems
89537	Oates	William	Characterization and Uncertainty Analysis of Heat Transport in 3D Printed Multifractal Media	02-06: Characterization of Advanced Sensors and Actuators
91075	Olivett	Anthony	Traveling Waves for Flow Control: Biological Mechanisms in Aquatic Life Guide Design of Efficient Morphing Wing Aircraft	06-08: Bioinspired Vehicles and Mechanisms
91090	Olivett	Anthony	Power Efficiency of Drag Reduction Using Traveling Waves for Morphing Wing Airfoils	04-08: Emerging Integrated System Applications
91160	Oyekola	Peter	Towards Meta-Fixture Design for Indirect Electromechanical Impedance Measurements: On the Effects of Elastic Metastructures on Defect Detection Capabilities	05-02: Impedance Based Methods
88892	Pagel	Kenny	Characterization and Modeling of the System Behavior of High Load SMA Actuators	03-04: Shape Memory Alloy Characterization II
90335	Pagel	Kenny	Characteristic Value-Based Design System for Shape Memory Springs	04-07: Shape Memory Alloy Enabled Mechanisms II
90364	Pagel	Kenny	Development of Design Principles for SMA Wave Springs	04-07: Shape Memory Alloy Enabled Mechanisms II
90586	Pagel	Kenny	Development of Contacting Solutions for Shape Memory Alloy Wires	04-06: Shape Memory Alloy Enabled Mechanisms I
90797	Paira	Biswanath	High Strength Actuators	02-05: Development of Advanced Actuators and Sensors
98870	Palaniswamy	Maduran	Electrostatic Artificial Muscle Soft Actuators	06-09 and 08:06: Vision Session: Engineered Living Materials II

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
91123	Pan	Tan	Analytical Modeling of Segmented Magneto-Active Elastomer Unimorph Actuators With Soft or Hard Magnetic Particles	06-05: Design and Modeling of Bioinspired Systems III
90983	Panwar	Shardul	Effect of Coating on the Continuous Cycle Actuation of Shape Memory Alloy Wires: Analyses and Experiments	03-04: Shape Memory Alloy Characterization II
90779	Pettys-Baker	Robert	Characterizing the Effects of Annealing Temperature on Knitted Shape Memory Actuators	08-05: Sensing and Actuation
88833	Phillips	Clara	Material Characterization of Fused Filament Fabrication for Lower-Limb Prosthetic Sockets	01-06: Additive Fabrication and Manufacturing of Materials and Novel Material Systems
93736	Phillips	Francis	Analysis of Aeroelastic Deformation in Reconfigurable Wings	03-07: Dynamics and Control of Morphing Wing
90198	Prabhakar	Manoj	Dynamics and Stability of Camber Morphing Wing With Time-Varying Stiffness	03-07: Dynamics and Control of Morphing Wing
91622	Quan	Xinhao	Digital Inertial Programming	03-08: Design of Smart and Adaptive Systems II
91047	Reed	Nicholas	Development of Embeddable Additive Manufacturing Microsensors for Structural Health Monitoring	05-04: Sensor Design
98307	Renuka Balakrishna	Ananya	Design of Soft Magnetic Materials	02-03: Shape Memory Alloys
89153	Restrepo	Vanessa	Morphing Composite Membrane With Temperature Induced Shape-Shifting Capabilities	01-07: Composites for Actuation and Sensing
91089	Riemenschneider	Johannes	Integrated Piezoceramic Sensors for Local Ice Detection	04-04: Integrated Smart Systems
91060	Ringley	Jessie D.	Bioprinted Droplet Network Functionalized Tissues	06-02: Microfabrication and Soft Tissues
88954	Risso	Giada	Actuation of Fiber-Reinforced Polymer Surfaces With Multiple Programmable Shapes	03-01: Design of Smart and Adaptive Systems I
90772	Rizov	Tashko	Enchanced Functionality Design of Soft Grabbing Robot With Virtual Reality	08-04: Design of Smart Structures
93861	Rizvi	Reza	Enhanced Electrical Conductivity of Functionally- Graded Graphene Oxide Films for Transient Electronics	01-09: Advanced Electronic Materials
91281	Rojas	Salvador	Chains of Miura-Ori Spring Origami Blocks	06-09 and 08:06: Vision Session: Engineered Living Materials II
89963	Sakovsky	Maria	Low-Energy Stiffness Modulation in Laminated Hinges	03-08: Design of Smart and Adaptive Systems II
90256	Salowitz	Nathan	Investigation Into Etching Effects on the Interface Strength Between Nickel Titanium and Bismuth Tin for the Creation of Metal Matrix Self Healing Composites	01-05: Composites and Hybrid Systems
90349	Salowitz	Nathan	Investigation of the Resistive Response of Reduced Graphene Oxide for Sensing Large Strains (>10%)	08-05: Sensing and Actuation

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
93727	Saro-Cortes	Valeria	Design, Fabrication, and Evaluation of a Flying Fish Inspired Robotic Model Organism	06-08: Bioinspired Vehicles and Mechanisms
88502	Schmelter	Tobias	Investigations of the Long-Term Behavior of Electrically Heated Shape Memory Alloy Wires Deflected by a 90° Pulley	02-02: Performance of Shape Memory Alloys
90970	Schuleit	Marvin	Micro Laser Welding of NiTi Shape Memory Wires and Printed Circuit Boards	02-03: Shape Memory Alloys
91426	Seidel	Gary	Effective Property Prediction of Multifunctional CNT- Polymer Nanocomposites via Reduced-Order Two- Point Cluster and Blocking Functions	01-04: Modeling and Characterization of Multifunctional Materials
91428	Seidel	Gary	Experimental Investigation of Strain and Damage Sensing of Binder With MWCNTs and Conductive Grains Under Cyclic Compressive Loads	02-06: Characterization of Advanced Sensors and Actuators
91429	Seidel	Gary	Effect of Heterogeneity and Voids on the Piezoresistive Response of Cnt-Based Polymer Bonded Energetics Using Statistical Correlation Functions	01-04: Modeling and Characterization of Multifunctional Materials
89025	Shakib	Mahmudul Alam	Novel Geopolymer Based Artificial Synapses	06-03: Artificial Synapses and Electroactive Materials
90409	Shan	Xin	A Reduced-Order Multi-Body Model for Ornithopters With Piezocomposite Flapping Wings	04-01: Adaptive Aerospace Structures I
89275	Sigrest	Piper	Computational Validation That Whiffling-Inspired Gaps Require Less Work for Roll Control Than Conventional Ailerons at High Rolling Moment Coefficients	06-04: Design and Modeling of Bioinspired Systems II
91124	Siwakoti	Midhan	Quantifying Stored Energy for Shape Recovery via Enthalpy Relaxation	02-06: Characterization of Advanced Sensors and Actuators
88793	Sloboda	Andrew	Damage Assessment From Attractor Boundary Deformation	05-05: Boundary Condition Considerations
88421	Song	Xi	Vibration-Based Bridge Damage Detection Using Image-Based Pre-Trained Deep Learning Network	05-03: Vibration Based Methods
89036	Song	Junjie	A Common Simulating Model on Complicated Self- Deformation of 4D Printed Bilayer Structures	02-04: Modeling and Simulation of Active Materials
91015	Sparenberg	Marc	Modified Triply Periodic Actuator Topologies	04-03: Optimization and Control of Active Systems
90788	Squibb	Carson	Design and Testing of a Variable Stiffness Honeycomb Composite	01-07: Composites for Actuation and Sensing
91069	Srinivasaraghavan Govindarajan	Rishikesh	Flexible Piezoelectric Wave-Based Sensor: Numerical Analysis and Validation	05-04: Sensor Design
91710	Sutter	Felix	Finite Element Analysis of the Nonlinear Material Behavior of Ferroelectrics Under Complex Load Scenarios	02-04: Modeling and Simulation of Active Materials

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
91001	Swetha	Juturu	Workspace Evolution of Hard Magnetic Soft Elastica	06-01: Design and Modeling of Bioinspired Systems I
100315	Tabor	Christopher	Liquid Metal Electronics	01-03: Liquid Metal Composites
98915	Tang	Siu Kei	Novel Method to Fabricate Monolithic NiTi Based Torque Tubes Using Electrical Discharge Machining	04-08: Emerging Integrated System Applications
89315	Тао	Jiayue	Implementation of an Origami Dynamics Model Based on the Absolute Nodal Coordinate Formulation (ANCF)	03-01: Design of Smart and Adaptive Systems I
91234	Tawfick	Sameh	Rapid Design Cycles of Insect Scale Jumping Robot Phenotypes	06-01: Design and Modeling of Bioinspired Systems I
88882	Theren	Benedict	Influence of the Phase Transformation Behaviour of NiTi Shape Memory Alloy Wires on the Predictability of Strain During Operation	02-02: Performance of Shape Memory Alloys
91014	Toker	Guher Pelin	Effects of Heat Treatments on the Shape Memory Behavior of NiTiHf High Temperature Shape Memory Alloys Fabricated by Laser Powder Bed Fusion	01-01: Shape Memory Alloy Characterization I
91165	Towfighian	Shahrzad	Micro Triboelectric Generators to Toggle MEMS Switches	07-03: Emerging Frontiers in Energy Harvesting
91040	Vasista	Srinivas	Analysis and Design of an Adaptive Turbofan Engine Inlet	04-08: Emerging Integrated System Applications
91054	Vasista	Srinivas	Design and Manufacture of a Fluid-Actuated Morphing Winglet Trailing Edge Control Surface	04-01: Adaptive Aerospace Structures I
91582	Walgren	Patrick	Shape Memory Alloy Rendering of Experimental Analysis and Calibration Tool	02-03: Shape Memory Alloys
93713	Walgren	Patrick	Can the Mathematics of Constitutive Plasticity Describe Structural Nonlinearities? Reduced Order Modeling for Efficient Adaptive Structures Design	03-06: Reduced Order Modeling
90852	Wang	Linlin	4D Printing of Thermosetting Shape Memory Polymer for Active Deformation Structures	01-06: Additive Fabrication and Manufacturing of Materials and Novel Material Systems
91495	Wang	Qiong	On the Paradox of Twisted and Coiled Polymer Actuators	06-01: Design and Modeling of Bioinspired Systems I
89013	Weerakkody	Thilina	Dynamic Modelling and Robust Control for Twisted and Coiled Artificial Muscles	03-03: Modeling Complex Materials and Systems
88355	Wheatcroft	Ed	Conceptual Design of a Shape-Adaptive Structure With Tailored Structural Instability	03-08: Design of Smart and Adaptive Systems II
91175	Widdowson	Denise	Multi-Objective Optimization of Predicted Magnetic Properties From Multifield Processing Conditions in Polymer Matrix Particle Composites	02-04: Modeling and Simulation of Active Materials
89055	Woo	Janghoon	Soft Actuators From Auxetic Structures and Shape Memory Alloys	08-05: Sensing and Actuation

SUBMISSION CODE	PRESENTING AUTHOR LAST NAME	PRESENTING AUTHOR FIRST NAME	SUBMISSION TITLE	SESSION
90581	Wright	Cody	Experimental Validation for a Multi-Objective Optimized Piezocomposite Morphing Airfoil	04-03: Optimization and Control of Active Systems
90875	Yang	Chao	Comparison of Power Density of Triboelectric Generators via Frequency-Up-Conversion Method	07-04: Triboelectric Energy Harvesting
97722	Yang	Yongchao	Towards Computational Super-Resolution Ultrasonic Array Imaging of Material Defects via Hierarchical Multi-Scale Deep Learning	05-03: Vibration Based Methods
97724	Yang	Yongchao	A Physics-Integrated Deep Learning Framework for Discovering Reduced-Order Models of Nonlinear Dynamical Systems	03-06: Reduced Order Modeling
91144	Zadan	Mason	Fabrication of 3D Printed Thermoelectric Devices for Integration Into Liquid Crystal Elastomer Actuators	01-02: Active Polymers and Elastomers
93789	Zekry	Diaa	Coverts as Yaw and Roll Bio-Inspired Control Devices for Tailless UAVs	06-08: Bioinspired Vehicles and Mechanisms
89459	Zeng	Siyuan	Self-Assembly by 4D Printing: Design and Fabrication of Sequential Self-Folding	03-01: Design of Smart and Adaptive Systems I
89368	Zhou	Yuan	A Triboelectric Transduction Mechanism From Flow Induced Low-Frequency Structural Resonance	07-04: Triboelectric Energy Harvesting

Session Chairs

SESSION	PRIMARY SESSION CHAIR LAST NAME	PRIMARY SESSION CHAIR FIRST NAME	AFFILIATION	CO-CHAIR LAST NAME	CO-CHAIR FIRST NAME	AFFILIATION
01-01: Shape Memory Alloy Characterization I	Toker	Guher Pelin	University of Kentucky	Rizvi	Reza	York University
01-02: Active Polymers and Elastomers	Su	Ji	NASA	Zadan	Mason	Carnegie Mellon
01-03: Liquid Metal Composites	Malakooti	Mohammed	University of Washington	Markvicka	Eric	University of Nebraska
01-04: Modeling and Characterization of Multifunctional Materials	Gupta	Sumit	Oak Ridge National Laboratory	Siedel	Gary	Virginia Tech
01-05: Composites and Hybrid Systems	Ameli	Amir	University of Massachusetts Lowell	Tallman	Tyler	Purdue University
01-06: Additive Fabrication and Manufacturing of Materials and Novel Material Systems	Bowland	Christopher	Oak Ridge National Laboratory	Ciocanel	Constantin	Northern Arizona State University
01-07: Composites for Actuation and Sensing	Malakooti	Mohammed	University of Washington	Bowland	Christopher	Oak Ridge National Laboratory
01-08: Shape Memory Materials	Su	Ji	NASA	Ameli	Amir	University of Massachusetts Lowell
01-09: Advanced Electronic Materials	Rizvi	Reza	York University	Gupta	Sumit	Oak Ridge National Laboratory
02-01: Multiferroics	Von Lockette	Paris	Penn State University	Nicholson	Douglas	The Boeing Company
02-02: Performance of Shape Memory Alloys	Nicholson	Douglas	The Boeing Company	Forbes	Drew	Fort Wayne Metals
02-03: Shape Memory Alloys	Kuntz	Mike	Smarter Alloys	Nicholson	Douglas	The Boeing Company
02-04: Modeling and Simulation of Active Materials	Von Lockette	Paris	Pennsylvania State University	Nicholson	Douglas	The Boeing Company
02-05: Development of Advanced Actuators and Sensors	Walgren	Patrick	Texas A&M University	Kuntz	Mike	Smarter Alloys
02-06: Characterization of Advanced Sensors and Actuators	Forbes	Drew	Fort Wayne Metals	Walgren	Patrick	Texas A&M University
03-01: Design of Smart and Adaptive Systems I	Arrieta	Andres	Purdue University	Jovanova	Jovana	TU Delts, Netherlands

Session Chairs

SESSION	PRIMARY SESSION CHAIR LAST NAME	PRIMARY SESSION CHAIR FIRST NAME	AFFILIATION	CO-CHAIR LAST NAME	CO-CHAIR FIRST NAME	AFFILIATION
03-02: Acoustics and Vibration Control	Marschner	Uwe	Technische Universität Dresden	Jovanova	Jovana	TU Delts, Netherlands
03-03: Modeling Complex Materials and Systems	Marschner	Uwe	Technische Universität Dresden	NA	NA	NA
03-04: Shape Memory Alloy Characterization II	Pagel	Kenny	Fraunhofer Institute for Machine Tools and Forming Technology	Jovanova	Jovana	TU Delft, Netherlands
03-05: Advanced Materials and Transduction Applications	Myers	Oliver	Clemson University	Sakovsky	Maria	Stanford University
03-06: Reduced Order Modeling	Тао	Hongcheng	Purdue University	Yang	Yongchao	Michigan Technological University
03-07: Dynamics and Control of Morphing Wing	Olivett	Anthony	University at Buffalo	Heeb	Rafael	University of Bristol
03-08: Design of Smart and Adaptive Systems II	Collet	Manuel	Université de Lyon	Marschner	Uwe	Technische Universität Dresden
04-01: Adaptive Aerospace Structures I	Vasista	Srinivas	German Aerospace Center (DLR)	Gandhi	Farhan	Rensslear Polytechnic Institute
04-02: Adaptive Aerospace Structures II	Riemenschneider	Johannes	German Aerospace Center (DLR)	Musgrave	Patrick	University of Florida
04-03: Optimization and Control of Active Systems	Musgrave	Patrick	University of Florida	Bulgen	Onur	Rutgers University
04-04: Integrated Smart Systems	Utter	Brent	Lafayette College	Luntz	Jonathan	University of Michigan
04-05: Shape Memory Alloy Applications in Integrated Systems	Riemenschneider	Johannes	German Aerospace Center (DLR)	Vasista	Srinivas	German Aerospace Center (DLR)
04-06: Shape Memory Alloy Enabled Mechanisms I	Motzki	Paul	Saarland University	Utter	Brent	Lafayette College
04-07: Shape Memory Alloy Enabled Mechanisms II	Pagel	Kenny	Fraunhofer Institute for Machine Tools and Forming Technology	Utter	Brent	Lafayette College
04-08: Emerging Integrated System Applications	Kim	Wonhee	General Motors	Bhayadia	Amit	University of Buffalo

Session Chairs

SESSION	PRIMARY SESSION CHAIR LAST NAME	PRIMARY SESSION CHAIR FIRST NAME	AFFILIATION	CO-CHAIR LAST NAME	CO-CHAIR FIRST NAME	AFFILIATION
05-01: Machine Learning	Salowitz	Nathan	University of Wisconsin Milwaukee	Srinivasaraghavan Govindaraj	Rishikesh	Embry Riddle Aeronautical University
05-02: Impedance Based Methods	Kim	Daewon	Embry Riddle Aeronautical University	Istiaque Haider	Muhammad	University of Wisconsin Milwaukee
05-03: Vibration Based Methods	Tallman	Tyler	Purdue University	Kim	Daewon	Embry Riddle Aeronautical University
05-04: Sensor Design	Srinivasaraghavan Govindaraj	Rishikesh	Embry Riddle Aeronautical University	Tallman	Tyler	Purdue University
05-05: Boundary Condition Considerations	Istiaque Haider	Muhammad	University of Wisconsin Milwaukee	Salowitz	Nathan	University of Wisconsin Milwaukee
06-01: Design and Modeling of Bioinspired Systems I	Freeman	Eric	University of Georgia	Yong Kim	Jeong	North Carolina State University
06-02: Microfabrication and Soft Tissues	Lamuata	Caterina	University of Iowa	Anton	Steve	Tennessee Tech University
06-03: Artificial Synapses and Electroactive Materials	Sarles	Andy	University of Tennessee	Anton	Steve	Tennessee Tech University
06-04: Design and Modeling of Bioinspired Systems II	Freeman	Eric	University of Georgia	Philen	Michael	Virginia Tech
06-05: Design and Modeling of Bioinspired Systems III	Frecker	Mary	Pennsylvania State University	Duan	Emily	North Carolina State University
06-07: Cephalopods-Inspired Systems	Lamuta	Caterina	University of Iowa	Yong Kim	Jeong	North Carolina State University
Add 06-06 and 08-03: Vision Session Engineered Living Materials I	Njem	Joseph	Pennsylvania State University	Jovanova	Jovana	TU Delft, Netherlands
06-08: Bioinspired Vehicles and Mechanisms	Soltani	Zahra	University at Buffalo	Philen	Michael	Virginia Tech
06-09 and 08:06: Vision Session: Engineered Living Materials II	Lamuta	Caterina	University of Iowa	Jovanova	Jovana	TU Delft, Netherlands
07-01: Applications in Energy Harvesting	Danawe	Hrishikesh	University of Michigan	Tole	Serif	University of Michigan

SESSION	PRIMARY SESSION CHAIR LAST NAME	PRIMARY SESSION CHAIR FIRST NAME	AFFILIATION	CO-CHAIR LAST NAME	CO-CHAIR FIRST NAME	AFFILIATION
07-02: Energy Harvesting Structures	Тао	Hongcheng	Purdue University	NA	NA	NA
07-03: Emerging Frontiers in Energy Harvesting	Tol	Serif	University of Michigan	NA	NA	NA
07-04: Triboelectric Energy Harvesting	Lin	Zenkun	University of Michigan	Alzgool	Mohammad	Binghamton University
08-01: Design and Optimization	Beblo	Richard	Air Force Research Laboratory/RQVC	Motzki	Paul	Saarland University
08-02: Advanced Manufacturing	Jovanova	Jovana	TU Delft, Netherlands	Abel	Julianna	University of Minnesota
08-04: Design of Smart Structures	Нао	Guangbo	University College Cork	Arrieta	Andres	Purdue University
08-05: Sensing and Actuation	Abel	Juliana	University of Minnesota	Motzki	Paul	Saarland University
Symp 09: Student Paper & Hardware Competition	Bibo	Amin	Clemson University	Berselli	Giovanni	University of Genoa
Student Development Events	Fuchi	Kazuko	University of Dayton Research	Siwakoti	Midhan	Auburn University

Symposia Chairs

	NUMBER	SYMPOSIUM NAME	ROLE	NAME	AFFILIATION
	1	Development and Characterization of Multifunctional Materials	Chair Co-Chair Co-Chair	Ji Su Mohammad Malakooti Reza Rizvi	NASA University of Washington York University
	2	Mechanics & Behavior Active Materials	Chair Co-Chair Co-Chair Co-Chair	Paris Von Lockette Darren Hartl Douglas Nicholson John Gallagher	Penn State University Texas A&M University Boeing Merrimack College
	3	Modeling, Simulation and Control of Adaptive Systems	Chair Co-Chair Co-Chair	Amin Bibo Giovanni Berselli Abdessattar Abdelkefi	Clemson University University of Genoa New Mexico State University
	4	Integrated System Design and Implementation	Chair Co-Chair Co-Chair	Johannes Riemenschneider Brent Utter Patrick Musgrave	German Aerospace Center (DLR), Germany Lafayette College University of Florida
	5	Structural Health Monitoring	Chair Co-Chair	Nathan Salowitz Daewon Kim	University of Wisconsin-Milwaukee Embry Riddle Aeronautical University
	6	Bioinspired Smart Materials and Systems	Chair Co-Chair Co-Chair	Caterina Lamuta Matthew Bryant Joe Calogero	University of Iowa North Carolina State University Pratt & Whitney
	7	Energy Harvesting	Chair Co-Chair Co-Chair	Christopher Cooley Soobum Lee Wei-Che Tai	Oakland University University of Maryland Baltimore County Michigan State University
	8	Emerging Technologies	Chair Co-Chair Co-Chair	Jovana Jovanoval Paul Motzki Juliana Abel	TU Delft, Netherlands Saarland University University of Minnesota
	9	Student Best Paper and Hardware Competitions	Chair Co-Chair	Giovanni Berselli Amin Bibo	University of Genoa Clemson University
		Student Development Events	Chair Co-Chair	Kazuko Fuchi Midhan Siwakoti	University of Dayton Research Auburn University
		2022–2023 SMASIS Division Executive Committee	Chair Vice Chair Treasurer Secretary & Webmaster	Lingyu Yu Rich Beblo Bjoern Kiefer Onur Bilgen	University of South Carolina Air Force Research Laboratory TU Bergakademie Freiberg Rutgers University

Symposium 1: Development and Characterization of Multifunctional Materials

Ji Su Chair

Mohammad Malakooti

Reza Rizvi Co-Chair

Symposium 2: Mechanics & Behavior Active Materials

Co-Chair

Paris Von Lockette

Chair

Darren Hartl Co-Chair

Douglas Nicholson Co-Chair

John Gallagher Co-Chair

Symposium 3: Modeling, Simulation and Control of Adaptive Systems

Amin Bibo Chair

Giovanni Berselli Co-Chair

Abdessattar Abdelkefi Co-Chair

Symposium 4: Structural Health Monitoring

Johannes Riemenschneider Chair

Brent Utter Co-Chair

Patrick Musgrave

Symposium 5: Integrated System Design and Implementation

Nathan Salowitz Chair

Daewon Kim Co-Chair

Symposium 6: Bioinspired Smart Materials and Systems

Caterina Lamuta

Chair

Joe Calogero Co-Chair

Matthew Bryant Co-Chair

Symposium 7: Energy Harvesting

Christopher Cooley Chair

Soobum Lee Co-Chair

Wei-Che Tai Co-Chair

Symposium 8: Emerging Technologies

Jovana Jovanova Chair

Paul Motzki Co-Chair

Juliana Abel Co-Chair

Symposium 9: Student Best Paper and Hardware Competitions

Giovanni Berselli Chair

Amin Bibo Co-Chair

Student Development Events

Kazuko Fuchi Chair

Midhan Siwakoti Co-Chair

2022–2023 SMASIS Division Executive Committee

Lingyu Yu Chair

Rich Beblo Vice Chair

Bjoern Kiefer Treasurer

Onur Bilgen Secretary & Webmaster

SMASIS 2022 Conference Leadership

James Gibert Technical Conference Chair Purdue University

Shahrzad Towfighian Technical Program Co-Chair Binghamton University

Bjoern Kiefer

International Co-Chair

Freiberg, Germany

Wei-Hsin Liao International Co-Chair The Chinese University of Hong Kong Hong Kong SAR, The People's Republic of China

SMASIS 2022 Division Leadership

Lingyu (Lucy) Yu Chair University of South Carolina

Rich Beblo Vice Chair Air Force Research Lab (AFRL/RQVC)

Bjoern Kiefer Treasurer TU Bergakademie Freiberg

Onur Bilgen Secretary & Webmaster Rutgers University

2022–2023 ASME Officers

Karen Ohland President

Mahantesh Hiremath Past President

Thomas Costabile, P.E. Executive Director/CEO

ASME Staff

Mary D. Jakubowski, CMP Manager, Events Management

TU Bergakademie Freiberg, Institute of Mechanics und Fluid Dynamics

Josalind Mercado Meetings Coordinator, Events Management

Laraine Lee Specialist, Conference E-Tools

Barbara Zlatnik Sr. Manager, Tech & Engineering Communities Houston Office

Mary Grace Stefanchik Director, Publishing Development

Mary Rose MacDonald Publishing Coordinator, Conf. Publications

Amber Grady-Fuller Copyright & Proceeding Coordinator

SMASIS Conference Synopsis

Adaptive Structures and Materials Systems by definition are intelligent systems that have sentience and responsiveness to changing environments. The field has rapidly matured due to interdisciplinary efforts across universities, government, and industry. To continue the high impact growth of this field, the purpose of this conference is to assemble world experts across engineering and scientific disciplines (mechanical, aerospace, electrical, materials, and civil engineering, biology, physics chemistry, etc.) to actively discuss the latest breakthroughs in smart materials, the cutting edge in adaptive structure applications and the recent advances in new device technol-

ogies and basic engineering research. The conference is divided into symposia ranging from basic research to applied technological design and development to industrial and governmental integrated system and application demonstrations.

Schedule

January 2, 2023: 400 word abstract due January 30, 2023: Abstract acceptance notification Mar 13, 2023: Full-length draft paper due Apr 24, 2023: Paper acceptance notification June 9, 2023: Copyright form due June 12, 2023: Final revised paper due Full papers will appear in an archival ASME Conference Proceedings. Selected papers will be published in archival Journals.

Authors please note: Only 2 presentations per author with one full registration.

Participation

Authors should submit a 400 word abstract to the conference web site https://event.asme.org/smasis

Questions can be directed to: James Gibert, Conference Chair j.gibert@purdue.edu Shahrzad Towfighian, Technical Chair stowfigh@binghamton.e du Wei-Hsin Liao, Int'I Co-chair whliao@cuhk.edu.hk Björn Kiefer, Int'I Co-chair bjoem.kiefer@imfd.tu-freiberg.de

Executive Committee

Chair: Lingyu Yu /ice Chair: Rich Beblo Treasurer: Bjoern Kiefer Secretary & Webmaster: Onur Bil

Call for Abstracts ASME Conference on SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS

September 11–13, 2023

Austin, TX

Sponsored by the Adaptive Structures & Material Systems Branch, Aerospace Division

The conference is divided into symposia broadly ranging from basic research to applied technological design and development to industrial and governmental integrated system and application demonstrations. The symposia and their topical areas specifically are:

Development and Characterization of Multifunctional Materials

Multifunctional material formulations, evaluation, synthesis, and processing; multifunctional composites and hybrid materials; bio-inspired and nano-composites; selfhealing, shape memory, piezoelectric, electrostrictive and magnetostrictive materials; material property enhancement; interface and interaction science; data and AI/machine learning driven multifunctional materials discovery.

Bioinspired Smart Materials and Systems

Convergent topics in engineering and biology such as modeling and simulation of biological systems; biomechanics; biomimetic and bioinspired devices and materials; biomolecular assemblies, bioinspired or soft robotics; biohybrid or living machines; smart prosthetics and implants.

Modeling, Simulation and Control of Adaptive Systems

Micro and macro level modeling; vibration and acoustic control; passive/semi-active/active damping and stiffness variation; actuation and motion control; intelligent and adaptive control; nonlinear control; hysteresis control; modeling simulation and control of micro/nano systems; nonlinear dynamics, and nonlinear vibration.

Energy Harvesting

Modeling and experiments of energy harvesting transducers and applied systems using piezoelectric and magnetostrictive materials; electroactive polymers; inductive and capacitive devices; MEMS and NEMS configurations; novel circuits and storage devices; novel applications/analysis of traditional transduction (e.g., solar, thermoelectric); energy harvesting using metamaterials.

Structural Health Monitoring

Structural asset and life cycle monitoring; conditionbased and predictive maintenance; damage detection; digital twin; digital thread and authoritative source of truth; product lifecycle management; industrial IOT; AI and machine learning; physics-informed machine learning; data analytics, data science and big data; wireless and remote monitoring; edge computing; distributed sensing; human performance monitoring; HSI.

Integrated System Design and Implementation

Adaptive/intelligent/integrated systems design; smart structures design processes and tools; smart devices and technologies; compliant mechanism design; Industrial and government smart products and system applications; sensors and actuators; power and control electronics; smart electronics and devices; MEMS.

Mechanics & Behavior of Active Materials

Advanced constitutive measurements; micro- and nanomechanics of actuator & sensor materials; phase field modeling; multi-scale and multi-physics material models; finite element implementations; reliability issues: aging, fatigue, and fracture; materials for energy storage; multiferroic materials.

Emerging Technologies

Emerging research works that are aligned with the general theme of SMASIS but may not fit in the other symposia. E.g.: advanced and additive manufacturing; nanomanufacturing; topology optimization; soft robot- ics; human performance sensing and augmentation; wearable technologies, uncertainty analysis in materials and structures; among others.

THANK YOU FOR YOUR PARTICIPATION!

SEE YOU IN AUSTIN, TX IN 2023!

The American Society of Mechanical Engineers • ASME *